JP2000116673A - Implant material - Google Patents

Implant material

Info

Publication number
JP2000116673A
JP2000116673A JP10291725A JP29172598A JP2000116673A JP 2000116673 A JP2000116673 A JP 2000116673A JP 10291725 A JP10291725 A JP 10291725A JP 29172598 A JP29172598 A JP 29172598A JP 2000116673 A JP2000116673 A JP 2000116673A
Authority
JP
Japan
Prior art keywords
substrate
bioactive
cavity
coating
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10291725A
Other languages
Japanese (ja)
Inventor
Tadashi Kokubo
正 小久保
Yoshio Sasaki
佳男 佐々木
Tomiharu Matsushita
富春 松下
Kiyoyuki Okunaga
清行 奥長
Masayuki Ninomiya
正幸 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nippon Electric Glass Co Ltd
Original Assignee
Kobe Steel Ltd
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nippon Electric Glass Co Ltd filed Critical Kobe Steel Ltd
Priority to JP10291725A priority Critical patent/JP2000116673A/en
Publication of JP2000116673A publication Critical patent/JP2000116673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To strongly join to a bone in a short period of time and improve stability in an organism by forming a coating having a titania phase and an alkali titanate phase on the surface of a substrate made from a titanic metal and forming a cavity having a bioactive member in the substrate. SOLUTION: The substrate 1 of an implant material is formed, using a titanic metal such as Ti-6Al-4V, Ti-15Mo-5Zr-3Al, or Ti-6Al-2Nb-Ta in addition to pure titanium, coating 4 made up mainly of a titania phase and alkali titanate phase is formed on the surface of the substrate 1. A cavity 2 is formed in the substrate 1 and the bioactive member 5 is filled into or arranged in the inside thereof. The cavity 2 is made to communicate with the outside through a communicating hole 3. The bioactive member may be CaO-SiO2-P2O5-MgO glass or CaO-SiO2-P2O5-MgO crystal glass or CaO-SiO2-Na2O glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工歯根、椎間ス
ペーサ、椎体スペーサ等の大きな荷重のかかる部位に適
用されるインプラント材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an implant material applied to a site where a large load is applied, such as an artificial tooth root, an intervertebral spacer, and a vertebral body spacer.

【0002】[0002]

【従来の技術】従来、骨等の硬組織の代替材料として種
々のインプラント材が提案されている。例えば、純チタ
ンやチタン合金、バイタリウム、ステンレス合金等の高
強度材料からなり、応力緩和のために骨埋入部分に空洞
部を設けた人工歯根が知られている。
2. Description of the Related Art Conventionally, various implant materials have been proposed as substitute materials for hard tissues such as bones. For example, an artificial tooth root made of a high-strength material such as pure titanium, a titanium alloy, vitalium, and a stainless steel alloy and having a cavity in a bone-implanted portion for stress relaxation is known.

【0003】ところがこれらのインプラント材は、高い
機械的強度を有するものの、骨と結合するのに長期間を
要し、また強固に結合することができない。材料表面
に、プラズマ溶射や焼き付けによって生体活性材料から
なる被膜を形成したインプラント材も提案されている
が、これらの材料は長期の埋入中に基材と被膜との界面
で剥離が生じることがある。
[0003] Although these implant materials have high mechanical strength, they require a long period of time to be bonded to bone and cannot be firmly bonded. Implant materials with a coating made of bioactive material formed on the surface of the material by plasma spraying or baking have also been proposed, but these materials may cause peeling at the interface between the base material and the coating during long-term implantation. is there.

【0004】そこでチタン系金属を水酸化ナトリウム等
によりアルカリ処理し、表面にチタニア相やアルカリチ
タネート相からなる被膜を形成したインプラント材が提
案されている。
[0004] Therefore, there has been proposed an implant material in which a titanium-based metal is alkali-treated with sodium hydroxide or the like to form a coating of a titania phase or an alkali titanate phase on the surface.

【0005】[0005]

【発明が解決しようとする課題】上記した材料は、被膜
が基材と一体的に形成されており、また生体活性を有す
るため、自然骨と結合した後も被膜が剥がれることがな
い。
The above-mentioned materials have a coating formed integrally with the base material and have bioactivity, so that the coating does not come off even after bonding with natural bone.

【0006】しかしながら、この材料においても、自然
骨との結合スピードや骨との結合力が十分でない。
However, even with this material, the bonding speed with natural bone and the bonding force with bone are not sufficient.

【0007】本発明の目的は、機械的強度が高く、短期
間で骨と強固に結合し、しかも生体内で長期にわたって
安定なインプラント材を提供することである。
An object of the present invention is to provide an implant material which has high mechanical strength, is firmly bonded to bone in a short period of time, and is stable in vivo for a long period of time.

【0008】[0008]

【課題を解決するための手段】本発明のインプラント材
は、チタン系金属からなる基材と、基材表面に形成さ
れ、チタニア相及びアルカリチタネート相を有する被膜
と、基材内部に設けられ、生体活性部材を有する空洞部
と、空洞部から外部に通じる連通孔とからなることを特
徴とする。
The implant material of the present invention is provided with a substrate made of a titanium-based metal, a coating formed on the surface of the substrate and having a titania phase and an alkali titanate phase, and provided inside the substrate. It is characterized by comprising a cavity having a bioactive member, and a communication hole communicating from the cavity to the outside.

【0009】[0009]

【発明の実施の形態】本発明のインプラント材におい
て、基材を構成するチタン系金属としては、純チタンの
他、Ti−6Al−4V、Ti−15Mo−5Zr−3
Al、Ti−6Al−2Nb−Ta等が使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the implant material of the present invention, as a titanium-based metal constituting a base material, in addition to pure titanium, Ti-6Al-4V, Ti-15Mo-5Zr-3.
Al, Ti-6Al-2Nb-Ta or the like can be used.

【0010】基材表面には、主としてチタニア相とアル
カリチタネート相からなる被膜が形成される。なおチタ
ニアゲル相やアルカリチタネートゲル相が存在していて
も差し支えない。この被膜は、チタン系金属をアルカリ
処理して生成させた膜厚0.1〜5μm程度の膜であ
り、基材と一体的に結合しているため、長期にわたって
安定である。
On the surface of the substrate, a coating mainly composed of a titania phase and an alkali titanate phase is formed. Note that a titania gel phase or an alkali titanate gel phase may be present. This film is a film having a thickness of about 0.1 to 5 [mu] m generated by alkali-treating a titanium-based metal, and is stable for a long time because it is integrally bonded to the base material.

【0011】基材内部には空洞部が設けられており、生
体活性部材が充填又は配置されている。生体活性部材と
しては、種々の材料からなるものが使用可能であるが、
基材表面の被膜よりも高い生体活性を有する材料からな
ることが望ましい。その理由は、生体活性部材の生体活
性が基材表面の被膜より低いと、被膜に達した骨は、ま
ずその表面に沿って増生してしまい、内部に向かって骨
新生が起こるのはその後となる。このため十分な骨形成
を得るのに時間がかかったり、空洞部内に骨が侵入する
前に強固な線維組織が成熟して骨侵入を阻害する場合が
あり、骨との結合力の向上が望めなくなるおそれがあ
る。一方、生体活性部材の生体活性が被膜より高いと、
被膜に達した骨が速やかに連通孔を通って空洞部内にも
侵入するため、骨との結合力が著しく向上する。このよ
うな材料として、CaO−SiO2−P25 −MgO
系ガラス、CaO−SiO2 −P25 −MgO系結晶
化ガラス、CaO−SiO2 −Na2 O系ガラス等を使
用することが好ましい。
[0011] A hollow portion is provided inside the base material, and a bioactive member is filled or arranged therein. As the bioactive member, those made of various materials can be used.
It is desirable to use a material having a higher bioactivity than the coating on the substrate surface. The reason is that if the bioactivity of the bioactive component is lower than the coating on the surface of the base material, the bone that has reached the coating will first grow along the surface, and bone formation will occur inward after that. Become. For this reason, it may take time to obtain sufficient bone formation, or strong fibrous tissue may mature and inhibit bone invasion before bone invades the cavity. It may disappear. On the other hand, if the bioactivity of the bioactive member is higher than the coating,
Since the bone that has reached the capsule quickly penetrates into the cavity through the communication hole, the bonding force with the bone is significantly improved. As such a material, CaO—SiO 2 —P 2 O 5 —MgO
System glass, CaO-SiO 2 -P 2 O 5 -MgO -based crystallized glass, it is preferred to use CaO-SiO 2 -Na 2 O-based glass.

【0012】インプラント材の骨と接する外表面には、
空洞部から外部に通じる連通孔が開口している。連通孔
は、骨の侵入を許容できる孔径を有していることが重要
であり、具体的には100〜2000μmの孔径を有す
ることが好ましい。
[0012] On the outer surface of the implant material in contact with the bone,
A communication hole communicating from the cavity to the outside is open. It is important that the communication hole has a hole diameter that allows the invasion of bone, and specifically, it is preferable that the communication hole has a hole diameter of 100 to 2000 μm.

【0013】このような特徴を有する本発明のインプラ
ント材は、生体内に埋入すると、被膜中のアルカリチタ
ネート相やアルカリチタネートゲル相のアルカリイオン
が体液中のヒドロニウムイオンと交換されてチタニアゲ
ル相になる。このイオン交換によってインプラント材近
傍の体液のpHが上昇してアパタイトが析出しやすい環
境となり、またチタニアゲルに体液中のカルシウムイオ
ンが吸着し、さらに電気的中性を保とうとしてリン酸イ
オンが吸着する。このようにして被膜表面に骨類似のア
パタイトが形成され、この層を介して骨と直接結合す
る。
When the implant material of the present invention having such characteristics is implanted in a living body, the alkali ions in the alkaline titanate phase or alkaline titanate gel phase in the coating are exchanged with hydronium ions in the body fluid, and the titania gel phase is exchanged. become. This ion exchange raises the pH of the body fluid near the implant material to create an environment in which apatite is likely to precipitate, and calcium ions in the body fluid are adsorbed on the titania gel, and phosphate ions are also adsorbed to maintain electrical neutrality . In this way, bone-like apatite is formed on the surface of the coating, and is directly bonded to bone through this layer.

【0014】また連通孔を通じて体液が基材内部に浸入
すると、充填、配置された生体活性部材のカルシウムイ
オンと、体液のヒドロニウムイオンが交換されて部材表
面にシラノール基が生成する。このイオン交換によって
空洞部内の体液のpHが上昇し、アパタイトが析出しや
すい環境となり、生成したシラノール基を核として骨類
似のアパタイトが形成され、新生骨の侵入を助長する。
このようにして骨が基材内部にも誘導され、インプラン
ト材と骨が強固に結合する。
When bodily fluid enters the inside of the base material through the communication hole, calcium ions of the filled and arranged bioactive member and hydronium ions of the bodily fluid are exchanged to generate silanol groups on the surface of the member. Due to this ion exchange, the pH of the body fluid in the cavity increases, and an environment in which apatite is easily precipitated is formed, and apatite similar to bone is formed around the generated silanol group as a nucleus, thereby promoting invasion of new bone.
In this way, the bone is also guided inside the base material, and the implant material and the bone are firmly bonded.

【0015】次に本発明のインプラント材を製造する方
法の一例を説明する。
Next, an example of a method for producing the implant material of the present invention will be described.

【0016】まず外部と連通する空洞部を有するチタン
系金属製の基材を用意する。
First, a titanium-based metal base material having a cavity communicating with the outside is prepared.

【0017】次に、基材をアルカリ溶液中に浸漬する。
チタン系金属の表面には通常チタニアの薄い膜が存在し
ており、アルカリ溶液と接触させると、これらが反応し
てアルカリチタネートゲルが生成する。またチタニアゲ
ルが生成することもある。このようにしてチタニア相や
チタニアゲル相と、アルカリチタネートゲル相を有する
被膜が基材表面に一体的に形成される。アルカリ溶液と
しては、水酸化ナトリウム、水酸化カリウム等の水溶液
を使用する。アルカリ溶液の濃度、温度、浸漬時間等の
条件は、材料表面の被膜の形成具合によって決定すれば
よいが、濃度は2〜10mol/l、溶液の温度は25
〜90℃、浸漬時間は12〜48時間が適当である。
Next, the substrate is immersed in an alkaline solution.
Normally, a thin film of titania is present on the surface of the titanium-based metal, and when they are brought into contact with an alkali solution, they react to form an alkali titanate gel. In addition, titania gel may be formed. In this way, a coating having a titania phase, a titania gel phase, and an alkali titanate gel phase is integrally formed on the substrate surface. As the alkaline solution, an aqueous solution of sodium hydroxide, potassium hydroxide or the like is used. Conditions such as the concentration, temperature, and immersion time of the alkaline solution may be determined according to the degree of formation of the film on the surface of the material. The concentration is 2 to 10 mol / l, and the temperature of the solution is 25.
It is suitable that the immersion time is 12 to 48 hours.

【0018】続いて基材を焼成し、アルカリチタネート
ゲルの一部又は全部を安定なアルカリチタネートに変質
させて被膜の安定性を高める。その焼成条件は、200
℃〜基材の転移温度で4時間以内であることが望まし
い。
Subsequently, the base material is fired, and part or all of the alkali titanate gel is transformed into a stable alkali titanate to enhance the stability of the coating. The firing conditions are 200
It is desirable that the transition temperature be from 4 ° C. to the substrate within 4 hours.

【0019】その後、基材の空洞部内に、生体活性部材
を充填又は配置することにより、本発明のインプラント
材を得ることができる。なお生体活性部材を充填、配置
するに当たっては、空洞部より小さい塊状物を挿入配置
する方法や、種々の形状の粒状物を多数充填する方法等
を採用することができる。
Thereafter, the implant material of the present invention can be obtained by filling or arranging a bioactive member in the cavity of the base material. In filling and arranging the bioactive member, a method of inserting and arranging a lump which is smaller than the hollow portion, a method of filling a large number of particles having various shapes, and the like can be adopted.

【0020】[0020]

【実施例】以下、実施例に基づいて本発明を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0021】表1は本発明の実施例(試料No.1)及
び比較例(試料No.2、3)を示している。また図1
は試料No.1の断面図を示しており、図中、1は基
材、2は空洞部、3は連通孔、4は被膜、5は生体活性
部材を示している。
Table 1 shows Examples (Sample No. 1) and Comparative Examples (Samples No. 2 and 3) of the present invention. FIG.
Is the sample No. 1 shows a cross-sectional view, in which 1 is a substrate, 2 is a cavity, 3 is a communication hole, 4 is a coating, and 5 is a bioactive member.

【0022】[0022]

【表1】 [Table 1]

【0023】試料No.1は次のようにして調製した。Sample No. 1 was prepared as follows.

【0024】まず基材1を用意した。基材は、外径6m
m、長さ20mmの大きさの純チタン製の円柱体からな
り、一方の底面に直径3mm、深さ8mmの空洞部2が
形成され、さらに周壁から空洞部2へ連通する直径50
0μmの連通孔3が等間隔で4個形成されている。なお
空洞部2には、生体活性部材5を挿着させるための凹部
6(直径1mm、深さ1mm)が設けられている。次に
基材1を、5mol/lのNaOH水溶液(60℃)5
mlに24時間浸漬し、純水で洗浄後、乾燥させて、基
材表面にチタニア相とナトリウムチタネートゲル相から
なる被膜4を形成した。続いて基材1を600℃で1時
間焼成し、被膜4中のナトリウムチタネートゲル相の一
部をナトリウムチタネート相に変質させた。また重量%
でCaO44.9%、SiO2 34.2%、P25
16.3%、MgO 4.6%、CaF2 0.75
%の組成を有するCaO−SiO2 −P25 −MgO
系ガラス粉末(平均粒径4μm)をプレス成形し、10
50℃で4時間焼成して結晶化させた後、外径0.95
mm、長さ6mmの円柱状に成形し、生体活性部材5を
得た。その後、生体活性部材5を基材1の空洞部2に挿
入配置して凹部6に挿着し、さらに直径3mm、厚さ2
mmの純チタン製の円盤状の蓋7を空洞部に押入して閉
鎖し、試料No.1とした。
First, a substrate 1 was prepared. Base material is 6m outside diameter
m, a cylindrical body made of pure titanium having a length of 20 mm, a cavity 2 having a diameter of 3 mm and a depth of 8 mm formed on one bottom surface, and a diameter 50 communicating from the peripheral wall to the cavity 2.
Four communication holes 3 of 0 μm are formed at equal intervals. The cavity 2 is provided with a recess 6 (diameter 1 mm, depth 1 mm) for inserting the bioactive member 5. Next, the base material 1 was treated with a 5 mol / l NaOH aqueous solution (60 ° C.) 5
After immersion in pure water for 24 hours, washing with pure water and drying, a coating 4 composed of a titania phase and a sodium titanate gel phase was formed on the surface of the substrate. Subsequently, the base material 1 was baked at 600 ° C. for 1 hour to transform a part of the sodium titanate gel phase in the coating 4 into a sodium titanate phase. Also weight%
CaO 44.9%, SiO 2 34.2%, P 2 O 5
16.3%, MgO 4.6%, CaF 2 0.75
% Of CaO—SiO 2 —P 2 O 5 —MgO
-Based glass powder (average particle size 4 μm)
After firing at 50 ° C. for 4 hours for crystallization, the outer diameter is 0.95
The bioactive member 5 was obtained by molding into a cylindrical shape having a length of 6 mm and a length of 6 mm. Thereafter, the bioactive member 5 is inserted and arranged in the cavity 2 of the base material 1 and inserted into the concave portion 6, and further has a diameter of 3 mm and a thickness of 2 mm.
mm of pure titanium disc-shaped lid 7 is pushed into the cavity and closed. It was set to 1.

【0025】試料No.2は、被膜の形成、及び生体活
性部材の配置を行わず、他は実施例1と同様にして作製
した。
Sample No. Sample No. 2 was prepared in the same manner as in Example 1 except that no coating was formed and no bioactive member was arranged.

【0026】試料No.3は、生体活性部材5を配置せ
ず、他は試料No.1と同様にして作製した。
Sample No. Sample No. 3 does not include the bioactive member 5 and Sample No. 3 does not. It was produced in the same manner as in Example 1.

【0027】次に生体活性のレベルを評価するため、各
試料を体液と同じイオン濃度に調製した疑似体液(37
℃)中に浸漬し、1、3、7、及び14日後に取り出し
て割断し、骨類似アパタイトの生成の有無を走査顕微鏡
で観察し、アパタイト形成に要する日数を調査した。ま
た家兎の脛骨に各試料を2週間埋入した後、取り出して
試料を割断し、骨形成量を走査顕微鏡を用いて評価し
た。さらに引き抜き試験器を用い、2週間埋入後の骨と
の結合力を測定した。結果を表に示す。
Next, in order to evaluate the level of biological activity, a simulated body fluid (37) was prepared by adjusting each sample to the same ion concentration as the body fluid.
C.), taken out and split after 1, 3, 7, and 14 days, and observed with a scanning microscope for the formation of bone-like apatite, and the number of days required for apatite formation was investigated. Each sample was implanted in the tibia of a rabbit for 2 weeks, then taken out, the sample was cut, and the amount of bone formation was evaluated using a scanning microscope. Further, using a pull-out tester, the bonding strength with the bone after implantation for 2 weeks was measured. The results are shown in the table.

【0028】表から明らかなように、本発明の実施例で
ある試料No.1は、アパタイト形成に要する日数が外
表面で3日、空洞部内で1日であり、空洞部内の生体活
性が被膜より高いことが分かった。また試料No.1
は、試料No.2、3と比べて形成された骨量が多く、
引き抜き強度も10kgと非常に高かった。
As is clear from the table, the sample No. In No. 1, the number of days required for apatite formation was 3 days on the outer surface and 1 day in the cavity, and it was found that the bioactivity in the cavity was higher than that of the coating. Sample No. 1
Is the sample No. The amount of bone formed is larger than that of 2,3,
The pullout strength was also very high at 10 kg.

【0029】[0029]

【発明の効果】本発明のインプラント材は、基材がチタ
ン系金属からなるために機械的強度が高い。また短期間
に骨と強固に結合する。しかも被膜が基材と一体的に形
成されており、生体内で長期間にわたって安定であり、
人工歯根、椎間スペーサ、椎体スペーサ等の大きな荷重
がかかる部位に適用される生体インプラント材料として
好適である。
The implant material of the present invention has high mechanical strength because the base material is made of titanium-based metal. It is also tightly bound to bone in a short period of time. Moreover, the coating is formed integrally with the substrate, and is stable for a long time in vivo,
It is suitable as a biological implant material applied to a site where a large load is applied, such as an artificial tooth root, an intervertebral spacer, and a vertebral body spacer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基材 2 空洞部 3 連通孔 4 被膜 5 生体活性部材 DESCRIPTION OF SYMBOLS 1 Base material 2 Cavity part 3 Communication hole 4 Coating 5 Bioactive member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 佳男 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所内 (72)発明者 松下 富春 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所内 (72)発明者 奥長 清行 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 (72)発明者 二宮 正幸 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 Fターム(参考) 4C059 AA02 AA08 4C081 AB02 AB06 AC03 BA12 BB08 CF061 CG03 DA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshio Sasaki 1-3-18 Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Inside Kobe Steel Works, Ltd. (72) Inventor Tomiharu Matsushita 1 Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture No. 3-18 Inside Kobe Steel, Ltd. (72) Inventor Kiyoyuki Okunaga 2-7-1 Haruashi, Otsu City, Shiga Prefecture Inside Nippon Electric Glass Co., Ltd. (72) Inventor Masayuki Ninomiya 2, Haruashi, Otsu City, Shiga No. 7-1 F-term in Nippon Electric Glass Co., Ltd. (reference) 4C059 AA02 AA08 4C081 AB02 AB06 AC03 BA12 BB08 CF061 CG03 DA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン系金属からなる基材と、基材表面
に形成され、チタニア相及びアルカリチタネート相を有
する被膜と、基材内部に設けられ、生体活性部材を有す
る空洞部と、空洞部から外部に通じる連通孔とからなる
ことを特徴とするインプラント材。
1. A substrate made of a titanium-based metal, a coating formed on the surface of the substrate and having a titania phase and an alkali titanate phase, a cavity provided inside the substrate and having a bioactive member, and a cavity. An implant material characterized by comprising a communication hole communicating with the outside from the outside.
【請求項2】 生体活性部材がCaO−SiO2 −P2
5 −MgO系ガラス、CaO−SiO2 −P25
MgO系結晶化ガラス、又はCaO−SiO 2 −Na2
O系ガラスからなることを特徴とする請求項1のインプ
ラント材
2. The bioactive member is CaO—SiO.Two -PTwo 
OFive -MgO-based glass, CaO-SiOTwo -PTwo OFive −
MgO-based crystallized glass or CaO-SiO Two -NaTwo 
2. The imp according to claim 1, wherein said imp is made of O-based glass.
Runt material
JP10291725A 1998-10-14 1998-10-14 Implant material Pending JP2000116673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291725A JP2000116673A (en) 1998-10-14 1998-10-14 Implant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291725A JP2000116673A (en) 1998-10-14 1998-10-14 Implant material

Publications (1)

Publication Number Publication Date
JP2000116673A true JP2000116673A (en) 2000-04-25

Family

ID=17772596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291725A Pending JP2000116673A (en) 1998-10-14 1998-10-14 Implant material

Country Status (1)

Country Link
JP (1) JP2000116673A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038180A1 (en) 2007-09-21 2009-03-26 Kyushu University, National University Corporation Tissue-bondable material for medical use
US20100211182A1 (en) * 2008-12-16 2010-08-19 Harald Zimmermann Thermally Sprayed Surface Layer As Well As An Orthopedic Implant
WO2010150788A1 (en) 2009-06-25 2010-12-29 国立大学法人秋田大学 Process for producing titanium-based biomedical implant having zinc-containing functional group imparted thereto, and titanium-based biomedical implant
EP2361588A2 (en) 2003-12-11 2011-08-31 Nobel Biocare Services AG Arrangement with an implant and/or a unit belonging to said implant, and method for production of the implant and/or unit
EP3034033A1 (en) 2014-12-16 2016-06-22 Nobel Biocare Services AG Dental implant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2361588A2 (en) 2003-12-11 2011-08-31 Nobel Biocare Services AG Arrangement with an implant and/or a unit belonging to said implant, and method for production of the implant and/or unit
US9931184B2 (en) 2003-12-11 2018-04-03 Nobel Biocare Services Ag Arrangement with an implant and/or a unit belonging to said implant, and method for production of the implant and/or unit
WO2009038180A1 (en) 2007-09-21 2009-03-26 Kyushu University, National University Corporation Tissue-bondable material for medical use
US20100211182A1 (en) * 2008-12-16 2010-08-19 Harald Zimmermann Thermally Sprayed Surface Layer As Well As An Orthopedic Implant
WO2010150788A1 (en) 2009-06-25 2010-12-29 国立大学法人秋田大学 Process for producing titanium-based biomedical implant having zinc-containing functional group imparted thereto, and titanium-based biomedical implant
EP3034033A1 (en) 2014-12-16 2016-06-22 Nobel Biocare Services AG Dental implant
EP3590463A1 (en) 2014-12-16 2020-01-08 Nobel Biocare Services AG Dental implant
US11357600B2 (en) 2014-12-16 2022-06-14 Nobel Biocare Services Ag Dental implant
US11918434B2 (en) 2014-12-16 2024-03-05 Nobel Biocare Services Ag Dental implant

Similar Documents

Publication Publication Date Title
JP5487102B2 (en) Bone tissue implants containing strontium ions
EP2178467B1 (en) A bone tissue implant comprising lithium ions and method for manufacturing thereof
US7229545B2 (en) Process for the coating for metallic implant materials
EP1381402B1 (en) Method for improvement of soft tissue attachment and implants making use of said method
KR100809574B1 (en) Bio-affinity implant
Hägi et al. Mechanical insertion properties of calcium‐phosphate implant coatings
CN101773413A (en) Preparation method of titanium dental implant
CN103841980A (en) Biocompatible material and uses thereof
CN101745144B (en) Preparation method of bone inducing porous titanium artificial bone
JP5920360B2 (en) Bone / tissue regeneration induction membrane and method for producing the same
JP2000116673A (en) Implant material
JP2001187133A (en) Organism control method and material thereof, selective adsorption method for protein, etc., and material thereof, cement material, and organism material
Perez-Diaz et al. Evaluation of Fibroblasts cells viability and adhesion on six different titanium surfaces: An in vitro experimental study
Swain et al. Bioceramic coating for tissue engineering applications
RU2524764C1 (en) Method for preparing submerged titanium or titanium alloy dental implant, and titanium or titanium alloy dental implant
RU2025132C1 (en) Implant for replacement of bone tissue
US20110212153A1 (en) Composite coatings and deposition methods
Spriano et al. Metallic surfaces for osteointegration
JPH0747117A (en) Implant and its manufacture
JPH0747115A (en) Implant and its manufacture
CN110180035A (en) The micro- plantation nail of biodegradable
Hench Physiological factors at bioceramic interfaces
JPS6331654A (en) Implant for artificial dental root and its production
JPH10179717A (en) Vital implant material and its production
KR20040099967A (en) The coating method of fluor-hydroxyapatite on the titanium biocompatible implant