JP2000106166A - Storage battery and manufacture thereof - Google Patents

Storage battery and manufacture thereof

Info

Publication number
JP2000106166A
JP2000106166A JP10276049A JP27604998A JP2000106166A JP 2000106166 A JP2000106166 A JP 2000106166A JP 10276049 A JP10276049 A JP 10276049A JP 27604998 A JP27604998 A JP 27604998A JP 2000106166 A JP2000106166 A JP 2000106166A
Authority
JP
Japan
Prior art keywords
battery
current collector
diameter
negative electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10276049A
Other languages
Japanese (ja)
Inventor
Masayuki Terasaka
雅行 寺坂
Hiroyuki Inoue
博之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10276049A priority Critical patent/JP2000106166A/en
Publication of JP2000106166A publication Critical patent/JP2000106166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery appropriate for use with charge and discharge which have, low internal resistance and heavy current. SOLUTION: An electrode group 10 is formed by winding a positive plate 11 and a negative plate 12 through a separator 13 interposed between them, and a positive electrode collector 14 is welded to the end of a conductive core 11a exposed at the upper end, and a negative electrode collector 15 is welded to an end of a conductive core 12a which is exposed at the lower end so as to form an electrode body 10a. This electrode body 10a is inserted into a battery can 16, and the tip of a collector lead plate 14a extended from the collector 14 is welded to the bottom surface of a sealing body 17, and the electrolyte is filled. The sealing body 17 is placed on an opening part of the battery can 16 via an insulating gasket 18, and an end of the opening part of the battery can 16 is caulked for sealing, and thereafter the battery can 16 is passed through the inside a tubular jig so as to contract the diameter of the battery can 16. At this stage, the negative electrode collector 15 having a diameter smaller than the inside diameter of the battery can 16 before the diameter contraction and larger than the inside diameter of the battery can 16 after the diameter contraction is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一方極の端子を兼
ねる開口部を備えた電池缶と、この開口部を密封する他
方極の端子を兼ねる封口体と、これら電池缶および封口
体よりなる電池容器内に収納される正・負極板と電解液
からなる発電要素とを備えた蓄電池およびその製造方法
に関するものであり、特に、正・負極板の一方の端面よ
り突出する導電端縁に接続されるとともに電池缶の底部
に接続される集電体の集電構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery can having an opening which also serves as a terminal of one electrode, a sealing body which seals this opening and also serves as a terminal of the other electrode, and a battery can and a sealing body. The present invention relates to a storage battery including a positive / negative electrode plate housed in a battery container and a power generation element made of an electrolytic solution, and a method for manufacturing the same. And a current collector structure of a current collector connected to the bottom of the battery can.

【0002】[0002]

【従来の技術】一般に、ニッケル−カドミウム蓄電池、
ニッケル−水素化物蓄電池などのアルカリ蓄電池あるい
はリチウムイオン蓄電池等の蓄電池は、正極板および負
極板の間にセパレータを介在させ、これらを渦巻状に巻
回あるいは積層して電極群を形成し、この電極群の上下
端に集電体を接続して電極体を形成した後、この電極体
を円筒状あるいは角形の金属製電池缶に収納し、正極用
集電体より延出する集電リード板を封口体下面に溶接し
て、電解液を注入した後、電池缶の開口部に絶縁ガスケ
ットを介在させて封口体を装着することにより密閉して
構成されている。
2. Description of the Related Art Generally, nickel-cadmium storage batteries,
In a storage battery such as an alkaline storage battery such as a nickel-hydride storage battery or a lithium ion storage battery, a separator is interposed between a positive electrode plate and a negative electrode plate, and these are spirally wound or laminated to form an electrode group. After forming an electrode body by connecting a current collector to the upper and lower ends, the electrode body is housed in a cylindrical or square metal battery can, and a current collector lead plate extending from the positive electrode current collector is sealed. After being welded to the lower surface and injecting the electrolyte, the battery can is hermetically sealed by attaching a sealing body to the opening of the battery can with an insulating gasket interposed therebetween.

【0003】例えば、ニッケル−カドミウム蓄電池にお
いては、図3に示すように、ニッケル焼結基板に化学含
浸法により所定量のニッケル活物質を充填したニッケル
正極板21と、同様にニッケル焼結基板に化学含浸法に
より所定量のカドミウム活物質を充填したカドミウム負
極板22とを作製した後、これらのニッケル正極板21
とカドミウム負極板22との間にセパレータ23を介在
させて巻回して電極群20を形成する。
For example, in a nickel-cadmium storage battery, as shown in FIG. 3, a nickel positive electrode plate 21 in which a nickel sintered substrate is filled with a predetermined amount of a nickel active material by a chemical impregnation method, and a nickel sintered substrate similarly A cadmium negative electrode plate 22 filled with a predetermined amount of a cadmium active material was produced by a chemical impregnation method.
And a cadmium negative electrode plate 22 and a separator 23 interposed therebetween to form an electrode group 20.

【0004】ついで、この電極群20の上端部に露出す
る導電性芯体21aの端部に多数の開口を有する円板状
あるいは四角形状の正極集電体24を溶接し、電極群2
0の下端部に露出する導電性芯体22aの端部に円板状
あるいは四角形状の負極集電体25を溶接して電極体2
0aを形成した後、この電極体20aを鉄にニッケルメ
ッキを施した有底筒状の電池缶26内に挿入する。この
後、図示しない溶接棒を電極体20aの中央透孔部20
bに挿入した後、電池缶26の外部の溶接棒との対向面
に配置した他の溶接棒との間に電流を流して、負極集電
体25と電池缶26の内底部とを溶接する。
Then, a disk-shaped or square-shaped positive electrode current collector 24 having a large number of openings is welded to the end of the conductive core 21a exposed at the upper end of the electrode group 20, thereby forming an electrode group 2
And a disk-shaped or square-shaped negative electrode current collector 25 is welded to the end of the conductive core 22a exposed at the lower end of the electrode body 2
After forming 0a, the electrode body 20a is inserted into a bottomed cylindrical battery can 26 in which nickel is plated on nickel. Thereafter, a welding rod (not shown) is connected to the central through hole 20 of the electrode body 20a.
After the battery current is inserted into the battery can 26, a current is applied between the battery can 26 and another welding rod disposed on the surface facing the welding rod outside, and the negative electrode current collector 25 and the inner bottom of the battery can 26 are welded. .

【0005】ついで、ニッケル正極板21の導電性芯体
21aの端部に溶接された正極集電体24から延出する
正極集電リード板24aの先端部を封口体27の蓋体2
7aの底面に溶接した後、封口体27を電池缶26の開
口部に絶縁ガスケット28を介して載置し、電池缶26
の開口部の端部を内方にかしめることによって電池を封
口してニッケル−カドミウム蓄電池を作製するようにし
ている。
Then, the tip of the positive electrode current collector lead plate 24a extending from the positive electrode current collector 24 welded to the end of the conductive core 21a of the nickel positive electrode plate 21 is connected to the lid 2 of the sealing body 27.
7a, the sealing body 27 is placed on the opening of the battery can 26 via an insulating gasket 28,
The battery is sealed by crimping the end of the opening inward to produce a nickel-cadmium storage battery.

【0006】[0006]

【発明が解決しようとする課題】ところで、近年、この
種のアルカリ蓄電池あるいはリチウムイオン蓄電池等の
蓄電池は各種の携帯用電子・通信機器あるいは電動工
具、電気自転車、電動バイク等の電源として使用される
ようになり、大電流で放電可能であることが要求される
ようになった。この種の蓄電池を大電流で放電可能とす
るためには、極力電池内部抵抗を低減させる必要があ
る。ところが、負極集電体と電池缶との間の電気接続
は、上述のような溶接による電気接続だけでは、これら
の間の抵抗を大電流放電で要求される十分に低いものと
することはできない。
In recent years, storage batteries of this kind, such as alkaline storage batteries or lithium ion storage batteries, have been used as power sources for various portable electronic and communication devices, electric tools, electric bicycles, electric motorcycles, and the like. As a result, it has been required to be able to discharge with a large current. In order to discharge this type of storage battery with a large current, it is necessary to reduce the internal resistance of the battery as much as possible. However, the electrical connection between the negative electrode current collector and the battery can cannot be reduced to a sufficiently low resistance required by a large current discharge only by the electrical connection by welding as described above. .

【0007】一方、負極集電体と電池缶の底部との溶接
は、渦巻状電極群を用いた電池においては、渦巻状電極
群の中央透孔部に溶接棒を挿入して電池缶内に配した溶
接棒と、電池缶を介してこの溶接棒と対向する位置に配
した他の溶接棒との間に電流を流して、負極集電体と電
池缶の内底部とを溶接する必要があり、この溶接作業は
繁雑であり、製造効率が悪く、かつ作業性も悪いという
欠点がある。さらに、電池の高容量化のために渦巻状電
極群の中央透孔部を極力細くして電池缶内から無駄な空
間を排除しようとすると、溶接棒を電池缶内に挿入する
ことができず、負極集電体と電池缶との溶接が困難にな
るという問題が生じる。
On the other hand, in a battery using a spirally wound electrode group, a welding rod is inserted into a central through hole of the spirally wound electrode group to insert the welding rod into the battery can. It is necessary to apply a current between the disposed welding rod and another welding rod disposed at a position facing the welding rod via the battery can to weld the negative electrode current collector and the inner bottom of the battery can. In addition, this welding operation is complicated, has the disadvantages of poor production efficiency and poor workability. Furthermore, if the central through-hole of the spiral electrode group is made as thin as possible to increase the capacity of the battery to eliminate useless space from the battery can, the welding rod cannot be inserted into the battery can. This causes a problem that welding of the negative electrode current collector and the battery can becomes difficult.

【0008】[0008]

【課題を解決するための手段およびその作用・効果】そ
こで、本発明は上記問題点に鑑みてなされたものであ
り、電池缶の底部に接続される集電体と電池缶との電気
的な接触を良好にして、大電流での充放電が可能な蓄電
池が得られるようにすることをその目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in view of the above-mentioned problems. It is an object of the present invention to improve the contact and obtain a storage battery capable of charging and discharging with a large current.

【0009】このため、本発明の蓄電池は、電池缶の缶
底部に接触する集電体の最大長さが電池缶の内径未満
で、縮小された電池缶の内径以上になるようにして同集
電体の少なくとも一部が電池缶の内側壁に密に接触する
ようにしている。このように、集電体の少なくとも一部
が電池缶の内側壁に密に接触するようにすると、この集
電体を電池缶の缶底部に溶接しなくても、集電体と電池
缶との集電が可能となる。また、集電体を電池缶の内底
部に溶接する場合には、集電体と電池缶との間の集電箇
所が増加するため、電池の内部抵抗が一層減少し、大電
流での充放電が可能な蓄電池が得られるようになる。
For this reason, the storage battery of the present invention is arranged such that the maximum length of the current collector contacting the bottom of the battery can is smaller than the inner diameter of the battery can and larger than the inner diameter of the reduced battery can. At least a part of the electric body is in close contact with the inner wall of the battery can. As described above, when at least a part of the current collector is in close contact with the inner wall of the battery can, the current collector and the battery can can be connected without welding the current collector to the bottom of the can of the battery can. Current collection. When the current collector is welded to the inner bottom of the battery can, the number of current collecting points between the current collector and the battery can is increased, so that the internal resistance of the battery is further reduced and the battery is charged with a large current. A storage battery that can be discharged can be obtained.

【0010】また、本発明の蓄電池の製造方法は、正・
負極板の間にセパレータを介在させて巻回または積層し
て電極群を形成する電極群形成行程と、この電極群の上
下端面の正・負極板より突出する導電端縁に、それぞれ
集電体を溶接して電極体を形成する電極体形成工程と、
この電極体を電池缶に電解液と共に挿入して封口体によ
り封口する封口工程と、封口体により封口された電池缶
全体の径を縮小させめ縮小工程とを備え、電池缶の缶底
部に接触する集電体の最大長さが電池缶の内径未満で、
縮小された電池缶の内径以上になるようにして同集電体
の少なくとも一部が電池缶の内側壁に密に接触するよう
にしている。
Further, the method of manufacturing a storage battery according to the present invention
A current collector is welded to the electrode group forming step of forming an electrode group by winding or laminating a separator between the negative electrode plates and a conductive edge protruding from the positive and negative electrode plates on the upper and lower end surfaces of the electrode group. Electrode body forming step of forming an electrode body by doing
The method includes a sealing step of inserting the electrode body together with the electrolytic solution into the battery can and sealing with the sealing body, and a reducing step of reducing the diameter of the entire battery can sealed with the sealing body, and contacting the can bottom of the battery can. The maximum length of the current collector is less than the inner diameter of the battery can,
At least a part of the current collector is in close contact with the inner wall of the battery can so as to be equal to or larger than the inner diameter of the reduced battery can.

【0011】このように、その最大長さが電池缶の内径
未満で、縮小された電池缶の内径以上の集電体を用い、
この集電体が溶接された電極体を電池缶内に挿入して電
池缶の缶底部に接触させた後、封口工程により封口体を
封口し、縮小工程により電池缶全体の径を縮小させるよ
うにすると、集電体の少なくとも一部が電池缶の内側壁
に密に接触するようになる。このため、集電体を電池缶
の缶底部に溶接しなくても、集電体と電池缶との集電が
可能となる。また、集電体を電池缶の内底部に溶接する
場合には、集電体と電池缶との間の集電箇所が増加する
ため、電池の内部抵抗が一層減少し、大電流での充放電
が可能な蓄電池が得られるようになる。
As described above, a current collector whose maximum length is less than the inner diameter of the battery can and whose inner length is equal to or more than the inner diameter of the reduced battery can is used.
After inserting the electrode body to which the current collector is welded into the battery can and bringing the electrode body into contact with the bottom of the battery can, the sealing body is sealed in a sealing step, and the diameter of the entire battery can is reduced in a reducing step. Then, at least a part of the current collector comes into close contact with the inner wall of the battery can. Therefore, current collection between the current collector and the battery can becomes possible without welding the current collector to the bottom of the battery can. When the current collector is welded to the inner bottom of the battery can, the number of current collecting points between the current collector and the battery can is increased, so that the internal resistance of the battery is further reduced and the battery is charged with a large current. A storage battery that can be discharged can be obtained.

【0012】[0012]

【発明の実施の形態】以下に、本発明の一実施形態を図
に基づいて説明する。なお、図1は本発明をニッケル−
カドミウム蓄電池に適用した本実施形態のアルカリ蓄電
池の要部を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the present invention using nickel-
It is sectional drawing which shows the principal part of the alkaline storage battery of this embodiment applied to the cadmium storage battery.

【0013】1.ニッケル焼結基板の作製 まず、ニッケル粉末にカルボキシメチルセルロース等の
増粘剤および水を混練してスラリーを調整し、このスラ
リーをニッケル製パンチングメタルからなる導電性芯体
11a,12aに塗着する。この後、スラリーを塗着し
た導電性芯体11a,12aを還元性雰囲気下で焼結し
て、多孔度80%のニッケル焼結基板を作製する。
1. Preparation of Nickel Sintered Substrate First, a slurry is prepared by kneading a thickener such as carboxymethylcellulose and water into nickel powder, and this slurry is applied to conductive cores 11a and 12a made of nickel punched metal. Thereafter, the conductive cores 11a and 12a to which the slurry has been applied are sintered in a reducing atmosphere to produce a nickel sintered substrate having a porosity of 80%.

【0014】2.ニッケル正極板の作製 上述のように作製したニッケル焼結基板に化学含浸法に
より、所定量のニッケル活物質を充填する。即ち、ニッ
ケル焼結基板を硝酸ニッケルを主体とする水溶液に浸漬
して、ニッケル焼結基板の細孔内に硝酸ニッケルを析出
させた後、水酸化ナトリウム水溶液中に浸漬して、細孔
内に析出させた硝酸ニッケルを水酸化ニッケルに置換す
る活物質化処理を行う。同様な処理工程を所定回数(例
えば、6〜8回)繰り返して、ニッケル焼結基板に所定
量の水酸化ニッケルを主体とするニッケル活物質を充填
したニッケル正極板11を作製する。
2. Preparation of Nickel Positive Electrode A predetermined amount of nickel active material is filled in the nickel sintered substrate prepared as described above by a chemical impregnation method. That is, the nickel sintered substrate is immersed in an aqueous solution mainly composed of nickel nitrate, and nickel nitrate is precipitated in the pores of the nickel sintered substrate. An active material conversion treatment for replacing the precipitated nickel nitrate with nickel hydroxide is performed. The same processing step is repeated a predetermined number of times (for example, 6 to 8 times) to produce a nickel positive electrode plate 11 in which a nickel sintered substrate is filled with a predetermined amount of a nickel active material mainly composed of nickel hydroxide.

【0015】3.カドミウム負極板の作製 上述のように作製したニッケル焼結基板に化学含浸法に
より、所定量のカドミウム活物質を充填する。即ち、ニ
ッケル焼結基板を硝酸カドミウムを主体とする水溶液に
浸漬して、ニッケル焼結基板の細孔内に硝酸カドミウム
を析出させた後、アルカリ水溶液(例えば、水酸化ナト
リウム水溶液)中に浸漬して、細孔内に析出させた硝酸
カドミウムを水酸化カドミウムに置換する活物質化処理
を行う。同様な処理を所定回数(例えば、6〜8回)繰
り返して、ニッケル焼結基板に所定量の水酸化カドミウ
ムを主体とするカドミウム活物質を充填したカドミウム
負極板12を作製する。
3. Preparation of Cadmium Anode Plate A predetermined amount of a cadmium active material is filled into the nickel sintered substrate prepared as described above by a chemical impregnation method. That is, a nickel sintered substrate is immersed in an aqueous solution mainly composed of cadmium nitrate to precipitate cadmium nitrate in pores of the nickel sintered substrate, and then immersed in an alkaline aqueous solution (for example, sodium hydroxide aqueous solution). Then, an active material conversion treatment for replacing cadmium nitrate precipitated in the pores with cadmium hydroxide is performed. The same process is repeated a predetermined number of times (for example, 6 to 8 times) to produce a cadmium negative electrode plate 12 in which a nickel sintered substrate is filled with a predetermined amount of a cadmium active material mainly composed of cadmium hydroxide.

【0016】4.電極体の作製 これらのニッケル正極板11とカドミウム負極板12と
の間にセパレータ13を介在させて巻回して電極群10
を形成する。この電極群10のニッケル正極板12の上
端部には、ニッケル焼結基板の導電性芯体11aの端部
が露出し、また、電極群10の下端部には、ニッケル焼
結基板の導電性芯体12aの端部が露出している。そし
て、この電極群10の上端部に露出する導電性芯体11
aの端部には多数の開口を有する円板状あるいは四角形
状の正極集電体14を溶接し、電極群10の下端部に露
出する導電性芯体12aの端部には円板状あるいは四角
形状の負極集電体15を溶接して電極体10aを形成す
る。
4. Preparation of Electrode Assembly The electrode group 10 is wound by winding a separator 13 between the nickel positive electrode plate 11 and the cadmium negative electrode plate 12.
To form At the upper end of the nickel positive electrode plate 12 of the electrode group 10, the end of the conductive core 11a of the nickel sintered substrate is exposed, and at the lower end of the electrode group 10, the conductive core 11a of the nickel sintered substrate is exposed. The end of the core 12a is exposed. The conductive core 11 exposed at the upper end of the electrode group 10
A disk-shaped or square-shaped positive electrode current collector 14 having a large number of openings is welded to an end of the conductive core 12a exposed at the lower end of the electrode group 10, and a disc-shaped or The rectangular negative electrode current collector 15 is welded to form the electrode body 10a.

【0017】ここで、負極集電体15としては、図2
(a)に示すような円板状、あるいは図2(b)に示す
ような四角形状のものを用いるが、その最大長さ(円板
状の場合は直径、四角形状の場合は四角形の対角線の長
さ)が、後述する電池缶16の内径より小さく、後述す
る縮径工程において電池缶16が縮径された場合の電池
缶16の内径より大きくなるように形成している。
Here, as the negative electrode current collector 15, FIG.
A disk shape as shown in FIG. 2A or a square shape as shown in FIG. 2B is used, and its maximum length (diameter for a disk shape, diagonal of a square for a square shape) (Length) is smaller than the inner diameter of the battery can 16 described later, and is larger than the inner diameter of the battery can 16 when the battery can 16 is reduced in the diameter reducing step described later.

【0018】5.ニッケル−カドミウム蓄電池の作製 上述のように、電極群10の上下面に正極集電体14お
よび負極集電体15を溶接して電極体10aを形成した
後、鉄にニッケルメッキを施した有底筒状の電池缶(内
径が22.0mmで、外径が22.3mmのもの)16
内に挿入する。ついで、ニッケル正極板11の導電性芯
体11aの端部に溶接された正極集電体14から延出す
る正極集電リード板14aの先端部を封口体17の蓋体
17aの底面に抵抗溶接し、電池缶16内に電解液を注
入する。この後、封口体17を電池缶16の開口部に絶
縁ガスケット18を介して載置し、電池缶16の開口部
の端部を内方にかしめることによって電池を封口する。
5. Production of Nickel-Cadmium Storage Battery As described above, the positive electrode current collector 14 and the negative electrode current collector 15 are welded to the upper and lower surfaces of the electrode group 10 to form the electrode body 10a, and the nickel-plated iron bottom is formed. Cylindrical battery can (with an inner diameter of 22.0 mm and an outer diameter of 22.3 mm) 16
Insert inside. Then, the distal end of the positive electrode current collector lead plate 14a extending from the positive electrode current collector 14 welded to the end of the conductive core 11a of the nickel positive electrode plate 11 is resistance-welded to the bottom surface of the lid 17a of the sealing body 17. Then, an electrolytic solution is injected into the battery can 16. Thereafter, the sealing body 17 is placed on the opening of the battery can 16 via the insulating gasket 18 and the end of the opening of the battery can 16 is crimped inward to seal the battery.

【0019】ついで、電池缶16の外径(22.3m
m)よりも出口部の径(22.0mm)が若干小さい管
状冶具(図示せず)の入り口部に上述のように封口した
電池缶16を載置し、押圧冶具(図示せず)を用いて、
この電池缶16を押圧して管状冶具内を通過させること
により、電池缶16の外径を22.3mmから22.0
mmに縮小(縮径)するとともに、その内径を22.0
mmから21.7mmに縮径して、公称容量1.7Ah
のSCサイズのニッケル−カドミウム蓄電池を作製す
る。
Next, the outer diameter of the battery can 16 (22.3 m
m), the battery can 16 sealed as described above is placed at the entrance of a tubular jig (not shown) having a slightly smaller diameter (22.0 mm) at the outlet than using the pressing jig (not shown). hand,
The outer diameter of the battery can 16 is reduced from 22.3 mm to 22.0 mm by pressing the battery can 16 and passing the battery can 16 through the tubular jig.
mm (diameter reduction) to 22.0 mm
mm to 21.7 mm, with a nominal capacity of 1.7 Ah
To produce a nickel-cadmium storage battery of SC size.

【0020】なお、封口体17は、底面に円形状の下方
突出部を形成してなる蓋体17aと、正極キャップ(正
極外部端子)17bと、これら蓋体17aおよび正極キ
ャップ17b間に介在されるスプリング17cと弁板1
7dからなる弁体とから構成されており、蓋体17aの
中央にはガス抜孔17eが形成されている。また、正極
集電体14は、封口体17のガス抜孔17eと対向する
部分に図示しない透孔が形成されており、この透孔の存
在により、電池内部ガス圧が上昇した場合においても、
正極集電体14がガス抜孔17eを塞ぐことはなく、電
池内部のガスを正極集電体14の透孔を通して封口体1
7のガス抜孔17eからスムーズに電池外部に放出する
ことができる。
The sealing body 17 has a lid 17a having a circular downward protruding part formed on the bottom surface, a positive electrode cap (positive electrode external terminal) 17b, and interposed between the lid 17a and the positive electrode cap 17b. Spring 17c and valve plate 1
A gas vent hole 17e is formed in the center of the lid 17a. Further, the positive electrode current collector 14 has a through hole (not shown) formed in a portion of the sealing body 17 facing the gas vent hole 17e.
The positive electrode current collector 14 does not block the gas vent 17 e, and the gas inside the battery passes through the through hole of the positive electrode current collector 14 to close the sealing body 1.
7 can be smoothly discharged out of the battery through the gas vent hole 17e.

【0021】ここにおいて、円板状で直径が21.7m
mの負極集電体15を用いたものを実施例1のニッケル
−カドミウム蓄電池(電池A)とし、円板状で直径が2
1.8mmの負極集電体15を用いたものを実施例2の
ニッケル−カドミウム蓄電池(電池B)とし、円板状で
直径が21.9mmの負極集電体15を用いたものを実
施例3のニッケル−カドミウム蓄電池(電池C)とす
る。
Here, a disk-shaped disk having a diameter of 21.7 m is used.
The nickel-cadmium storage battery (battery A) using the negative electrode current collector 15 of Example 1 was a disk-shaped nickel-cadmium storage battery having a diameter of 2 m.
A battery using the 1.8 mm negative electrode current collector 15 is referred to as a nickel-cadmium storage battery (battery B) of Example 2, and a disk-shaped negative electrode current collector 15 having a diameter of 21.9 mm is used in Example. No. 3 nickel-cadmium storage battery (battery C).

【0022】一方、円板状で直径が21.5mmの負極
集電体15を用いたものを比較例1のニッケル−カドミ
ウム蓄電池(電池D)とし、円板状で直径が21.6m
mの負極集電体15を用いたものを比較例2のニッケル
−カドミウム蓄電池(電池E)とする。また、円板状で
直径が21.5mmの負極集電体15を用い、この負極
集電体15を電池缶16の底部に溶接したものを比較例
3のニッケル−カドミウム蓄電池(電池F)とする。
On the other hand, a disc-shaped nickel-cadmium storage battery (battery D) using the negative electrode current collector 15 having a diameter of 21.5 mm is referred to as a disc-shaped nickel-cadmium storage battery (battery D) having a diameter of 21.6 m.
The battery using the m negative electrode current collector 15 is referred to as a nickel-cadmium storage battery (battery E) of Comparative Example 2. Further, a disc-shaped negative electrode current collector 15 having a diameter of 21.5 mm, which was welded to the bottom of the battery can 16 was used as a nickel-cadmium storage battery (battery F) of Comparative Example 3. I do.

【0023】6.電池性能試験 上述のようにして作製した各電池A,B,C,D,E,
Fを用いて、交流法(AC法;1000Hz)により各
電池A,B,C,D,E,Fの内部抵抗を測定すると下
記の表1に示すような結果となった。また、これらの各
電池A,B,C,D,E,Fを5Aの電流で公称容量の
120%まで充電した後、20Aの電流で電池電圧が
0.8Vになる放電させた際の中間作動電圧を測定する
と下記の表1に示すような結果となった。
6. Battery Performance Test Each of the batteries A, B, C, D, E,
Using F, the internal resistance of each of the batteries A, B, C, D, E, and F was measured by the alternating current method (AC method; 1000 Hz), and the results shown in Table 1 below were obtained. Also, after charging each of these batteries A, B, C, D, E, and F with a current of 5 A to 120% of the nominal capacity, the battery A is discharged at a current of 20 A so that the battery voltage becomes 0.8 V. When the operating voltage was measured, the results were as shown in Table 1 below.

【0024】[0024]

【表1】 [Table 1]

【0025】なお、上記表1において、内部抵抗は電池
F(比較例3のニッケル−カドミウム蓄電池で、円板状
で直径が21.5mm(縮径後の電池缶の内径21.7
mmより0.2mm小さい)の負極集電体15を用い、
この負極集電体15を電池缶16の底部に溶接したも
の)の内部抵抗を100とし、これに対する値を示して
いる。
In Table 1, the internal resistance was measured for the battery F (the nickel-cadmium storage battery of Comparative Example 3 having a disk-like shape and a diameter of 21.5 mm (the inner diameter of the battery can after reducing the diameter was 21.7).
mm smaller than 0.2 mm).
The internal resistance of the negative electrode current collector 15 (welded to the bottom of the battery can 16) is set to 100, and the value corresponding thereto is shown.

【0026】上記表1より明らかなように、実施例1の
ニッケル−カドミウム蓄電池で、円板状で直径が21.
7mm(縮径後の電池缶の内径21.7mmと同じ)の
負極集電体15を用いた電池A、実施例2のニッケル−
カドミウム蓄電池で、円板状で直径が21.8mm(縮
径後の電池缶の内径21.7mmより0.1mm大き
い)の負極集電体15を用いた電池B、および実施例3
のニッケル−カドミウム蓄電池で、円板状で直径が2
1.9mm(縮径後の電池缶の内径21.7mmより
0.2mm大きい)の負極集電体15を用いた電池C
は、比較例3のニッケル−カドミウム蓄電池で、円板状
で直径が21.5mm(縮径後の電池缶の内径21.7
mmより0.2mm小さい)の負極集電体15を用い、
この負極集電体15を電池缶16の底部に溶接した電池
Fと比較しても、内部抵抗および作動電圧がほぼ同等で
あることが分かる。
As apparent from Table 1, the nickel-cadmium storage battery of Example 1 has a disk shape and a diameter of 21.20 mm.
The battery A using the negative electrode current collector 15 of 7 mm (same as the inner diameter of the battery can after reducing the diameter of 21.7 mm), the nickel of Example 2 was used.
Battery B using a negative electrode current collector 15 of a cadmium storage battery having a disk shape and a diameter of 21.8 mm (0.1 mm larger than the inner diameter of the reduced battery can of 21.7 mm), and Example 3
Nickel-cadmium storage battery with a disk shape and a diameter of 2
Battery C using negative electrode current collector 15 of 1.9 mm (0.2 mm larger than inner diameter 21.7 mm of battery can after reduced diameter)
Is a nickel-cadmium storage battery of Comparative Example 3 having a disk shape and a diameter of 21.5 mm (the inner diameter of the battery can after reducing the diameter is 21.7 mm).
mm smaller than 0.2 mm).
Even when the negative electrode current collector 15 is compared with the battery F in which the negative electrode current collector 15 is welded to the bottom of the battery can 16, it can be seen that the internal resistance and the operating voltage are almost equal.

【0027】一方、比較例1のニッケル−カドミウム蓄
電池で、円板状で直径が21.5mm(縮径後の電池缶
の内径21.7mmより0.2mm小さい)の負極集電
体15を用いた電池D、比較例2のニッケル−カドミウ
ム蓄電池で、円板状で直径が21.6mm(縮径後の電
池缶の内径21.7mmより0.1mm小さい)の負極
集電体15を用いた電池Eは、比較例3のニッケル−カ
ドミウム蓄電池(電池F)と比較すると、内部抵抗およ
び作動電圧が劣っていることが分かる。
On the other hand, in the nickel-cadmium storage battery of Comparative Example 1, a disc-shaped negative electrode current collector 15 having a diameter of 21.5 mm (0.2 mm smaller than the inner diameter of the battery can after reduction of 21.7 mm) was used. Battery D, a nickel-cadmium storage battery of Comparative Example 2, using a disk-shaped negative electrode current collector 15 having a diameter of 21.6 mm (0.1 mm smaller than the inner diameter of the battery can after reduction of 21.7 mm). It can be seen that the battery E is inferior in internal resistance and operating voltage as compared with the nickel-cadmium storage battery of Comparative Example 3 (battery F).

【0028】このことから、縮径後の電池缶の内径と同
一直径あるいは縮径後の電池缶の内径より0.1mm〜
0.2mm大きい直径の負極集電体15を用いるととも
に、電池組立後に電池缶16の径を縮径するものにおい
ては、集電体15と電池缶16の内底部とを溶接しなく
ても、内部抵抗および作動電圧に優れた蓄電池が得ら
れ、このような蓄電池を用いれば、大電流で充放電する
ことが可能となる。したがって、本発明を適用すること
により、内部抵抗が低くて作動電圧が向上した蓄電池が
容易に得られるようになる。
From the above, the inner diameter of the battery can after the diameter reduction is the same as the inner diameter of the battery can, or 0.1 mm to
In the case of using the negative electrode current collector 15 having a diameter of 0.2 mm larger and reducing the diameter of the battery can 16 after assembling the battery, even if the current collector 15 and the inner bottom of the battery can 16 are not welded, A storage battery having excellent internal resistance and operating voltage can be obtained, and using such a storage battery makes it possible to charge and discharge with a large current. Therefore, by applying the present invention, a storage battery having a low internal resistance and an improved operating voltage can be easily obtained.

【0029】なお、上述した実施形態の各実施例におい
ては、負極集電体と電池缶とを溶接しない例について説
明したが、負極集電体と電池缶とを溶接した場合には、
内部抵抗が一層低下し、かつ作動電圧も一層向上したニ
ッケル−カドミウム蓄電池が得られた。また、上述した
実施形態においては、正極集電体を電極群の上部に配置
し、負極集電体を電極群の下部に配置するとともに、正
極集電体を封口体の下面に接続する例について説明した
が、負極集電体を電極群の上部に配置し、正極集電体を
電極群の下部に配置するとともに、負極集電体を封口体
の下面に接続するようにしてもほぼ同様な結果が得られ
た。
In each example of the above-described embodiment, an example was described in which the negative electrode current collector and the battery can were not welded. However, when the negative electrode current collector and the battery can were welded,
A nickel-cadmium storage battery having further reduced internal resistance and improved operating voltage was obtained. In the above-described embodiment, the positive electrode current collector is disposed above the electrode group, the negative electrode current collector is disposed below the electrode group, and the positive electrode current collector is connected to the lower surface of the sealing body. Although the description has been made, substantially the same applies when the negative electrode current collector is arranged at the upper part of the electrode group, the positive electrode current collector is arranged at the lower part of the electrode group, and the negative electrode current collector is connected to the lower surface of the sealing body. The result was obtained.

【0030】また、上述した実施形態のニッケル−カド
ミウム蓄電池は、正極板および負極板の何れも焼結式極
板を用いたが、ペースト式などの非焼結式極板を用いた
電池で実験した場合も同様な結果が得られた。また、上
述した実施形態のニッケル−カドミウム蓄電池において
は、セパレータを介して正・負極板を渦巻状に卷回して
電極群を形成する例について説明したが、これに限ら
ず、例えば、セパレータを介して正・負極板を積層して
電極群としてもよい。
Further, in the nickel-cadmium storage battery of the above-described embodiment, both the positive electrode plate and the negative electrode plate use sintered electrode plates, but an experiment was conducted using a battery using a non-sintered electrode plate such as a paste type. The same result was obtained in the case of the above. Further, in the nickel-cadmium storage battery of the above-described embodiment, an example in which the positive / negative electrode plate is spirally wound via a separator to form an electrode group has been described. However, the present invention is not limited to this. The positive and negative electrodes may be stacked to form an electrode group.

【0031】また、上述した実施形態においては、本発
明をニッケル−カドミウム蓄電池に適用した例について
説明したが、これに限らず、ニッケル−水素化物蓄電池
等のアルカリ蓄電池、あるいはリチウムイオン蓄電池等
の各種の蓄電池に本発明を適用できることはいうまでも
ない。さらに、上述した実施形態においては、本発明を
円筒型の蓄電池に適用した例について説明したが、これ
に限らず、角形等の各種の形状の蓄電池に本発明を適用
できることもいうまでもない。
In the above-described embodiment, an example in which the present invention is applied to a nickel-cadmium storage battery has been described. However, the present invention is not limited to this, and various types of alkaline storage batteries such as nickel-hydride storage batteries and lithium-ion storage batteries can be used. It is needless to say that the present invention can be applied to the above storage battery. Further, in the above-described embodiment, an example has been described in which the present invention is applied to a cylindrical storage battery. However, the present invention is not limited to this, and it goes without saying that the present invention can be applied to various shapes of storage batteries such as a rectangular shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態のアルカリ蓄電池の要部
を示す断面図である。
FIG. 1 is a sectional view showing a main part of an alkaline storage battery according to an embodiment of the present invention.

【図2】 図1のアルカリ蓄電池の電極群に負極集電体
を溶接した状態を示す斜視図である。
FIG. 2 is a perspective view showing a state where a negative electrode current collector is welded to the electrode group of the alkaline storage battery of FIG. 1;

【図3】 従来例のアルカリ蓄電池の要部を示す断面図
である。
FIG. 3 is a sectional view showing a main part of a conventional alkaline storage battery.

【符号の説明】[Explanation of symbols]

10…電極群、10a…電極体、11…正極板、11a
…導電性芯体、12…負極板、12a…導電性芯体、1
3…セパレータ、14…正極集電体、14a…集電リー
ド板、15…負極集電体、16…電池缶(負極外部端
子)、17…封口体、17a…蓋体、17b…正極キャ
ップ(正極外部端子)、18…絶縁ガスケット
10 electrode group, 10a electrode body, 11 positive electrode plate, 11a
... conductive core, 12 ... negative electrode plate, 12a ... conductive core, 1
DESCRIPTION OF SYMBOLS 3 ... Separator, 14 ... Positive electrode collector, 14a ... Collector lead plate, 15 ... Negative electrode collector, 16 ... Battery can (negative electrode external terminal), 17 ... Sealing body, 17a ... Lid, 17b ... Positive electrode cap ( Positive electrode external terminal), 18 ... insulating gasket

フロントページの続き Fターム(参考) 5H022 AA04 AA09 AA18 BB01 BB11 CC12 CC16 CC22 5H028 BB04 BB05 BB07 CC05 CC12 CC21 HH05 HH06 Continued on the front page F term (reference) 5H022 AA04 AA09 AA18 BB01 BB11 CC12 CC16 CC22 5H028 BB04 BB05 BB07 CC05 CC12 CC21 HH05 HH06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一方極の端子を兼ねる開口部を備えた有
底筒状の電池缶と、この開口部を密封する他方極の端子
を兼ねる封口体と、これら電池缶および封口体よりなる
電池容器内に収納される正・負極板と電解液からなる発
電要素とを備え、前記電池缶の径が縮小されて形成され
た蓄電池であって、 前記電池缶の缶底部に接触する前記集電体の最大長さが
前記電池缶の内径未満で、前記縮小された電池缶の内径
以上になるようにして同集電体の少なくとも一部が前記
電池缶の内側壁に密に接触するようにしたことを特徴と
する蓄電池。
1. A bottomed cylindrical battery can having an opening also serving as one terminal, a sealing body sealing the opening, also serving as the other terminal, and a battery comprising the battery can and the sealing body. A storage battery comprising: a positive / negative electrode plate housed in a container; and a power generation element made of an electrolytic solution, wherein the storage battery is formed by reducing the diameter of the battery can, wherein the current collector contacts a bottom of the battery can. The maximum length of the body is less than the inner diameter of the battery can, and is equal to or greater than the inner diameter of the reduced battery can, so that at least a portion of the current collector closely contacts the inner wall of the battery can. A storage battery characterized in that:
【請求項2】 一方極の端子を兼ねる開口部を備えた有
底筒状の電池缶と、この開口部を密封する他方極の端子
を兼ねる封口体と、これら電池缶および封口体よりなる
電池容器内に収納される正・負極板と電解液からなる発
電要素とを備えた蓄電池の製造方法であって、 前記正・負極板の間にセパレータを介在させて巻回また
は積層して電極群を形成する電極群形成行程と、 前記電極群の上下端面の前記正・負極板より突出する導
電端縁に、それぞれ集電体を溶接して電極体を形成する
電極体形成工程と、 前記電極体を前記電池缶に電解液と共に挿入して前記封
口体により封口する封口工程と、 前記封口体により封口された電池缶全体の径を縮小せし
める縮小工程とを備え、 前記電池缶の缶底部に接触する前記集電体の最大長さが
前記電池缶の内径未満で、前記縮小された電池缶の内径
以上になるようにして同集電体の少なくとも一部が前記
電池缶の内側壁に密に接触するようにしたことを特徴と
する蓄電池の製造方法。
2. A bottomed cylindrical battery can provided with an opening also serving as one terminal, a sealing body sealing the opening, also serving as the other terminal, and a battery comprising the battery can and the sealing body. A method for manufacturing a storage battery including a positive / negative electrode plate housed in a container and a power generating element made of an electrolytic solution, comprising forming an electrode group by winding or laminating the positive / negative electrode plate with a separator interposed therebetween. An electrode assembly forming step of forming an electrode assembly by welding current collectors to conductive edges protruding from the positive / negative electrode plates on the upper and lower end surfaces of the electrode assembly, respectively. A sealing step of inserting together with the electrolytic solution into the battery can and sealing with the sealing body; and a reducing step of reducing the diameter of the whole battery can sealed with the sealing body, and contacting the can bottom of the battery can. The maximum length of the current collector is Wherein the current collector is in close contact with the inner wall of the battery can so as to be smaller than the inner diameter of the battery can or more than the inner diameter of the reduced battery can. Method.
JP10276049A 1998-09-29 1998-09-29 Storage battery and manufacture thereof Pending JP2000106166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276049A JP2000106166A (en) 1998-09-29 1998-09-29 Storage battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276049A JP2000106166A (en) 1998-09-29 1998-09-29 Storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000106166A true JP2000106166A (en) 2000-04-11

Family

ID=17564087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276049A Pending JP2000106166A (en) 1998-09-29 1998-09-29 Storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000106166A (en)

Similar Documents

Publication Publication Date Title
JP3972804B2 (en) Alkaline storage battery and manufacturing method thereof
JP4977951B2 (en) Sealed battery, method of manufacturing the same, and assembled battery composed of a plurality of sealed batteries
JP2002100342A (en) Cylindrical secondary battery
JP5055809B2 (en) Cylindrical storage battery
JP2008243811A (en) Battery
JP3547931B2 (en) Manufacturing method of storage battery
JP2003187779A (en) Battery
JP2000323117A (en) Cylindrical storage battery
JP5383154B2 (en) Cylindrical secondary battery
CN1407647A (en) Closed battery
JP2000251871A (en) Alkaline secondary battery
JP2000106166A (en) Storage battery and manufacture thereof
JP2002246009A (en) Alkaline storage battery
JP3540591B2 (en) Storage battery and method of manufacturing the same
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JP3826607B2 (en) Cylindrical storage battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JPH11213983A (en) Cylindrical battery
JP2000195496A (en) Alkaline storage battery
JPS60167277A (en) Lead-acid battery
JP2004055371A (en) Cylindrical battery and connection structure between batteries using the same
JP2000315490A (en) Storage battery
JP3969283B2 (en) Cylindrical alkaline storage battery and manufacturing method thereof
JP3308325B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JP2002298824A (en) Sealed battery and its production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121