JP2000104141A - Soft magnetic alloy excellent in corrosion resistance - Google Patents

Soft magnetic alloy excellent in corrosion resistance

Info

Publication number
JP2000104141A
JP2000104141A JP10311570A JP31157098A JP2000104141A JP 2000104141 A JP2000104141 A JP 2000104141A JP 10311570 A JP10311570 A JP 10311570A JP 31157098 A JP31157098 A JP 31157098A JP 2000104141 A JP2000104141 A JP 2000104141A
Authority
JP
Japan
Prior art keywords
soft magnetic
alloy
corrosion resistance
less
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10311570A
Other languages
Japanese (ja)
Inventor
Kohei Kimura
Takafumi Nakayama
Osamu Okuno
孝文 中山
攻 奥野
幸平 木村
Original Assignee
Res Inst Electric Magnetic Alloys
財団法人電気磁気材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Res Inst Electric Magnetic Alloys, 財団法人電気磁気材料研究所 filed Critical Res Inst Electric Magnetic Alloys
Priority to JP10311570A priority Critical patent/JP2000104141A/en
Publication of JP2000104141A publication Critical patent/JP2000104141A/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic alloy which is hardly changed chemically even if being exposed to severe environments such as the insides of the living body and oral cavity and excellent in corrosion resistance, particularly a soft magnetic alloy exhibiting most excellent corrosion resistance by making a structure in the combination with an Fe-Pt permanent magnet alloy. SOLUTION: This alloy is a high corrosion resistance soft magnetic alloy contg., by atomic ratio, 17 to 37% Pt as the main component, contg. 0.001 to 35% in total one or more kinds among Cr, Co and Ni respectively by <=25% and B, C, Al, Si, Ti, Mn, Cu, Ge, Y, Pd, Ta, Nb, Mo, W, Ir, Ag and Au respectively by <=10% as assistant components, and the balance Fe with a small amt. of impurities, and by executing working and heat treatment, its coercive force Hc is made to be <=10 Oe, its saturation magnetic flux density Bs is made to be >=10 kG, and excellent soft magnetic properties can be obtd.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は,酸化性,還元性およびその他の腐食性雰囲気中においても化学的変化を生じ難い耐食性に優れた軟磁性合金に関する。 The present invention relates to oxidative, also relates to an excellent soft magnetic alloy corrosion resistance hardly cause chemical change in a reducing and other corrosive atmosphere. 特に,生体毒性に対して高い安全性を有するPtとFe元素を主成分とし,副成分は耐食性に優れ,あるいは耐食性を改善する性質を有し,且つ軟磁気特性の向上に有効な元素から構成されるため,医療,歯科ならびに生体適合性機能材料の各分野において安全に使用できる。 In particular, Pt and Fe element having a high safety to a living body toxicity as a main component, subcomponent excellent corrosion resistance, or has a property of improving the corrosion resistance, and consists of an element effective in improving the soft magnetic characteristics It is the reason, medical, can be safely used in the fields of dentistry and biocompatible functional material. 特に,近年の歯科補綴物の分野における磁石構造体の応用化に際し,吸引磁石を密封保持ならびに維持固定する高耐食性軟磁性合金の開発は重要視されている。 In particular, upon application of the magnet structure in the field of recent dental prosthesis, the development of high corrosion resistance soft magnetic alloy to seal holding and maintaining secure the attracting magnet is important.

【0002】 [0002]

【従来の技術】これまで,生体適合性を有する材料には,オーステナイト系およびフェライト系ステンレス鋼やTiおよびTi系合金が知られている。 Heretofore, the material having biocompatibility, austenitic and ferritic stainless steel or Ti and Ti-based alloys are known. このうち,磁性を有する材料はステンレス鋼のみであり,高濃度のC Of these, materials having magnetic is only stainless steel, high concentrations of C
rを含むSUSXM27,SUS447J1,SUS3 SUSXM27 including the r, SUS447J1, SUS3
16L等が実用に耐えるとされてきた。 16L and the like have been a practicable. しかし,これらのステンレス系合金は,食塩水中における自然電極電位が卑であり,またFeおよびCrの溶出量も多いため, However, since these stainless steel alloys, natural electrode potential in saline is less noble, also the amount of elution of Fe and Cr are many,
口腔内のような化学的に過酷な環境下におかれた場合の耐食性が問題となる。 Chemically harsh corrosion resistance when placed in an environment such as the oral cavity is a problem. また,Cr量が多い組成の合金は軟磁気特性が低下し,溶接性あるいは鋳接性が劣る欠点を有する。 Further, the alloy composition Cr amount is large and decreases soft magnetic property, has the drawback of weldability or Ise' is poor.

【0003】 [0003]

【発明が解決しようとする課題】そこで,本発明者等は,単体では生体毒性に関して極めて高い安全性を示し,且つ高い耐食性を有するFeとPtの合金に着目し,原子比にてPt17〜37%を主成分とし,副成分としてCr,Co,Niのそれぞれ25%以下,B, [SUMMARY OF THE INVENTION Therefore, the present inventors, in itself shows very high safety with respect to biological toxicity, focused on an alloy of Fe and Pt and having a high corrosion resistance, at an atomic ratio Pt17~37 % of the main component, Cr as the minor component, Co, less than 25% each of Ni, B,
C,Al,Si,Ti,Mn,Cu,Ge,Y,Pd, C, Al, Si, Ti, Mn, Cu, Ge, Y, Pd,
Ta,Nb,Mo,W,Ir,Ag,Auのそれぞれ1 Ta, Nb, Mo, W, Ir, Ag, respectively Au 1
0%以下のうち1種または2種以上合計0.001〜3 Total 0% one or more of the following 0.001
5%および残部Feと少量の不純物からなる合金の耐食性および軟磁気特性について検討した。 Consisting of 5%, and the balance Fe and a small amount of impurities was investigated corrosion resistance and soft magnetic properties of the alloy.

【0004】特に,合金化した場合,アレルギー等の原因となるような生体毒性に対して,高い安全性を有する材料として,原子比にて,Pt26〜36%を主成分とし,副成分としてCr25%以下,B,C,Si,T In particular, when alloyed with respect to biological toxicity which may cause allergies, as a material having a high safety, in atomic ratio, a main component Pt26~36%, as an auxiliary component Cr25 % or less, B, C, Si, T
i,Mn,Ge,Y,Ta,Nb,Mo,W,Ir,A i, Mn, Ge, Y, Ta, Nb, Mo, W, Ir, A
gのそれぞれ10%以下のうち1種または2種以上合計0.001〜35%および残部Feと少量の不純物からなる合金は,歯科補綴ならびに医療分野における応用が期待される。 Alloys consisting of one or more total 0.001 to 35% and the balance Fe and a small amount of impurities of less than 10% each of g, dental prostheses and applications in the medical field are expected.

【0005】ところが,原子比にて,26〜36%のP [0005] However, in an atomic ratio, 26-36% of P
tを含む基礎的組成のFe−Pt系2元合金は,生理食塩水中において貴の自然電極電位を示し,且つアノード分極特性も良好であるが,Feが多く溶出する。 Fe-Pt-based binary alloy of the basic composition including t, in saline shows the natural electrode potential of noble and although anodic polarization properties are also good, Fe many elute. Fe元素の溶出は毒性を示すものではないが,多量になると錆を誘発し,材料強度の劣化に至る。 Elution of the Fe element does not indicate toxicity but induce rusting becomes a large amount, leading to the deterioration of the material strength.

【0006】 [0006]

【課題を解決するための手段】本発明者等は,上記の課題を解決するため,原子比でFe−17〜37%Pt系2元合金またはこれを主成分とし,副成分としてCr, The present inventors have SUMMARY OF THE INVENTION In order to solve the above problems, and Fe-17~37% Pt-based binary alloy or containing as a main component in an atomic ratio, Cr as a sub-component,
CoまたはNiのそれぞれを25%以下,B,C,A Each Co or Ni 25% or less, B, C, A
l,Si,Ti,Mn,Cu,Ge,Y,Pd,Ta, l, Si, Ti, Mn, Cu, Ge, Y, Pd, Ta,
Nb,Mo,W,Ir,Ag,Auのそれぞれを10% Nb, Mo, W, Ir, Ag, respectively Au 10%
以下のうち1種または2種以上合計0.001〜35% One or more of the following total from 0.001 to 35 percent
と少量の不純物を含み,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金を開発した。 When contain small amounts of impurities, coercivity 10Oe less, the saturation magnetic flux density has been developed an excellent soft magnetic alloy corrosion resistance with more than 10 kG.

【0007】これらの合金は,従来のステンレス鋼が示す低飽和磁束密度および口腔内環境における低耐食性という欠点を改善し,磁石エネルギーを有効に活用し得る高い軟磁気特性と生体内のように苛酷な条件下でも腐食されない特徴を持っている。 [0007] These alloys have improved the disadvantage of low corrosion resistance of the conventional low saturation magnetic flux density and oral environment stainless steel exhibits, severe as high soft magnetic characteristics and in vivo that can effectively utilize the magnet energy it has a feature that is not corroded even in such conditions. さらに,高耐食性と優れた磁石特性を兼備するFe−Pt系磁石合金と組合わせた構造にすることにより,従来の,ステンレス鋼と組合わせた構造にするよりも優れた耐食性が発揮されるため, Further, by the combination with Fe-Pt magnet alloy having both excellent magnetic characteristics and high corrosion resistance structure, conventional, for superior corrosion resistance is exhibited than in the structure in combination with stainless steel ,
歯科補綴物のキーパー材料ならびに生体内埋込み用機能性部品として最適であり,また腐食性雰囲気中における電磁部品として使用できる。 Is optimum as a keeper material and functional parts for in vivo implantation of the dental prosthesis, also it is used as an electromagnetic component in the corrosive atmosphere.

【0008】本発明の特徴とするところは以下の通りである。 [0008] It is a feature of the present invention is as follows.

【0009】第1発明は,原子比にて,Pt17〜37 [0009] The first aspect of the present invention, by an atomic ratio, Pt17~37
%および残部Feと少量の不純物からなり,保磁力Hc % And the balance Fe and a small amount of impurities, the coercive force Hc
が10Oe以下,飽和磁束密度B が10kG以上を有する耐食性に優れた軟磁性合金であることを特徴とする。 There 10Oe hereinafter, wherein the saturation magnetic flux density B S is soft magnetic alloy having excellent corrosion resistance with more than 10 kG.

【0010】第2発明は,原子比にて,Pt17〜37 [0010] The second aspect of the present invention, by an atomic ratio, Pt17~37
%を主成分とし,副成分としてCr,Co,Niのそれぞれ25%以下,B,C,Al,Si,Ti,Mn,C % As a main component, Cr as a sub-component, Co, less than 25% each of Ni, B, C, Al, Si, Ti, Mn, C
u,Ge,Y,Pd,Ta,Nb,Mo,W,Ir,A u, Ge, Y, Pd, Ta, Nb, Mo, W, Ir, A
g,Auのそれぞれ10%以下のうち1種または2種以上合計0.001〜35%および残部Feと少量の不純物からなり,保磁力が10Oe以下,飽和磁束密度が1 g, made of one or more total from 0.001 to 35% and the balance Fe and a small amount of impurities of less than 10% each of Au, coercivity 10Oe less, the saturation magnetic flux density is 1
0kG以上を有する耐食性に優れた軟磁性合金であることを特徴とする。 Wherein the corrosion resistance with the above 0kG an excellent soft magnetic alloy.

【0011】第3発明は,原子比にて,Pt26〜36 [0011] The third aspect of the present invention, by an atomic ratio, Pt26~36
%を主成分とし,副成分としてCrを25%以下,B, % Of a main component, 25% Cr as a subcomponent or less, B,
C,Si,Ti,Mn,Ge,Y,Ta,Nb,Mo, C, Si, Ti, Mn, Ge, Y, Ta, Nb, Mo,
W,Ir,Agのそれぞれ10%以下のうち1種または2種以上合計0.001〜35%および残部Feと少量の不純物からなり,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する生体適合性ならびに耐食性に優れた軟磁性合金であることを特徴とする。 W, Ir, made of one or more total from 0.001 to 35% and the balance Fe and a small amount of impurities of less than 10% each of Ag, coercivity 10Oe less, biological saturation magnetic flux density has more than 10kG characterized in that it is a good soft magnetic alloy on the compatibility and corrosion resistance.

【0012】第4発明は,第1発明ないし第3発明のいずれか1発明の合金を,高周波炉またはアーク炉で溶解し,得られたインゴットを熱間または冷間で加工率30 [0012] The fourth invention is the working ratio 30 alloy of any one invention of the first invention to third invention, dissolved in a high-frequency furnace or arc furnace, the resulting ingot between hot or cold
%以上加工し,これを真空中または非酸化性雰囲気中5 Processed more than%, which in a vacuum or non-oxidizing atmosphere 5
00℃以上融点以下の温度で1分間以上100時間以下加熱した後0.1℃/秒以上1500℃/秒以下の速度で冷却することにより,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金の製造方法に関する。 By cooling at 00 ° C. higher than the melting point temperature below heated to 100 hours or more for 1 minute at a 0.1 ° C. / sec or higher 1500 ° C. / sec rate after coercive force 10Oe less, the saturation magnetic flux density than 10kG the method of manufacturing a superior soft magnetic alloy corrosion resistance with.

【0013】第5発明は,第1発明ないし第3発明のいずれか1発明の合金を,高周波炉またはアーク炉で溶解し,得られたインゴットを熱間または冷間で加工率30 [0013] The fifth invention, the alloy of any one invention of the first invention to third invention, dissolved in a high-frequency furnace or arc furnace, processing the resulting ingot between hot or cold rate 30
%以上加工し,これを真空中または非酸化性雰囲気中5 Processed more than%, which in a vacuum or non-oxidizing atmosphere 5
00℃以上融点以下の温度で1分間以上100時間以下加熱した後0.1℃/秒以上1500℃/秒以下の速度で冷却し,これをさらに真空中または非酸化性雰囲気中400℃以上融点以下の温度で1分間以上1000時間以下加熱した後冷却することにより,保磁力が10Oe 00 was cooled at ° C. higher than the melting point temperature below heated to 100 hours or more for 1 minute at a 0.1 ° C. / sec or higher 1500 ° C. / second or less speed after which the further more 400 ° C. or in the non-oxidizing atmosphere a vacuum melting by cooling after heating than 1000 hours or more for 1 minute at a temperature, the coercive force is 10Oe
以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金の製造方法に関する。 Hereinafter, a method of manufacturing a superior soft magnetic alloy corrosion resistance saturation magnetic flux density has more than 10 kG.

【0014】第6発明は,第3発明の合金を,精密鋳造法により鋳造し,これを真空中または非酸化性雰囲気中400℃以上融点以下の温度で1分間以上1000時間以下加熱した後冷却することにより,保磁力が10Oe [0014] The sixth invention, cooling after the alloy of the third aspect of the present invention, cast by precision casting, it was heated below 1000 hours or more for 1 minute at a temperature of 400 ° C. above the melting point in a vacuum or non-oxidizing atmosphere by, the coercive force is 10Oe
以下,飽和磁束密度が10kG以上を有する生体適合性ならびに耐食性に優れた軟磁性合金の製造方法に関する。 Hereinafter, a method of manufacturing a superior soft magnetic alloy in a biocompatible and corrosion saturation magnetic flux density has more than 10 kG.

【0015】第7発明は,第1発明ないし第3発明のいずれか1発明の合金を,第4発明ないし第6発明のいずれか1発明の方法によって製造した,保磁力が10Oe [0015] The seventh invention, the alloy of any one invention of the first invention to third invention, was prepared by the method of any one invention of the fourth aspect of the present invention to sixth invention, the coercive force 10Oe
以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金からなる電磁部品であることを特徴とする。 Hereinafter, wherein the saturation magnetic flux density of the electromagnetic component made of excellent soft magnetic alloy corrosion resistance with more than 10 kG.

【0016】第8発明は,第1発明ないし第3発明のいずれか1発明の合金を,第4発明ないし第6発明のいずれか1発明の方法によって製造した,保磁力が10Oe [0016] eighth invention, the alloy of any one invention of the first invention to third invention, was prepared by the method of any one invention of the fourth aspect of the present invention to sixth invention, the coercive force 10Oe
以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金と,永久磁石合金から構成される電磁機器であることを特徴とする。 Hereinafter, wherein the soft magnetic alloy saturation magnetic flux density and excellent corrosion resistance with more than 10 kG, that is an electromagnetic device composed of a permanent magnet alloy.

【0017】第9発明は,第3発明の合金を,第4発明ないし第6発明のいずれかの方法によって製造した,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金からなる医療・健康用具であることを特徴とする。 [0017] ninth invention, the alloy of the third aspect of the present invention was prepared by any of the methods of the fourth aspect of the present invention to sixth invention, the coercive force is 10Oe less, soft saturation magnetic flux density and excellent corrosion resistance with or 10kG characterized in that it is a medical and health equipment made of a magnetic alloy.

【0018】第10発明は,第3発明の合金を,第4発明ないし第6発明のいずれかの方法によって製造した, The tenth invention, the alloy of the third aspect of the present invention was prepared by any of the methods of the fourth aspect of the present invention to sixth invention,
保磁力が10Oe以下,飽和磁束密度が10kG以上を有する,耐食性に優れた軟磁性合金からなる歯科補綴物のキーパーであることを特徴とする。 Coercivity 10Oe hereinafter, wherein the saturation magnetic flux density has more than 10 kG, which is keeper of a dental prosthesis made of excellent soft magnetic alloy corrosion resistance.

【0019】第11発明は,第3発明の合金を,第4発明ないし第5発明のいずれかの方法によって製造した, The eleventh invention, the alloy of the third aspect of the present invention was prepared by any of the methods of the fourth aspect of the present invention to the fifth aspect of the present invention,
保磁力が10Oe以下,飽和磁束密度が10kG以上を有する,耐食性に優れた軟磁性合金からなる生体内埋込み用機能性部品であることを特徴とする。 Coercivity 10Oe hereinafter, wherein the saturation magnetic flux density has more than 10 kG, an in vivo embedding functional part comprising the excellent soft magnetic alloy corrosion resistance.

【0020】 [0020]

【作用】以下に本発明の構成を説明する。 SUMMARY OF] explaining the structure of the present invention below. 耐食性軟磁性合金の成分は,原子比にてPt17〜37%を主成分とし,副成分としてCr,Co,Niのそれぞれ25%以下,B,C,Al,Si,Ti,Mn,Cu,Ge, Corrosion resistance component of the soft magnetic alloy, the main component Pt17~37% by atomic ratio, Cr as a sub-component, Co, 25% or less each of Ni, B, C, Al, Si, Ti, Mn, Cu, Ge ,
Y,Pd,Ta,Nb,Mo,W,Ir,Ag,Auのそれぞれ10%以下のうち1種または2種以上合計0. Y, Pd, Ta, Nb, Mo, W, Ir, Ag, a total of one or more of the 10% or less each of Au 0.
001〜35%および残部Feと少量の不純物からなる。 Consisting 001-35% and the balance Fe and a small amount of impurities.

【0021】特に,生体毒性に対して高い安全性を有する材料としては,原子比にて,Pt26〜36%を主成分とし,副成分としてCr25%以下,B,C,Si, [0021] Particularly, as the material having a high safety to a living body toxicity at atom ratio, as a main component Pt26~36%, Cr25% or less as an auxiliary component, B, C, Si,
Ti,Mn,Ge,Y,Ta,Nb,Mo,W,Ir, Ti, Mn, Ge, Y, Ta, Nb, Mo, W, Ir,
Agのそれぞれ10%以下のうち1種または2種以上合計0.001〜35%および残部Feと少量の不純物からなる。 Consisting of one or more total from 0.001 to 35% and the balance Fe and a small amount of impurities of less than 10% each Ag.

【0022】これらの合金を高周波炉で溶解後,金型に鋳造して冷間および熱間で加工率30%以上加工するか,あるいは複雑形状を有する歯科補綴物や生体内埋込み用インプラント等は精密鋳造法によって,要求される形態を直接作製する。 [0022] After dissolving the alloy in a high-frequency furnace, either by casting into a mold machining working ratio of 30% or greater between cold and heat, or dental prosthesis or biological buried implant or the like having a complicated shape by precision casting, to produce the required form directly. 本系合金は,鋳造状態でも熱処理によって軟磁気特性を示すが,冷間加工あるいは熱間加工と熱処理との組合わせにより,集合組織あるいは再結晶組織を得ることで耐食性および軟磁気特性がさらに向上する。 This alloy, while indicating soft magnetic properties by heat treatment in the cast state, by a combination of the cold working or hot working and heat treatment, corrosion resistance and soft magnetic properties further improved by obtaining a texture or recrystallized structure to.

【0023】軟磁性合金の組成範囲を上述のように限定した理由は,原子比にてPt17%未満では室温において所期の磁気特性が得られなくなる。 The reason why the composition range of the soft magnetic alloy is limited as described above, desired magnetic characteristics can not be obtained at room temperature is less than PT17% by atomic ratio. また,Pt37% In addition, Pt37%
以上では均質化熱処理後急冷しても磁気特性が不安定で,大きな保磁力を発生し易く,軟磁気特性が失われてしまうからである。 Or more magnetic properties is unstable even by quenching after homogenizing heat treatment is likely to generate a large coercive force, because the soft magnetic properties are lost.

【0024】生体適合性を重視した場合,Pt26%未満では生理食塩水中におけるFeの溶出量が増加し,P In the case that emphasizes biocompatible, elution of Fe is increased in saline is less than PT26%, P
t37%未満であれば上記熱処理後大気中放冷によっても確実に均質化相を得ることができる。 If it is less than t37% can be obtained reliably homogenization phase by atmospheric cooling after the heat treatment. 且つ,冷間圧延やしぼり等の強加工が可能である。 And, it is possible to heavy working such as cold rolling and squeezing.

【0025】次に,副成分としてCr,Co,Niのそれぞれ25%以下とした理由は,Cr量を増すと鋳造性ならびに加工性が劣化して加工が難しくなり,残留磁束密度も減少して所期の軟磁気特性が得られなくなるので,25%以下とした。 Next, reasons for Cr, Co, and 25% or less each of Ni as subcomponent, processability castability and workability and increase the Cr content is deteriorated becomes difficult, the residual magnetic flux density decreases since the desired soft magnetic characteristics can not be obtained, and 25% or less. また,CoおよびNiは飽和磁束密度を上昇させるが,生体に対してはアレルギーを起こし易い元素であることから,生体適合性軟磁性合金から除いた。 Further, Co and Ni is to increase the saturation magnetic flux density, since the relative biological is easily element allergies, were removed from the biocompatible soft magnetic alloy.

【0026】さらに,B,C,Al,Si,Ti,M Furthermore, B, C, Al, Si, Ti, M
n,Cu,Ge,Y,Pd,Ta,Nb,Mo,W,I n, Cu, Ge, Y, Pd, Ta, Nb, Mo, W, I
r,Ag,Auそれぞれの添加量を10%以上とすると,合金の鋳造性低下,脆性増加を招き,磁気特性が劣化する等の悪影響を及ぼすため製造が困難になったり軟磁気特性が失われるからである。 r, Ag, When the addition amount of Au, respectively more than 10%, castability reduction of the alloy, lead to increased brittleness, soft magnetic properties may become difficult to manufacture because the adverse effects of such magnetic characteristics are deteriorated is lost it is from. また,生体適合性軟磁性合金を製造するためには,アルツハイマー病に関与するとされるAl,およびアレルギーを起こす率が高いとされるCu,Pd,Au元素を除いた。 Further, in order to produce a biocompatible soft magnetic alloy, except Al which is to be involved in Alzheimer's disease, and Cu that rate allergenic is high, Pd, and Au elements.

【0027】副成分のCr,Co,NiとB,C,A [0027] Cr subcomponent, Co, Ni and B, C, A
l,Si,Ti,Mn,Cu,Ge,Y,Pd,Ta, l, Si, Ti, Mn, Cu, Ge, Y, Pd, Ta,
Nb,Mo,W,Ir,Ag,Auのうち1種または2 Nb, Mo, W, Ir, Ag, 1 kind of Au or 2
種以上合計0.001%以下では添加効果が得られないからであり,添加量が両者をあわせて35%以上になると,合金の鋳造性の低下,脆性の増加,磁気特性の劣化および本来Fe−Pt系合金が有する耐食性の喪失等多くの悪影響が顕著になるためである。 Is because no addition effect is not obtained at the species or the total 0.001% or less, the amount is equal to or greater than 35% combined both a decrease in casting of the alloy, the increase in brittleness, degradation and intrinsic magnetic properties Fe loss and many other negative effects of the corrosion resistance with the -Pt alloy is to become conspicuous.

【0028】軟磁性合金の製造方法に関し,インゴットに加工率30%以上加工を加えるのは,鋳造組織をこわして緻密な構造とし,500℃以上融点以下の温度で均質化熱処理後,400℃以上融点以下の温度で時効処理を施すと,微細結晶組織となり,磁気特性の向上がはかれることによる。 [0028] relates to a method for producing a soft magnetic alloy, the added processing work of 30% or more ingots, break the cast structure as a dense structure, after homogenizing heat treatment at a temperature of 500 ° C. above the melting point, 400 ° C. or higher When subjected to aging treatment at a temperature lower than the melting point becomes a microcrystalline structure, due to the improvement of the magnetic characteristics can be achieved.

【0029】機械加工による製造が困難な形態の場合は,精密鋳造法を含むロストワックス法等によって直接,所望形状を作製し,これに400℃以上融点以下の温度で熱処理後,適切な冷却速度で冷却することによって軟磁気特性を得ることができる。 [0029] For difficult forms produced by machining, directly by the lost wax process or the like including a precision casting method, a desired shape to prepare, which after heat treatment at a temperature of 400 ° C. above the melting point, appropriate cooling rate in can be obtained soft magnetic properties by cooling.

【0030】図1および図2は代表的な合金のアノード分極曲線を示し,また図3および図4にはFe−Pt系2元合金を急冷処理後600℃の温度に保持した場合の保磁力H と飽和磁束密度B の時効処理時間に対する変化を示した。 FIG. 1 and FIG. 2 shows the anodic polarization curve of a typical alloy, also coercivity when holding the Fe-Pt-based binary alloy to a temperature of quenching treatment after the 600 ° C. in FIGS. 3 and 4 It shows a change with respect to aging time of H C and the saturation magnetic flux density B S.

【0031】表1には代表的な合金を,37℃に保った生理食塩水中に7日間浸積した後,溶出元素の量を測定した結果を示した。 [0031] Representative alloys in Table 1, was immersed for 7 days in saline kept at 37 ° C., showed the results of measurement of the amount of elution elements. また表2から表5には熱処理を変えた場合の各種Fe−Pt系合金の保磁力H と飽和磁束密度B の値を示した。 Also from Table 2 to Table 5 shows the values of the coercive force H C and the saturation magnetic flux density B S of various Fe-Pt alloy in the case of changing the heat treatment.

【0032】 [0032]

【表1】 [Table 1]

【0033】 [0033]

【表2】 [Table 2]

【0034】 [0034]

【表3】 [Table 3]

【0035】 [0035]

【表4】 [Table 4]

【0036】 [0036]

【表5】 [Table 5]

【0037】 [0037]

【実施例】以下,上記の各特性を示す合金を用いた実施例に基づいて本発明を説明する。 EXAMPLES Hereinafter, the present invention will be described based on examples with alloy exhibiting the characteristics described above. 〔実施例1〕高周波溶解炉により,真空中でPt33 The Example 1 a high-frequency melting furnace, in vacuum Pt33
%,残部Feと少量の不純物からなる2元合金を溶解し,金型鋳造によって外径8mm×長さ60mmのインゴットを得た。 %, Was dissolved binary alloy consisting of balance of Fe and a small amount of impurities was obtained an ingot having an outer diameter of 8 mm × 60mm long by die casting. これを冷間スエージングにより減面率8 This reduction in area by cold swaging 8
5%まで加工し,外径約3mmの丸棒を得た。 Up to 5% is processed to obtain a round bar of an outer diameter of about 3mm. これより長さ30mmを切り出し,真空中において1000℃の温度で5時間加熱した後大気中冷却した。 From this cut length 30 mm, and cooled in air after heating for 5 hours at a temperature of 1000 ° C. in a vacuum. 0.9%生理食塩水中におけるアノード分極特性から,この合金の自然電極電位は0.2VvsNHEと正で高い値が得られ,孔食電位も1.3VvsNHEのように良好な値であった。 From anodic polarization characteristics in 0.9% saline, natural electrode potential of this alloy provides high value 0.2VvsNHE and positive, even pitting potential was good value as 1.3VvsNHE. また,保磁力Hcは2.1Oe,飽和磁束密度は14.1kGであり,これらは,耐食性ステンレス鋼と比較して,軟磁気特性は多少劣るものの耐食性は非常に良好であった。 Further, the coercive force Hc 2.1Oe, saturation magnetic flux density is 14.1 kg, they are compared with the corrosion resistance of stainless steel, soft magnetic characteristics corrosion resistance of those somewhat inferior was very good. 同一断面を有する,最大エネルギー積が15MGOeのFe−Pt系磁石合金との間に作用する吸引力は,長さ方向では810gfに及び,直径方向に並列させた場合は460gfであった。 Have the same cross-section, the maximum energy product attractive force acting between the Fe-Pt-based magnet alloy of 15MGOe extends to 810gf the length direction, if it is parallel to the diameter direction was 460Gf. 前者は小型電磁弁等に用いた場合実用可能な吸引力である。 The former is a practical suction force when used in a small solenoid valve or the like.

【0038】〔実施例2〕高周波溶解炉により,真空中で,原子比にてPt29%,Nb1%および残部Feと少量の不純物からなる合金を溶解し,金型鋳造によって外径8mm×長さ60mmのインゴットを得た。 [0038] The Example 2 a high-frequency melting furnace, in a vacuum, Pt29% by atomic ratio, to dissolve the alloy consisting Nb1% and the balance Fe and a small amount of impurities, the outer diameter of 8 mm × length by the mold casting obtained the 60mm of the ingot. これから長さ2mmの部分を切り出し,1000℃の温度で5 Now cut out the portion of the length of 2mm, 5 at a temperature of 1000 ℃
時間の均質化処理後炉中冷却した。 And it cooled homogenization after furnace time. この円板状試料の表面を鏡面研摩した後,15MGOeの最大エネルギー積を有するFe−Pt系磁石合金との間に作用する吸引力を測定したところ,実用上充分な強度の560gfが得られた。 After mirror-polishing the surface of the disk-shaped sample was measured suction force acting between the Fe-Pt-based magnet alloy having a maximum energy product of 15 MGOe, 560Gf of practically sufficient strength was obtained . また,両者を組合わせた状態で0.9%生理食塩水中に7日間浸漬したところ,Feが5.0μg/c Also, we were immersed in 0.9% saline in a state in which a combination of both 7 days, Fe is 5.0 [mu] g / c
溶出したが,NbおよびPtの溶出量は検出限界以下の微量であった。 and m 2 elution, but elution of Nb and Pt had the following trace detection limit. 薄手の円板形状は磁気チャック等の電磁部品と同等の寸法を有し,腐食ガス等の流路において実用可能な吸引力である。 Thin disc shape has an electromagnetic component equivalent dimensions such as a magnetic chuck, it is practicable suction force in the flow path of the corrosive gases.

【0039】〔実施例3〕高周波溶解炉により,真空中でPt28%,Cr7%,Nb1.5%,Si0.5% [0039] The Example 3 induction furnace, Pt28% in vacuo, Cr7%, Nb1.5%, Si0.5%
および残部Feと少量の不純物からなる合金を溶解し, And dissolving the alloy and the balance Fe and a small amount of impurities,
金型鋳造によって,外径6mm×長さ80mmのインゴットを得た。 By the mold casting, to obtain an ingot having an outer diameter of 6 mm × length 80 mm. インゴットを冷間で鍛造とロール圧延により加工率90%以上加工して厚さ0.7mm×幅8mm Thickness 0.7 mm × 8mm wide by processing a working ratio of 90% or more by forging and rolling between ingot cold
の板状に整形し,これから長さ20mmの部分を切り出した。 Shaped into a plate-shaped, cut out a part of the future length 20mm. これを1000℃の温度で24時間均質化熱処理し,水中に投入後,さらに真空中において600℃の温度で5時間加熱後大気中冷却した。 This was heat treated for 24 hours homogenized at a temperature of 1000 ° C., after turning on the water, and cooled for 5 hours after heating in air at a temperature of 600 ° C. In yet vacuo. この薄板状試料の表面を研摩して平滑化後,同一面積の最大エネルギー積1 After smoothing by polishing the surface of the sheet-like sample, the maximum energy product of the same area 1
5MGOeを有するFe−Pt系磁石合金と接触させ, 5MGOe contacted with Fe-Pt magnet alloy having,
0.9%生理食塩水中に7日間浸漬したところ,Feが4.6μg/cm ,Crが0.05μg/cm ,S Was immersed in 0.9% saline for seven days, Fe is 4.6μg / cm 2, Cr is 0.05μg / cm 2, S
iが0.02μg/cm 溶出し,NbおよびPtは検出限界値以下であった。 i is 0.02 .mu.g / cm 2 was eluted, Nb and Pt were below detection limits. この薄板は,口唇閉鎖等の目的で生体内埋め込みを想定した寸法の例であり,この後プレス等によって所望の形態に整形する。 This sheet is an example of dimensions that assumes embedded in vivo for the purpose of lip closure and the like, and shaped into a desired form by the after pressing. 厚さ方向に着磁し,両者を組み合わせて整合させた状態での吸引力は4 Magnetized in the thickness direction, the suction force in the state of being aligned in a combination of both 4
30gfであり,実用上有効な値であった。 Is 30 gf, was practically effective value.

【0040】〔実施例4〕真空雰囲気中において高周波溶解炉とArガス圧迫鋳造法を組合わせた精密鋳造により,Pt17%,Cr20%,Nb3%および残部Fe [0040] The precision casting that combines high-frequency melting furnace and Ar gas pressure casting method in Example 4 in a vacuum atmosphere, Pt17%, Cr20%, Nb3% and the balance Fe
と少量の不純物からなる合金を,歯科補綴物の内冠の形態に鋳造し,真空中において1000℃の温度で5間加熱後大気中冷却した。 When an alloy composed of minor impurities, was cast in the form of an inner crown of the dental prosthesis, and cooled after 5 between heating in air at a temperature of 1000 ° C. in a vacuum. 同様の鋳造方法によって作製した15MGOeの最大エネルギー積を有するFe−Pt系磁石合金からなる外冠と組合わせ,0.9%生理食塩水中に7日間浸漬したところ,Feが3.9μg/c In combination with an outer crown consisting of Fe-Pt magnet alloy having a maximum energy product of 15MGOe produced by the same casting method, was immersed in water 0.9% 7 days, Fe is 3.9μg / c
,Crが0.03μg/cm 溶出し,NbおよびPtは検出限界以下であった。 m 2, Cr is 0.03 [mu] g / cm 2 was eluted, Nb and Pt were below detection limits. これは,歯科分野において通常観測される値以下の小さな溶出量である。 This is a small amount of elution of less than the value normally observed in the dental field. また, Also,
接触面を整合させた両者間に作用する吸引力は,610 Attractive force acting between them which is matched to the contact surface, 610
gfであり,実用上十分な吸引力であった。 A gf, was practically sufficient suction force.

【0041】 [0041]

【発明の効果】従来用いられてきた磁性ステンレス鋼によるヨーク,キーパー,インプラント等はいずれも構成元素のFe,Crの溶出量が多く,特に,人体に対してアレルギーを生じさせると考えられているNiの溶出が懸念されている。 Yoke by magnetic stainless steel which has been conventionally used, according to the present invention, keeper, both implants such as Fe element, for elution of Cr is large, in particular, are believed to cause allergic to the human body Ni elution has been a concern. 本発明に関わる合金は,生体毒性に対して極めて高い安全性を有するPtとFe元素を主成分とし,副成分は耐食性に優れ,且つ軟磁気特性の向上に有効な元素から構成される。 Alloys according to the present invention, the Pt and Fe element having an extremely high safety to a living body toxicity as a main component, subcomponent excellent corrosion resistance, and consists of an element effective in improving the soft magnetic characteristics. 従ってこれらの効果により,生体表面や口腔内で安全に使用できる生体適合性に優れ,且つ耐食性の高い軟磁性合金が得られ,市販の磁性アタッチメントと組合わせた場合は勿論のこと,Fe Accordingly, by these effects, good biocompatibility that can be safely used in vivo surface and oral, and high corrosion resistance soft magnetic alloy is obtained, of course thing when combined with commercial magnetic attachment, Fe
−Pt系磁石との組合わせ構造とした場合には,特に優れた効果を発揮し,生体内における磁石の積極的な活用を可能とする。 In case of the combination structure of the -Pt magnet exerts a particularly excellent effect, to allow active utilization of the magnet in vivo. 他に,磁気遮蔽効果,磁気誘導効果等, Alternatively, the magnetic shielding effect, the magnetic induction effect or the like,
軟磁気特性を有する材料の一般的な特性を活かした応用例えば,電磁部品,電磁機器,医療・健康用具,歯科補綴物のキーパーならびに生体内埋込み用機能性部品に適しているので,工業的にも非常に有用な軟磁性合金である。 Application example utilizing the general characteristics of the material with soft magnetic properties, electromagnetic component, electromagnetic devices, medical and health equipment, are preferred at keeper and in vivo embedding functionality component of the dental prosthesis, industrial also very useful soft magnetic alloy.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】図1はFe−30%Pt,Fe−33%Pt両合金のアノード分極曲線であり,比較のためSUS44 [1] Figure 1 is an anode polarization curve of Fe-30% Pt, Fe-33% Pt both alloys, for comparison SUS44
7J1についても示した。 It was also shown 7J1.

【図2】図2はFe−29%Pt−1%Nb,Fe−2 Figure 2 is Fe-29% Pt-1% Nb, Fe-2
8%Pt−7%Cr−1.5%Nb−0.5%Si,F 8% Pt-7% Cr-1.5% Nb-0.5% Si, F
e−25%Pt−10%Cr−0.5%Nb合金のアノード分極曲線を示す。 It shows the anodic polarization curve of the e-25% Pt-10% Cr-0.5% Nb alloy.

【図3】図3はFe−26%Pt,Fe−30%Pt, Figure 3 is Fe-26% Pt, Fe-30% Pt,
Fe−33%PtおよびFe−36%Pt合金の保磁力H の時効処理時間依存性を示している。 Shows the aging time dependence of the coercive force H C of Fe-33% Pt and Fe-36% Pt alloy.

【図4】図4はFe−26%Pt,Fe−30%Pt, Figure 4 is Fe-26% Pt, Fe-30% Pt,
Fe−33%PtおよびFe−36%Pt合金の飽和磁束密度B の時効処理時間依存性を示している。 Shows the aging time dependence of the saturation magnetic flux density B S of Fe-33% Pt and Fe-36% Pt alloy.

Claims (11)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 原子比にて,Pt17〜37%および残部Feと少量の不純物からなり,保磁力H が10Oe At 1. A atomic ratio consists Pt17~37% and the balance Fe and a small amount of impurities, the coercive force H C is 10Oe
    以下,飽和磁束密度B が10kG以上を有する耐食性に優れたことを特徴とする軟磁性合金。 Hereinafter, soft magnetic alloy, characterized in that the saturation magnetic flux density B S is excellent in corrosion resistance having the above 10 kG.
  2. 【請求項2】 原子比にて,Pt17〜37%を主成分とし,副成分としてCr,Co,Niのそれぞれ25% At wherein the atomic ratio, a main component Pt17~37%, Cr as an auxiliary component, Co, each of Ni 25%
    以下,B,C,Al,Si,Ti,Mn,Cu,Ge, Hereinafter, B, C, Al, Si, Ti, Mn, Cu, Ge,
    Y,Pd,Ta,Nb,Mo,W,Ir,Ag,Auのそれぞれ10%以下のうち1種または2種以上合計0. Y, Pd, Ta, Nb, Mo, W, Ir, Ag, a total of one or more of the 10% or less each of Au 0.
    001〜35%および残部Feと少量の不純物からなり,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金。 Consists 001-35% and the balance Fe and a small amount of impurities, coercivity 10Oe less, excellent soft magnetic alloy corrosion resistance of saturation magnetic flux density has more than 10 kG.
  3. 【請求項3】 原子比にて,Pt26〜36%を主成分とし,副成分としてCrを25%以下,B,C,Si, At 3. atomic ratio, a main component Pt26~36%, 25% or less of Cr as an auxiliary component, B, C, Si,
    Ti,Mn,Ge,Y,Ta,Nb,Mo,W,Ir, Ti, Mn, Ge, Y, Ta, Nb, Mo, W, Ir,
    Agのそれぞれ10%以下のうち1種または2種以上合計0.001〜35%および残部Feと少量の不純物からなり,保磁力が10Oe以下,飽和磁束密度が10k It consists of one or more total from 0.001 to 35% and the balance Fe and a small amount of impurities of less than 10% each of Ag, coercivity 10Oe less, the saturation magnetic flux density 10k
    G以上を有する生体適合性ならびに耐食性に優れた軟磁性合金。 Biocompatible and highly corrosion resistant soft magnetic alloy having the above G.
  4. 【請求項4】 請求項1ないし請求項3のいずれか1項に記載の合金を,高周波炉またはアーク炉で溶解し,得られたインゴットを熱間または冷間で加工率30%以上加工し,これを真空中または非酸化性雰囲気中500℃ The 4. Alloy according to any one of claims 1 to 3, was dissolved in a high-frequency furnace or arc furnace, resulting ingot was processed working rate of 30% or greater between hot or cold in vacuum it or a non-oxidizing atmosphere 500 ° C.
    以上融点以下の温度で1分間以上100時間以下均質化熱処理した後0.1℃/秒以上1500℃/秒以下の速度で冷却することにより,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金の製造方法。 By cooling at 0.1 ° C. / sec or higher 1500 ° C. / sec rate after heat treatment above a temperature below the melting point 100 hours or less homogenized for 1 minute or more, the coercive force 10Oe less, the saturation magnetic flux density than 10kG method for producing a superior soft magnetic alloy corrosion resistance with.
  5. 【請求項5】 請求項1ないし請求項3のいずれか1項に記載の合金を,高周波炉またはアーク炉で溶解し,得られたインゴットを熱間または冷間で加工率30%以上加工し,これを真空中または非酸化性雰囲気中500℃ 5. A alloy according to any one of claims 1 to 3, was dissolved in a high-frequency furnace or arc furnace, resulting ingot was processed working rate of 30% or greater between hot or cold in vacuum it or a non-oxidizing atmosphere 500 ° C.
    以上融点以下の温度で1分間以上100時間以下均質化熱処理した後0.1℃/秒以上1500℃/秒以下の速度で冷却し,これをさらに真空中または非酸化性雰囲気中400℃以上融点以下の温度で1分間以上1000時間以下加熱した後冷却することにより,保磁力が10O Higher than the melting point below the melting point and cooled at 0.1 ° C. / sec or higher 1500 ° C. / sec rate after homogenizing heat treatment below 100 hours or more for 1 minute at a temperature, which is further during or non-oxidizing atmosphere a vacuum 400 ° C. or higher by cooling after heating than 1000 hours or more for 1 minute at a temperature, the coercive force is 10O
    e以下,飽和磁束密度が10kG以上を有する耐食性に優れた軟磁性合金の製造方法。 e A method for fabricating excellent soft magnetic alloy corrosion resistance saturation magnetic flux density has more than 10 kG.
  6. 【請求項6】 請求項3に記載の合金を,精密鋳造法により鋳造し,これを真空中または非酸化性雰囲気中40 6. The alloy of claim 3, cast by precision casting, which in a vacuum or non-oxidizing atmosphere 40
    0℃以上融点以下の温度で1分間以上1000時間以下加熱した後冷却することにより,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する生体適合性ならびに耐食性に優れた軟磁性合金の製造方法。 By cooling after heating 1000 hours or less than 1 minute at 0 ℃ higher than the melting point temperature below coercivity 10Oe A method for fabricating excellent soft magnetic alloy saturation magnetic flux density within the biocompatible and corrosion resistance with the above 10kG .
  7. 【請求項7】 請求項1ないし請求項3のいずれか1項に記載の,保磁力が10Oe以下,飽和磁束密度が10 7. according to any one of claims 1 to 3, the coercive force is 10Oe less, the saturation magnetic flux density of 10
    kG以上を有する耐食性に優れた軟磁性合金からなる電磁部品。 Electromagnetic component consisting of excellent soft magnetic alloy corrosion resistance with the above kG.
  8. 【請求項8】 請求項1ないし請求項3のいずれか1項に記載の,保磁力が10Oe以下,飽和磁束密度が10 8. according to any one of claims 1 to 3, the coercive force is 10Oe less, the saturation magnetic flux density of 10
    kG以上を有する耐食性に優れた軟磁性合金と永久磁石合金から構成される電磁機器。 Electromagnetic device consists excellent soft magnetic alloy with permanent magnetic alloy corrosion resistance with the above kG.
  9. 【請求項9】 請求項3に記載の,保磁力が10Oe以下,飽和磁束密度が10kG以上を有する生体適合性ならびに耐食性に優れた軟磁性合金からなる医療・健康用具。 9. according to claim 3, the coercive force is 10Oe less, the saturation magnetic flux density of the excellent soft magnetic alloy in a biocompatible and corrosion resistance with the above 10kG medical and health equipment.
  10. 【請求項10】 請求項3に記載の,保磁力が10Oe 10. of claim 3, the coercive force is 10Oe
    以下,飽和磁束密度が10kG以上を有する,生体適合性ならびに耐食性に優れた軟磁性合金からなる歯科補綴物のキーパー。 Hereinafter, the saturation magnetic flux density has more than 10 kG, the keeper of the dental prosthesis comprising a superior soft magnetic alloy biocompatibility and corrosion resistance.
  11. 【請求項11】 請求項3に記載の,保磁力が10Oe 11. of claim 3, the coercive force 10Oe
    以下,飽和磁束密度が10kG以上を有する,生体適合性ならびに耐食性に優れた軟磁性合金からなる生体内埋込み用機能性部品。 Hereinafter, the saturation magnetic flux density has more than 10 kG, biocompatible and in vivo embedding functional part comprising the excellent soft magnetic alloy corrosion resistance.
JP10311570A 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance Withdrawn JP2000104141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311570A JP2000104141A (en) 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311570A JP2000104141A (en) 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JP2000104141A true JP2000104141A (en) 2000-04-11

Family

ID=18018829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311570A Withdrawn JP2000104141A (en) 1998-09-28 1998-09-28 Soft magnetic alloy excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JP2000104141A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143188A (en) * 2000-11-15 2002-05-21 Gc Corp Method of making structure for magnetic force attraction type intraoral dental prosthetic appliance
EP1593132A2 (en) * 2003-01-30 2005-11-09 Metglas, Inc. Gapped amorphous metal-based magnetic core
EP1724365A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content compositions
US7329383B2 (en) * 2003-10-22 2008-02-12 Boston Scientific Scimed, Inc. Alloy compositions and devices including the compositions
CN102982956A (en) * 2012-11-08 2013-03-20 建德市易通金属粉材有限公司 High magnetic permeability and low loss metal soft magnetic material powder and preparation method thereof
EP1404391B2 (en) 2001-03-30 2014-01-15 Boston Scientific Limited Platinum - stainless steel alloy and radiopaque stents
US9339398B2 (en) 2012-04-26 2016-05-17 Medtronic Vascular, Inc. Radiopaque enhanced nickel alloy for stents
US9592135B2 (en) 2012-04-26 2017-03-14 Medtronic Vascular, Inc. Radiopaque enhanced cobalt alloy for stents

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143188A (en) * 2000-11-15 2002-05-21 Gc Corp Method of making structure for magnetic force attraction type intraoral dental prosthetic appliance
JP4536245B2 (en) * 2000-11-15 2010-09-01 株式会社ジーシー The method for manufacturing a magnetic adsorption intraoral dental prosthesis structure for
EP1404391B2 (en) 2001-03-30 2014-01-15 Boston Scientific Limited Platinum - stainless steel alloy and radiopaque stents
EP1593132A2 (en) * 2003-01-30 2005-11-09 Metglas, Inc. Gapped amorphous metal-based magnetic core
EP1593132A4 (en) * 2003-01-30 2011-03-09 Metglas Inc Gapped amorphous metal-based magnetic core
US7329383B2 (en) * 2003-10-22 2008-02-12 Boston Scientific Scimed, Inc. Alloy compositions and devices including the compositions
EP1724365A3 (en) * 2004-10-12 2010-02-17 Heraeus, Inc. Low oxygen content compositions
EP1724365A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content compositions
US9339398B2 (en) 2012-04-26 2016-05-17 Medtronic Vascular, Inc. Radiopaque enhanced nickel alloy for stents
US9592135B2 (en) 2012-04-26 2017-03-14 Medtronic Vascular, Inc. Radiopaque enhanced cobalt alloy for stents
CN102982956A (en) * 2012-11-08 2013-03-20 建德市易通金属粉材有限公司 High magnetic permeability and low loss metal soft magnetic material powder and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2032351C (en) Oxidation resistant low expansion superalloys
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
CA1176488A (en) Nickel/titanium copper shape memory alloys
Yang et al. Nickel-free austenitic stainless steels for medical applications
US7329383B2 (en) Alloy compositions and devices including the compositions
JP2811354B2 (en) Ferritic alloys and corrosion-resistant magnetic products made from the same alloy, the magnetic core automobile fuel injection system parts and solenoid valve
CN1101479C (en) Heat-resistant alloy wire
US20110277568A1 (en) Ni-Ti SEMI-FINISHED PRODUCTS AND RELATED METHODS
Thompson An overview of nickel–titanium alloys used in dentistry
Ahn et al. Effect of aging treatments on microstructure and impact properties of tungsten substituted 2205 duplex stainless steel
Matković et al. Effects of Ni and Mo on the microstructure and some other properties of Co–Cr dental alloys
JP3300684B2 (en) Shape memory properties and copper-based alloys having superelastic, members and methods for their preparation consists of
WO1981000861A1 (en) Amorphous alloys
JPH08511829A (en) Ferrite - austenite stainless steels and their use
EP1062374A1 (en) Pseudoelastic beta titanium alloy and uses therefor
JP2001348635A (en) Titanium alloy excellent in cold workability and work hardening
EP1961830B1 (en) Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
CA1100339A (en) Cobalt-chromium-molybdenum alloy containing nitrogen
JPH08299428A (en) Medical devices made of biocompatible titanium base alloys
JPH09511281A (en) Ni-Ti-Nb alloy processing methods and articles made from the alloy
McFadden Metallurgical principles in neurosurgery
Oh et al. A stainless steel bracket for orthodontic application
RU2007141923A (en) A method for preparing a rare earth permanent magnet material
JPH02290938A (en) Mechanically alloyed nickel-cobalt-chromium-iron composition
CN1163915C (en) Soft magnet-nickel alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110