JP2000090727A - Conductive particle for anisotropic conductive adhesive - Google Patents

Conductive particle for anisotropic conductive adhesive

Info

Publication number
JP2000090727A
JP2000090727A JP10239024A JP23902498A JP2000090727A JP 2000090727 A JP2000090727 A JP 2000090727A JP 10239024 A JP10239024 A JP 10239024A JP 23902498 A JP23902498 A JP 23902498A JP 2000090727 A JP2000090727 A JP 2000090727A
Authority
JP
Japan
Prior art keywords
particles
conductive
anisotropic conductive
conductive adhesive
silica composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10239024A
Other languages
Japanese (ja)
Inventor
Masao Saito
雅男 斉藤
Yukio Yamada
幸男 山田
Motohide Takechi
元秀 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP10239024A priority Critical patent/JP2000090727A/en
Publication of JP2000090727A publication Critical patent/JP2000090727A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a good connection even if clearance between terminals to be connected varies, when the connection between the terminals is performed with anisotropic conductive adhesive. SOLUTION: This conductive particle 12 comprises a core material 13 and a metal film 14 for coating it. The core material 13 of this conductive particle 12 is made of a silica composite particle. The silica composite particle is formed by hydrolysis-condensing organic material such as divinylbenzene, styrene, acrylic, benzoguanamine, or these mixture and silica and by granulating the formed complex, and is different from material formed only by blending silica powder and binder resin. Preferably, compression bounce of the silica composite particle is 0.35 gf-3.5 gf at 20% displacement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方性導電接着剤
用導電性粒子に関する。
The present invention relates to conductive particles for an anisotropic conductive adhesive.

【0002】[0002]

【従来の技術】液晶パネルのガラス基板上のITO端子
と、フレキシブル配線板の端子やTCP(tape carrier
package)の端子とを接続する場合、あるいはICチップ
をマザーボード上にフリップチップ接合する場合のよう
に、2つの回路素子を接着すると共にその間の端子を電
気的に接続するための材料の一つとして、異方性導電接
着剤がある。
2. Description of the Related Art An ITO terminal on a glass substrate of a liquid crystal panel, a terminal of a flexible wiring board and a TCP (tape carrier).
One of the materials used to bond two circuit elements and electrically connect the terminals between them, such as when connecting the terminals of a package) or when flip-chip bonding an IC chip on a motherboard. , Anisotropic conductive adhesive.

【0003】異方性導電接着剤は、導電性粒子を絶縁性
接着剤に分散させたものからなり、フィルム状に成形し
た異方性導電膜(ACF)として、あるいは異方性導電
接着剤を液状に調製した異方性導電ペースト(ACP)
として用いられる。その使用方法としては、例えば、A
CFの場合、接続すべきICチップと配線基板との間に
ACFを挟み、熱圧着する。それにより、ICチップと
配線基板とが絶縁性接着剤で接着固定され、かつICチ
ップの端子と配線基板の端子とが電気的に接続される。
[0003] The anisotropic conductive adhesive comprises conductive particles dispersed in an insulating adhesive. The anisotropic conductive adhesive (ACF) formed into a film shape or the anisotropic conductive adhesive is used. Anisotropic conductive paste (ACP) prepared in liquid form
Used as For example, A
In the case of CF, an ACF is sandwiched between an IC chip to be connected and a wiring board, and thermocompression-bonded. Thereby, the IC chip and the wiring board are bonded and fixed with the insulating adhesive, and the terminals of the IC chip and the terminals of the wiring board are electrically connected.

【0004】従来、異方性導電接着剤の導電性粒子とし
ては、大別すると、半田、ニッケル等の金属粒子と、ス
チレン、ベンゾグアナミン、ジビニルベンゼン等のプラ
スチック粒子を核材としてその上に無電解メッキ法で銅
や金等の金属被膜を形成した金属メッキプラスチック粒
子とが使用されている。このうち、金属粒子は金属メッ
キプラスチック粒子に比して硬く、金バンプにくい込ん
でしまうため、基板やバンプの高さのばらつきを吸収で
きず、また、復元性が乏しいために接続信頼性が低いの
に対し、金属メッキプラスチック粒子は、プラスチック
の復元性を利用できるので、基板やバンプの高さにばら
つきがある場合でも端子間を比較的高い信頼性で接続す
ることができる。
Conventionally, conductive particles of anisotropic conductive adhesives are roughly classified into metal particles such as solder and nickel and plastic particles such as styrene, benzoguanamine and divinylbenzene as a core material on which electroless particles are formed. Metal-plated plastic particles on which a metal film such as copper or gold is formed by a plating method are used. Among them, metal particles are harder than metal-plated plastic particles and are hard to fit into the gold bumps, so they cannot absorb variations in the height of the substrate or bumps, and have poor connection stability due to poor restorability. On the other hand, metal-plated plastic particles can utilize the resilience of plastic, so that even if the height of the substrate or the bumps varies, the terminals can be connected with relatively high reliability.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、多層基
板へのベアチップの実装に異方性導電接着剤を使用する
場合、従前のガラス基板への実装に比して実装面の平坦
性が劣るため、異方性導電接着剤を介してベアチップを
基板に熱圧着するときの熱圧着条件を従前通りとする
と、図4に示したように、ICチップ1の端子(バン
プ)2と多層基板3の配線端子4とを両者の間隙の狭い
部位では導電性粒子11によって良好に接続できても、
両者の間隙の広い部位では接続不良が起こる。なお、図
中、符号10は異方性導電接着剤の絶縁性接着剤であ
る。
However, when an anisotropic conductive adhesive is used for mounting a bare chip on a multilayer substrate, the flatness of the mounting surface is inferior to that of a conventional mounting on a glass substrate. Assuming that the conditions for thermocompression bonding of the bare chip to the substrate via the anisotropic conductive adhesive are the same as before, as shown in FIG. 4, the terminals (bumps) 2 of the IC chip 1 and the wiring of the multilayer substrate 3 Even if the terminal 4 can be satisfactorily connected by the conductive particles 11 in a portion where the gap between them is narrow,
A connection failure occurs at a wide gap between the two. In the drawings, reference numeral 10 denotes an insulating adhesive of an anisotropic conductive adhesive.

【0006】これに対し、熱圧着時の圧力をあげると、
図5(a)に示すように、ICチップ1の端子(バン
プ)2と多層基板3の配線端子4との間隙の広い部位は
良好に接続できるが、狭い部位では導電性粒子11がつ
ぶれてしまう。このつぶれた導電性粒子11には反発力
(復元力)が発生しない。そのため、ICチップ1を実
装した多層基板3を種々の環境下においた場合に、IC
チップ1と多層基板3との間隔が広がる方向に力が加わ
ったとき、図5(b)に示すように、つぶれた導電性粒
子11の接続部位で接続不良が生じる。
On the other hand, if the pressure during thermocompression is increased,
As shown in FIG. 5A, a portion having a wide gap between the terminal (bump) 2 of the IC chip 1 and the wiring terminal 4 of the multilayer substrate 3 can be connected well, but the conductive particles 11 are crushed at a narrow portion. I will. No repulsive force (restoring force) is generated in the crushed conductive particles 11. Therefore, when the multilayer substrate 3 on which the IC chip 1 is mounted is placed in various environments,
When a force is applied in a direction in which the distance between the chip 1 and the multilayer substrate 3 increases, a connection failure occurs at the connection portion of the crushed conductive particles 11 as shown in FIG.

【0007】一方、ICチップのバンプとしては、メッ
キバンプの他に、簡便に低コストに作製できるスタッド
バンプがあるが、一般に、メッキバンプの高さのばらつ
きが±2μmであるのに対してスタッドバンプの高さの
ばらつきは±4μm程度と大きい。このため、スタッド
バンプ付きのICチップを配線基板に実装する場合にも
上述のような接続不良が生じる。
On the other hand, there is a stud bump which can be easily and inexpensively manufactured as a bump of an IC chip, in addition to a plating bump. In general, the variation in the height of the plating bump is ± 2 μm, whereas the stud bump is ± 2 μm. The variation in bump height is as large as about ± 4 μm. For this reason, the above-described connection failure also occurs when an IC chip with stud bumps is mounted on a wiring board.

【0008】本発明は、以上のような接続不良をおこす
従来の異方性導電接着剤に対し、接続すべき端子間の間
隔に広狭がある場合でも良好に接続できるようにするこ
とを目的とする。
An object of the present invention is to make it possible to connect well to the conventional anisotropic conductive adhesive causing the above-mentioned poor connection even when the distance between the terminals to be connected is wide. I do.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
め、本発明は、シリカコンポジット粒子と、それを被覆
する金属被膜からなることを特徴とする異方性導電接着
剤用導電性粒子を提供する。
In order to achieve the above-mentioned object, the present invention provides a conductive particle for anisotropic conductive adhesive comprising silica composite particles and a metal coating covering the same. provide.

【0010】本発明の導電性粒子は、核材がシリカコン
ポジット粒子であるため、ポリスチレンやジビニルベン
ゼン等のプラスチック粒子を核材とした従来の金属メッ
キプラスチック粒子に比して圧力に対してつぶれにく
く、かつ金属粒子やシリカ粒子に比べると軟質である。
このため、本発明の導電性粒子を使用した異方性導電接
着剤は適用可能な圧力範囲が広くなり、端子間の接続を
行う場合に、バンプの種類、バンプの高さのばらつき、
基板の平坦度等に応じて適切な圧力条件を選択すること
が可能となる。したがって、図2に示すように種々の広
狭の端子間を良好に接続することが可能となる。
[0010] Since the core material of the conductive particles of the present invention is silica composite particles, the conductive particles are less likely to be crushed by pressure than conventional metal-plated plastic particles using plastic particles such as polystyrene or divinylbenzene as core materials. And it is softer than metal particles or silica particles.
For this reason, the anisotropic conductive adhesive using the conductive particles of the present invention has a wide applicable pressure range, and when performing connection between terminals, the type of bump, variation in bump height,
Appropriate pressure conditions can be selected according to the flatness of the substrate and the like. Therefore, it is possible to satisfactorily connect various wide and narrow terminals as shown in FIG.

【0011】また、本発明の導電性粒子は従来の金属メ
ッキプラスチック粒子に比して耐湿性が向上するので、
接続後の信頼性も向上する。
Further, the conductive particles of the present invention have improved moisture resistance as compared with conventional metal-plated plastic particles.
Reliability after connection is also improved.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しつつ本発明を
詳細に説明する。なお、各図中、同一符号は同一又は同
等の構成要素を表している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. In each of the drawings, the same reference numerals represent the same or equivalent components.

【0013】図1は、本発明の導電性粒子12の断面図
である。このように、この導電性粒子12は、核材13
とそれを被覆する金属被膜14からなっている。
FIG. 1 is a sectional view of the conductive particles 12 of the present invention. In this way, the conductive particles 12 are
And a metal coating 14 covering the same.

【0014】この導電性粒子12は、核材が、シリカコ
ンポジット粒子13からなっていることを特徴としてい
る。シリカコンポジット粒子とは、ジビニルベンゼン、
スチレン、アクリル、ベンゾグアナミン等の有機材料あ
るいはこれらの混合物とシリカとを加水分解により縮合
させ、得られた複合物を造粒して得られるものであり、
単に、シリカ粉末とバインダー樹脂とをブレンドして得
られるものとは異なる。
The conductive particles 12 are characterized in that the core material is composed of silica composite particles 13. Silica composite particles are divinylbenzene,
Styrene, acrylic, organic materials such as benzoguanamine or a mixture thereof and silica are condensed by hydrolysis, and the obtained composite is obtained by granulation,
It is different from that obtained simply by blending silica powder and a binder resin.

【0015】シリカコンポジット粒子13としては、そ
の圧縮反発力が、20%変位時に0.35gf〜3.5
gfであるものが好ましい。圧縮反発力が高すぎると加
圧に対して変形しにくく、反対に低すぎると加圧に対し
てつぶれやすくなるので、いずれの場合にもその粒子を
用いた異方性導電接着剤で端子間の接続を行うときに接
続不良が生じやすくなる。
The silica composite particles 13 have a compression repulsion force of 0.35 gf to 3.5 at 20% displacement.
gf is preferred. If the compression repulsion is too high, it will not be easily deformed by pressure, and if it is too low, it will be easily crushed by pressure. Connection is likely to occur when the connection is made.

【0016】シリカコンポジット粒子13の圧縮反発力
を上述の範囲に調整する方法としては、例えば、粒子中
のシリカ成分と有機材料成分との体積比率を変えればよ
い。
As a method of adjusting the compression repulsive force of the silica composite particles 13 to the above-mentioned range, for example, the volume ratio between the silica component and the organic material component in the particles may be changed.

【0017】また、シリカコンポジット粒子13の粒径
は、1〜13μm程度とすることが好ましい。
The silica composite particles 13 preferably have a particle diameter of about 1 to 13 μm.

【0018】一方、金属被膜14は、従来の金属メッキ
プラスチック粒子に使用されている金属被膜と同様とす
ることができ、例えば、無電解メッキあるいは電解メッ
キにより、金、ニッケル、半田、コバルト、銅等の金属
層を単層で、又は複数層積層して設けることができる。
On the other hand, the metal coating 14 can be the same as the metal coating used for conventional metal-plated plastic particles. For example, gold, nickel, solder, cobalt, copper And the like can be provided as a single layer or a plurality of layers.

【0019】導電性粒子12におけるシリカコンポジッ
ト粒子13上の金属被膜14の厚みに関しては、圧着変
形時の金属被膜14の剥離や割れを防止する点から10
nm以上とすることが好ましい。
The thickness of the metal coating 14 on the silica composite particles 13 in the conductive particles 12 is determined in order to prevent the metal coating 14 from peeling or cracking during compression deformation.
It is preferably at least nm.

【0020】本発明の異方性導電接着剤用導電性粒子と
しては、上述の金属被膜14上にさらに絶縁性樹脂層を
設けたものとしてもよい。異方性導電接着剤中に導電性
粒子の凝集物が生じた場合、異方性導電接着剤で接続す
るパターンがファインピッチであればあるほど、隣接す
るパターン間が導電性粒子の凝集物でショートするおそ
れが生じるが、個々の導電性粒子の金属被膜14を絶縁
性樹脂層で被覆することにより、このようなパターン間
のショートを防止することができる。なお、個々の導電
性粒子の金属被膜14を絶縁性樹脂層で被覆しても、接
続すべき端子間はそれ以外の部位に比して間隔が狭いの
で、そこにある導電性粒子には熱圧着時に圧がかかり、
絶縁性樹脂層は破壊される。したがって、導電性粒子の
金属被膜14を絶縁性樹脂層で被覆しても、接続すべき
端子間は良好に接続することが可能となる。
The conductive particles for the anisotropic conductive adhesive of the present invention may be those in which an insulating resin layer is further provided on the above-mentioned metal film 14. When an aggregate of conductive particles is generated in the anisotropic conductive adhesive, the closer the pattern connected by the anisotropic conductive adhesive is fine pitch, the more agglomerated conductive particles are between adjacent patterns. Although a short circuit may occur, such a short circuit between the patterns can be prevented by covering the metal film 14 of each conductive particle with an insulating resin layer. Even if the metal film 14 of each conductive particle is covered with an insulating resin layer, the distance between the terminals to be connected is narrower than that of other portions, so that the conductive particles there are not heated. Pressure is applied during crimping,
The insulating resin layer is destroyed. Therefore, even if the metal film 14 of the conductive particles is covered with the insulating resin layer, it is possible to connect the terminals to be connected well.

【0021】ここで、金属被膜14を被覆する絶縁性樹
脂層の構成樹脂としては、アクリル樹脂、スチレン樹
脂、アクリル−スチレン共重合体等を使用することがで
き、特に、アクリル−スチレン共重合体を使用すること
が好ましい。また、絶縁性樹脂層の厚さは、薄すぎると
金属被膜14に十分に被覆されない部位が生じ、隣接す
るファインピッチの端子間のショートを確実に防止でき
ないおそれがあり、反対に厚すぎると、接続すべき端子
間で熱圧着時に絶縁性樹脂層が破壊されず、導通不良の
生じるおそれがあるので、0.05〜0.5μmとする
ことが好ましい。
Here, as the constituent resin of the insulating resin layer covering the metal film 14, an acrylic resin, a styrene resin, an acryl-styrene copolymer or the like can be used. In particular, an acryl-styrene copolymer It is preferred to use In addition, if the thickness of the insulating resin layer is too small, a portion that is not sufficiently covered with the metal coating 14 may be generated, and a short circuit between adjacent fine-pitch terminals may not be reliably prevented. Since the insulating resin layer is not broken at the time of thermocompression bonding between terminals to be connected, and there is a possibility that conduction failure occurs, the thickness is preferably 0.05 to 0.5 μm.

【0022】本発明の異方性導電接着剤用導電性粒子1
2は、従来の異方性導電接着剤の導電性粒子に代えて使
用することができる。したがって、本発明の導電性粒子
を、公知の絶縁性接着剤、例えば、固形もしくは液状の
エポキシ樹脂等の重合成分とイミダゾール系硬化剤や変
性アミン系硬化剤等の硬化剤成分とからなる絶縁性接着
剤、アクリル、SBR、SIS、ポリウレタン等の熱可
塑性樹脂、ゴム系樹脂等と常法にしたがって混合分散さ
せることにより異方性導電接着剤を得ることができる。
The conductive particles 1 for the anisotropic conductive adhesive of the present invention
No. 2 can be used in place of the conductive particles of the conventional anisotropic conductive adhesive. Therefore, the conductive particles of the present invention, a known insulating adhesive, for example, an insulating property comprising a polymerization component such as a solid or liquid epoxy resin and a curing agent component such as an imidazole-based curing agent or a modified amine-based curing agent. An anisotropic conductive adhesive can be obtained by mixing and dispersing with an adhesive, a thermoplastic resin such as acrylic, SBR, SIS, and polyurethane, a rubber-based resin, and the like according to a conventional method.

【0023】この異方性導電接着剤の使用形態として
は、例えば、剥離処理したフィルム上に塗布してフィル
ム状に成膜することによりACFとしてもよく、また、
所定の接着部位に塗布するペースト状のACPとしても
よい。
As a form of use of the anisotropic conductive adhesive, for example, an ACF may be obtained by applying a film on a release-treated film to form a film.
It may be a paste-like ACP that is applied to a predetermined bonding site.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0025】実施例1 ケイ素原子を直接メタクリル樹脂に化学結合させ、造粒
することによりシリカコンポジット粒子(粒径5μm)
を得、この粒子の表面に無電解メッキすることによりN
iメッキ層(厚さ0.2μm)を形成し、さらに電解メ
ッキすることにより金層(厚さ0.02μm)を形成
し、実施例の導電性粒子を作製した。
Example 1 Silica composite particles (particle diameter 5 μm) by chemically bonding silicon atoms directly to methacrylic resin and granulating.
And the surface of the particles is electrolessly plated to obtain N
An i-plated layer (thickness: 0.2 μm) was formed, and a gold layer (thickness: 0.02 μm) was formed by electroplating to prepare conductive particles of the examples.

【0026】一方、絶縁性接着剤を、固形エポキシ樹
脂、液状エポキシ樹脂、潜在性硬化剤を60wt%、30
wt%、10wt%の比率で混合し、トルエンと混合するこ
とにより調製した。
On the other hand, a solid epoxy resin, a liquid epoxy resin, a latent curing agent of 60 wt%
It was prepared by mixing at a ratio of 10% by weight and mixing with toluene.

【0027】この絶縁性接着剤に上述の導電性粒子を、
導電性粒子が12wt%となるように分散させ、これをP
ETからなる剥離フィルムにコーティングし、乾燥厚4
0μmのACFを作製した。
The conductive particles described above are added to this insulating adhesive,
The conductive particles are dispersed so as to be 12 wt%, and this is
Coated on release film made of ET, dry thickness 4
An ACF of 0 μm was produced.

【0028】比較例1 核材粒子として、シリカコンポジット粒子に代えてベン
ゾグアナミン粒子を使用する以外は、実施例1と同様に
して、金属メッキプラスチック粒子を作製し、得られた
粒子を用いてACFを作製した。
Comparative Example 1 Metal-plated plastic particles were prepared in the same manner as in Example 1 except that benzoguanamine particles were used instead of silica composite particles as core material particles, and ACF was prepared using the obtained particles. Produced.

【0029】比較例2 核材粒子として、シリカコンポジット粒子に代えてスチ
レン粒子を使用する以外は、実施例1と同様にして、金
属メッキプラスチック粒子を作製し、得られた粒子を用
いてACFを作製した。
Comparative Example 2 Metal-plated plastic particles were prepared in the same manner as in Example 1 except that styrene particles were used instead of the silica composite particles as the core material particles, and ACF was prepared using the obtained particles. Produced.

【0030】評価 (1) 実施例及び比較例の各ACFを用いて、20μ
m高のメッキバンプあるいは20μm高のスタッドバン
プをもつ1cm角のICチップを、導体厚18μmの配
線基板に表1の加圧条件で180℃で20秒間熱圧着す
ることにより実装した。
Evaluation (1) Using each of the ACFs of Examples and Comparative Examples,
A 1 cm square IC chip having an m-high plating bump or a 20 μm high stud bump was mounted on a wiring board having a conductor thickness of 18 μm by thermocompression bonding at 180 ° C. for 20 seconds under the pressing conditions shown in Table 1.

【0031】実装後、接続部を顕微鏡観察し、導電性粒
子の変形の度合いを以下の基準で評価した。
After mounting, the connection was observed under a microscope, and the degree of deformation of the conductive particles was evaluated according to the following criteria.

【0032】 ○:導電性粒子が若干扁平になり、ICチップのバンプ
と配線基板の端子とを良好に接続していた場合 △:粒子のつぶれが大きい場合 ×:完全につぶれていた場合
:: The conductive particles were slightly flattened, and the bumps of the IC chip were connected well to the terminals of the wiring board. :: The particles were significantly crushed. X: The particles were completely crushed.

【0033】(2) (1)で実装したICチップのう
ち、メッキバンプに250kg/cm2で実装したもの
と、スタッドバンプに1000kg/cm2で実装した
ものについて、ヒートショック試験(−55℃〜125
℃)とPCT試験(121℃、2atm、湿度100
%)とを行い、導通が失われるまでのサイクル数又は時
間を計測した。この結果を表1に示す。
(2) Among the IC chips mounted in (1), those mounted at 250 kg / cm 2 on plated bumps and those mounted at 1000 kg / cm 2 on stud bumps were subjected to a heat shock test (−55 ° C. 125
° C) and PCT test (121 ° C, 2 atm, humidity 100)
%), And the number of cycles or time until conduction was lost was measured. Table 1 shows the results.

【0034】[0034]

【表1】 実施例1 比較例1 比較例2 ICチッフ゜のハ゛ンフ゜ メッキ スタット゛ メッキ スタット゛ メッキ スタット゛ 圧力条件 100kg/cm2以下 ○-△ ○ ○ ○ ○ × 250 ○ ○ ○-△ ○ × × 500 ○ ○ × ○-△ × × 1000 ○ ○ × × − − 2000 − ○ − × − − 3000 − × − × − − 信頼性評価 ヒートショック 250kg/cm2 >1000cyc − >1000cyc − <500cyc − 1000kg/cm2 − >1000cyc − 750cyc − <500cyc PCT 250kg/cm2 >300hr − 100hr − <100hr − 1000kg/cm2 − >300hr − 100hr − <100r [Table 1] Example 1 Comparative example 1 Comparative example 2 IC chip bump plating stat メ ッ キ plating stat メ ッ キ plating stat ゛ Pressure condition 100 kg / cm 2 or less ○-△ ○ ○ ○ ○ × 250 ○ ○ ○-△ ○ × × 500 ○ ○ × ○ - △ × × 1000 ○ ○ × × - - 2000 - ○ - × - - 3000 - × - × - - reliability evaluation heat shock 250kg / cm 2> 1000cyc -> 1000cyc - <500cyc - 1000kg / cm 2 - > 1000cyc - 750cyc - <500cyc PCT 250kg / cm 2> 300hr - 100hr - <100hr - 1000kg / cm 2 -> 300hr - 100hr - <100r

【0035】表1から、実施例1の導電性粒子は比較例
1及び2の金属メッキプラスチック粒子に比して加圧力
を高めてもつぶれにくいことがわかる。また、実施例1
の導電性粒子を用いたACFによると、ICチップを基
板に実装した後の接続信頼性を向上させられることがわ
かる。
From Table 1, it can be seen that the conductive particles of Example 1 are harder to be crushed by increasing the pressing force as compared with the metal-plated plastic particles of Comparative Examples 1 and 2. Example 1
According to the ACF using the conductive particles, the connection reliability after mounting the IC chip on the substrate can be improved.

【0036】参考例 表2に示す4種の市販の粒子にNi/Auメッキを施し
た導電性粒子ついて、圧縮ひずみを島津製作所製微少圧
縮試験器により調べた。その結果を図3に示す。また、
圧縮変形量が10%あるいは20%となったときの圧縮
荷重を表2に示す。
REFERENCE EXAMPLE Four kinds of commercially available particles shown in Table 2 were subjected to Ni / Au plating on the conductive particles, and the compression strain was examined with a micro compression tester manufactured by Shimadzu Corporation. The result is shown in FIG. Also,
Table 2 shows the compressive load when the amount of compressive deformation is 10% or 20%.

【0037】これらの結果から、ポリスチレン粒子が
0.5g以下でつぶれて回復せず、またベンゾグアナミ
ン粒子が2.0g以下でつぶれて回復しないのに対し、
シリカコンポジット粒子は3g程度までつぶれず、これ
らプラスチック粒子に比べると硬質で加圧に耐えること
がわかる。また、シリカ粒子に比べると軟質であること
がわかる。
From these results, it can be seen that polystyrene particles crushed at 0.5 g or less did not recover and benzoguanamine particles crushed at 2.0 g or less did not recover.
The silica composite particles did not break down to about 3 g, indicating that they were harder and more resistant to pressure than these plastic particles. Further, it is understood that the particles are softer than the silica particles.

【0038】[0038]

【表2】 図3中 圧縮荷重(gf) 破壊荷重の符号 圧縮変形量10% 20% (gf) ○: ホ゜リスチレン粒子(日本セ゛オン,ZFM080) 0.15 0.22 0.3 □: ヘ゛ンソ゛ク゛アナミン粒子(日本触媒,エホ゜スターGP-H) 0.24 0.22 1.9 △: シリカ粒子(触媒化成,真絲球SW) 1.59 4.0 8.6 ◆: シリカコンホ゜シ゛ット粒子(日本触媒,リクリスター) 0.23 0.56 3.5 [Table 2] In Fig. 3 Compressive load (gf) Sign of compressive deformation of fracture load 10% 20% (gf) ○: Polystyrene particles (Nippon Seion, ZFM080) 0.15 0.22 0.3 1.9 △: Silica particles (Catalyst Chemical Co., Shinshi Ball SW) 1.59 4.0 8.6 ◆: Silica composite particles (Nippon Shokubai, Lichlister) 0.23 0.56 3.5

【0039】[0039]

【発明の効果】本発明の導電性粒子を用いた異方性導電
接着剤で端子間の接続を行うことにより、接続すべき端
子間の間隔に広狭がある場合でも良好に接続することが
可能となる。
By connecting the terminals with an anisotropic conductive adhesive using the conductive particles of the present invention, good connection can be achieved even when the distance between the terminals to be connected is wide or narrow. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性導電接着剤用導電性粒子の断面
図である。
FIG. 1 is a cross-sectional view of the conductive particles for an anisotropic conductive adhesive of the present invention.

【図2】本発明の導電性粒子を用いた異方性導電接着剤
によりICチップを配線基板に実装した実装構造の断面
図である。
FIG. 2 is a cross-sectional view of a mounting structure in which an IC chip is mounted on a wiring board with an anisotropic conductive adhesive using conductive particles of the present invention.

【図3】種々の粒子の加圧力と圧縮変形量との関係図で
ある。
FIG. 3 is a diagram showing the relationship between the pressing force of various particles and the amount of compressive deformation.

【図4】従来の異方性導電接着剤によりICチップを配
線基板に実装した実装構造の断面図である。
FIG. 4 is a cross-sectional view of a mounting structure in which an IC chip is mounted on a wiring board using a conventional anisotropic conductive adhesive.

【図5】従来の異方性導電接着剤によりICチップを配
線基板に実装した実装構造の断面図である。
FIG. 5 is a cross-sectional view of a mounting structure in which an IC chip is mounted on a wiring board using a conventional anisotropic conductive adhesive.

【符号の説明】[Explanation of symbols]

1 ICチップ 2 端子(バンプ) 3 多層基板 4 配線端子 10 絶縁性接着剤 11 従来の導電性粒子 12 本発明の導電性粒子 13 シリカコンポジット粒子(核材) 14 金属被膜 DESCRIPTION OF SYMBOLS 1 IC chip 2 Terminal (bump) 3 Multilayer board 4 Wiring terminal 10 Insulating adhesive 11 Conventional conductive particle 12 Conductive particle of the present invention 13 Silica composite particle (nuclear material) 14 Metal coating

フロントページの続き (72)発明者 武市 元秀 栃木県鹿沼市さつき町12−3 ソニーケミ カル株式会社内 Fターム(参考) 4J040 DB011 DB031 DF041 HA066 HA296 HA306 HC25 JB10 KA03 KA07 KA32 NA20 5G301 DA05 DA06 DA10 DA29 DA57 DD03 Continued on the front page (72) Inventor Motohide Takeichi 12-3 Satsukicho, Kanuma-shi, Tochigi F-term (reference) in Sony Chemical Corporation 4J040 DB011 DB031 DF041 HA066 HA296 HA306 HC25 JB10 KA03 KA07 KA32 NA20 5G301 DA05 DA06 DA10 DA29 DA57 DD03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカコンポジット粒子と、それを被覆
する金属被膜からなることを特徴とする異方性導電接着
剤用導電性粒子。
1. A conductive particle for an anisotropic conductive adhesive, comprising silica composite particles and a metal coating covering the silica composite particles.
【請求項2】 シリカコンポジット粒子の20%変位時
の圧縮反発力が、0.35gf〜3.5gfである請求
項1記載の異方性導電接着剤用導電性粒子。
2. The conductive particles for an anisotropic conductive adhesive according to claim 1, wherein the silica composite particles have a compression repulsion at a displacement of 20% of 0.35 gf to 3.5 gf.
【請求項3】 シリカコンポジット粒子が、シリカと、
ジビニルベンゼン、、スチレン、アクリル又はベンゾグ
アナミンとを反応させ、造粒した粒子である請求項1又
は2記載の異方性導電接着剤用導電性粒子。
3. The method according to claim 1, wherein the silica composite particles comprise silica and
The conductive particles for an anisotropic conductive adhesive according to claim 1 or 2, wherein the particles are granulated by reacting divinylbenzene, styrene, acrylic or benzoguanamine.
【請求項4】 金属被膜上に絶縁性樹脂層が設けられて
いる請求項1〜3のいずれかに記載の異方性導電接着剤
用導電性粒子。
4. The conductive particles for an anisotropic conductive adhesive according to claim 1, wherein an insulating resin layer is provided on the metal film.
JP10239024A 1998-07-16 1998-08-25 Conductive particle for anisotropic conductive adhesive Pending JP2000090727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10239024A JP2000090727A (en) 1998-07-16 1998-08-25 Conductive particle for anisotropic conductive adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20215398 1998-07-16
JP10-202153 1998-07-16
JP10239024A JP2000090727A (en) 1998-07-16 1998-08-25 Conductive particle for anisotropic conductive adhesive

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003032730A Division JP2003308728A (en) 1998-07-16 2003-02-10 Conductive particle for anisotropic conductive adhesive

Publications (1)

Publication Number Publication Date
JP2000090727A true JP2000090727A (en) 2000-03-31

Family

ID=26513212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239024A Pending JP2000090727A (en) 1998-07-16 1998-08-25 Conductive particle for anisotropic conductive adhesive

Country Status (1)

Country Link
JP (1) JP2000090727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045851A1 (en) * 2003-11-06 2005-05-19 Cheil Industries Inc. Insulated conductive particles and an anisotropic conductive film containing the particles
US7504331B2 (en) 2005-07-27 2009-03-17 Palo Alto Research Center Incorporated Method of fabricating self-assembled electrical interconnections
US7525194B2 (en) 2005-07-27 2009-04-28 Palo Alto Research Center Incorporated System including self-assembled interconnections

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045851A1 (en) * 2003-11-06 2005-05-19 Cheil Industries Inc. Insulated conductive particles and an anisotropic conductive film containing the particles
US7504331B2 (en) 2005-07-27 2009-03-17 Palo Alto Research Center Incorporated Method of fabricating self-assembled electrical interconnections
US7525194B2 (en) 2005-07-27 2009-04-28 Palo Alto Research Center Incorporated System including self-assembled interconnections

Similar Documents

Publication Publication Date Title
JP3379456B2 (en) Anisotropic conductive adhesive film
JP3296306B2 (en) Anisotropic conductive adhesive and adhesive film
KR100290993B1 (en) Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
US7638876B2 (en) Bumpless semiconductor device
KR20010085434A (en) Anisotropic conductive adhesive film
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
US6426021B2 (en) Anisotropically electroconductive adhesive material and connecting method
JP3624818B2 (en) Anisotropic conductive connection material, connection body, and manufacturing method thereof
KR100694529B1 (en) Conductive particle and adhesive agent
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP3966686B2 (en) Connecting material
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP3486346B2 (en) Bare chip mounting structure
JP2000090727A (en) Conductive particle for anisotropic conductive adhesive
JP2003308728A (en) Conductive particle for anisotropic conductive adhesive
JP5210236B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JPS63110506A (en) Anisotropic conducting sheet
JPH087658A (en) Anisotropic conductive adhesive film
JPS608377A (en) Anisotropically electrically-conductive adhesive
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JPH11219982A (en) Conductive particle and anisotropic conductive adhesive agent provided therewith
JPH09147928A (en) Connecting member
JPH08148210A (en) Connection member
JP4155470B2 (en) Electrode connection method using connecting members
JPH0636613A (en) Joint material for electronic parts and electronic equipment using the material