JP2000081607A - Matrix type liquid crystal display device - Google Patents

Matrix type liquid crystal display device

Info

Publication number
JP2000081607A
JP2000081607A JP10251398A JP25139898A JP2000081607A JP 2000081607 A JP2000081607 A JP 2000081607A JP 10251398 A JP10251398 A JP 10251398A JP 25139898 A JP25139898 A JP 25139898A JP 2000081607 A JP2000081607 A JP 2000081607A
Authority
JP
Japan
Prior art keywords
temperature
liquid crystal
means
signal
crystal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10251398A
Other languages
Japanese (ja)
Inventor
Takashi Hanaki
Naoki Matsumoto
Koji Ogusu
幸治 小楠
直樹 松本
孝史 花木
Original Assignee
Denso Corp
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, 株式会社デンソー filed Critical Denso Corp
Priority to JP10251398A priority Critical patent/JP2000081607A/en
Publication of JP2000081607A publication Critical patent/JP2000081607A/en
Application status is Granted legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To meticulously suppress the luminance unevenness based on the temp. unevenness within the liquid crystal panel of a matrix type liquid crystal display device. SOLUTION: A microcomputer 70 estimates the temps. by every pixel of the liquid crystal panel 10 in accordance with the temps. detected by respective temp. sensors 60a to 60e, calculates the inclination and segments of the gradient linear equation by every pixel stored in a ROM 80 in accordance with the estimated temp. based on the inclination and segments and stores the same in a RAM 90. A microcomputer 110 of a control circuit 100 corrects the actual intensity of image data signals so as to attain the target intensity at the average temp. value of the temps. detected by the respective temp. sensors 60a to 60e, by every pixel in accordance with the temps. detected by respective temp. sensors 60a to 60e and the estimated temps. of very pixel.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、反誘電性液晶等のスメクチック液晶やこのスメクチック液晶に類似した温度依存性を有する液晶を用いた液晶パネルを採用してなるマトリクス型液晶表示装置に関する。 The present invention relates to relates to a matrix type liquid crystal display device formed by employing a liquid crystal panel using liquid crystal having a smectic liquid crystal and a temperature dependence similar to the smectic liquid crystal such as antiferroelectric liquid crystal.

【0002】 [0002]

【従来の技術】従来、この種のマトリクス型液晶表示装置としては、特開平5−119746号公報にて示すように、反強誘電性液晶を用いた液晶パネルを有するものがある。 Conventionally, as this type of matrix type liquid crystal display device, as shown in Japanese Laid-Open 5-119746, JP those having a liquid crystal panel using an antiferroelectric liquid crystal. ここで、当該液晶パネルは、複数条の走査電極、複数条の信号電極及び反強誘電性液晶により構成する複数のマトリクス状画素を有する。 Here, the liquid crystal panel has a plurality of matrix pixels constituting plural rows of scanning electrodes, the signal electrodes and the anti-ferroelectric liquid crystal of plural rows.

【0003】 [0003]

【発明が解決しようとする課題】しかし、上記液晶表示装置において、液晶パネル内の温度は、当該液晶パネルの表示動作途中にてばらつくため、反強誘電性液晶の応答特性が、液晶パネル内の反強誘電性液晶の液晶部分の位置によって異なる。 [SUMMARY OF THE INVENTION However, in the liquid crystal display device, the temperature in the liquid crystal panel, since the variation in the middle display operation of the liquid crystal panel, the response characteristics of the anti-ferroelectric liquid crystal, in the liquid crystal panel It varies depending on the position of the liquid crystal portion of the anti-ferroelectric liquid crystal. このため、液晶パネルの表示輝度が当該液晶パネルの表示面内の位置によってばらつくこととなる。 Therefore, the display luminance of the liquid crystal panel is to vary the position in the display surface of the liquid crystal panel. このことは液晶パネルの表示に輝度むらを生ずることを意味する。 This means that the produce uneven brightness on the display of the liquid crystal panel.

【0004】これに対しては、特公平6−1310号公報や特公平6−1311号公報にて示すような液晶表示装置がある。 [0004] For this, there is a liquid crystal display device as shown in KOKOKU 6-1310 and JP fair 6-1311 JP. この液晶表示装置では、温度センサを液晶パネルに取り付けて、この液晶パネルの温度を温度センサにより計測し、この計測温度に基づき反強誘電性液晶への印加電圧を変化させることで、温度による液晶パネルの全体の輝度変動を補正するようにしている。 In this liquid crystal display device, by attaching a temperature sensor to the liquid crystal panel, the temperature of the liquid crystal panel is measured by a temperature sensor, by varying the voltage applied to the antiferroelectric liquid crystal on the basis of the measured temperature, the liquid crystal by the temperature and it corrects the overall brightness variations in the panel.

【0005】しかし、この液晶パネルでは、反強誘電性液晶全体が同じ温度であると仮定しているため、液晶パネル内の温度むらに起因する輝度むらの発生を解消することができない。 However, in this liquid crystal panel, since the entire anti-ferroelectric liquid crystal is assumed to be the same temperature, it is impossible to eliminate the occurrence of luminance unevenness caused by uneven temperature in the liquid crystal panel. これに対しては、第2507713号特許公報に示すような液晶表示装置が提案されている。 Contrast is shown in Patent Publication No. 2507713 such a liquid crystal display device is proposed.
この液晶表示装置では、液晶パネル内の温度むらを補正する手段として、液晶パネルの複数箇所の温度を計測することで液晶パネルの複数の領域の温度分布を推定し、 In this liquid crystal display device, as a means for correcting the temperature unevenness in the liquid crystal panel, to estimate the temperature distribution of a plurality of regions of the liquid crystal panel by measuring the temperature of a plurality of positions of the liquid crystal panel,
推定した各温度に基づき上記領域毎に走査電圧と信号電圧の各パルス幅を変更することで、温度むらに起因する輝度むらの発生を抑制するようにしている。 Each pulse width of the scanning voltage for each of the regions and the signal voltage on the basis of the estimated temperature by changing the, so as to suppress the occurrence of luminance unevenness caused by uneven temperature.

【0006】しかし、この液晶表示装置では、上記複数の領域は、液晶パネルの表示面を4分割してなる4領域にすぎない。 However, in this liquid crystal display device, the plurality of regions is only 4 region formed by 4 dividing the display surface of the liquid crystal panel. このため、上記パルス幅の変更は、当該4 Therefore, change of the pulse width, the 4
領域の各々に対応してなされ、その結果、温度むらに起因する輝度補正を大雑把に行うことなる。 Made to correspond to each region, it made possible perform roughly the luminance correction due to temperature unevenness. 従って、上記4領域毎の輝度むら補正よりもさらにきめ細かな輝度むら補正を行うことができないという不具合が生ずる。 Therefore, a problem that it is not possible to perform more fine uneven luminance correction than the luminance non-uniformity correction for the 4 each region occurs.

【0007】そこで、本発明は、以上のようなことに対処するため、マトリクス型液晶表示装置において、その液晶パネル内の温度むらに基づく輝度むらの発生をきめ細かく抑制することを目的とする。 [0007] Therefore, the present invention is to cope with the above, the matrix liquid crystal display device, and an object thereof is to finely suppress the occurrence of luminance unevenness based on the temperature unevenness in the liquid crystal panel.

【0008】 [0008]

【課題を解決するための手段】上記課題の解決にあたり、請求項1に記載の発明によれば、マトリクス型液晶表示装置は、複数条の走査電極(Y1乃至Yn)と、複数条の信号電極(X1乃至Xm)と、これら複数条の走査電極と複数条の信号電極との間に設けられて当該各複数条の走査電極及び信号電極と共に複数のマトリクス状画素(G11乃至Gmn)を構成する液晶(10c)とを備える液晶パネル(10)と、画像データ信号に基づき信号電圧を発生する信号電圧発生手段(100)と、 Upon solving the above problems Means for Solving the Problems] According to the invention described in claim 1, matrix type liquid crystal display device includes a plural rows of scan electrodes (Y1 to Yn), plural rows signal electrodes and (X1 to Xm), constitutes a plurality of matrix pixels (G11 to Gmn) provided with scanning electrodes and signal electrodes of the respective plural rows between the scan electrodes and the plural rows of the signal electrodes of the plural rows a liquid crystal (10c) liquid crystal panel (10) and a signal voltage generating means for generating a signal voltage based on the image data signal (100),
複数条の走査電極を走査電圧の印加により駆動制御する走査電極駆動制御手段(20、40)と、複数条の信号電極を前記信号電圧の印加により駆動制御する信号電極駆動制御手段(30、50)とを備え、走査電極駆動制御手段及び信号電極駆動制御手段の両駆動制御に応じて液晶パネルに表示させる。 A scan electrode driving control means for driving and controlling the scanning electrodes of plural rows by the application of the scan voltage (20, 40), the signal electrode driving control means for driving and controlling the signal electrodes of plural rows by the application of the signal voltage (30, 50 ) and a, to be displayed on the liquid crystal panel in response to both the drive control of the scan electrode driving control means and the signal electrode driving control means.

【0009】そして、当該液晶表示装置は、液晶パネルの少なくとも一つの位置の温度を検出する温度検出手段(60a乃至60e)と、この温度検出手段の検出温度に基づき液晶パネルの所定画素領域毎の温度を推定する温度推定手段(210)とを備え、信号電圧発生手段が、温度検出手段の検出温度及び温度推定手段による上記所定画素領域毎の推定温度に基づき画像データ信号の実際の強度を上記所定画素領域毎に液晶パネルの所定温度における目標強度となるように補正する補正手段(8 [0009] Then, the liquid crystal display device includes a temperature detection means for detecting a temperature of at least one position of the liquid crystal panel (60a to 60e), the predetermined pixel each region of the liquid crystal panel based on the detected temperature of the temperature detecting means comprising a temperature and estimating means (210) for estimating the temperature, the signal voltage generating means, the actual intensity of the image data signal based on the estimated temperature of the predetermined pixel each region according to the detected temperature and the temperature estimating means of the temperature detecting means correction for correcting section so that the target strength at a given temperature of the liquid crystal panel for each predetermined pixel area (8
0、90、240、250、320、330)を具備し、この補正手段による補正画像データ信号に基づき信号電圧を発生する。 0,90,240,250,320,330) comprises a, for generating a signal voltage based on the corrected image data signals by the correction means.

【0010】このように、補正手段が、温度検出手段の検出温度及び温度推定手段による上記所定画素領域毎の推定温度に基づき画像データ信号の実際の強度を上記所定画素領域毎に液晶パネルの所定温度における目標強度となるように補正する。 [0010] Thus, the correction means, the predetermined liquid crystal panel of the actual intensity of the image data signal based on the estimated temperature of the predetermined pixel each region according to the detected temperature and the temperature estimating means of the temperature detection means for each of the predetermined pixel area corrected so that the target strength at temperature. このことは、液晶パネルの輝度が所定画素領域毎にきめ細かく補正されることを意味する。 This means that the brightness of the liquid crystal panel is finely corrected for each predetermined pixel area.

【0011】従って、液晶パネルの温度分布にバラツキがあっても、これに影響されることなく、液晶パネルの表示面はその全面に亘り上記所定温度における輝度に常に良好に維持される。 Accordingly, even if there are variations in the temperature distribution of the liquid crystal panel, without being influenced by this, the display surface of the liquid crystal panel is always favorably maintained in the luminance in the predetermined temperature for its entire surface. その結果、液晶パネルの表示面における温度むらに影響されることなく、液晶パネルの輝度むらを良好になくすることができる。 As a result, without being affected by the temperature unevenness in the display surface of the liquid crystal panel, the brightness unevenness of the liquid crystal panel can be satisfactorily eliminated.

【0012】なお、上記所定画素領域を画素毎とすれば、上記作用効果はより一層きめ細かく達成され得る。 [0012] Incidentally, if the predetermined pixel area and each pixel, the operational effects can more be more finely achieved.
また、請求項2に記載の発明によれば、マトリクス型液晶表示装置は、複数条の走査電極(Y1乃至Yn)と、 Further, according to the invention described in claim 2, matrix type liquid crystal display device includes a plural rows of scan electrodes (Y1 to Yn),
複数条の信号電極(X1乃至Xm)と、これら複数条の走査電極と複数条の信号電極との間に設けられて当該各複数条の走査電極及び信号電極と共に複数のマトリクス状画素(G11乃至Gmn)を構成する温度依存性の高い特性の液晶(10c)とを備える液晶パネル(10) And plural rows of signal electrodes (X1 to Xm), a plurality of matrix pixels (G11 to provided with scanning electrodes and signal electrodes of the respective plural rows between the scan electrodes and the plural rows of the signal electrodes of the plural rows the liquid crystal temperature-dependent highly characteristic constituting the gmn) (10c) and a liquid crystal panel (10)
と、画像データ信号に基づき信号電圧を発生する信号電圧発生手段(100)と、複数条の走査電極を走査電圧の印加により駆動制御する走査電極駆動制御手段(2 When a signal voltage generating means for generating a signal voltage based on the image data signal (100), the scan electrode driving control means for driving and controlling the scanning electrodes of plural rows by the application of the scan voltage (2
0、40)と、複数条の信号電極を信号電圧の印加により駆動制御する信号電極駆動制御手段(30、50)とを備え、走査電極駆動制御手段及び信号電極駆動制御手段の両駆動制御に応じて液晶パネルに表示させる。 And 0,40), and a signal electrode driving control means for driving and controlling the application of a signal voltage a signal electrode of plural rows (30, 50), both the drive control of the scan electrode driving control means and the signal electrode driving control means depending to be displayed on the liquid crystal panel.

【0013】そして、当該液晶表示装置は、液晶パネルの少なくとも一つの位置の温度を検出する温度検出手段(60a乃至60e)と、この温度検出手段の検出温度に基づき走査電圧及び信号電圧の各振幅を変更する変更手段(230)と、温度検出手段の検出温度に基づき液晶パネルの所定画素領域毎の温度を推定する温度推定手段(210)とを備え、走査電極駆動制御手段及び信号電極駆動制御手段が走査電圧及び信号電圧を変更手段による変更振幅でもって印加し、信号電圧発生手段が、温度検出手段の検出温度及び温度推定手段による上記所定画素領域毎の推定温度に基づき画像データ信号の実際の強度を上記所定画素領域毎に液晶パネルの所定温度における目標強度となるように補正する補正手段(80、9 [0013] Then, the liquid crystal display device, at least a temperature detecting means for detecting the temperature of one position (60a to 60e), each amplitude of the scanning voltage and the signal voltage based on the detected temperature of the temperature sensing means of the liquid crystal panel changing the the changing means (230) comprises a temperature and estimating means (210) for estimating the temperature of the predetermined pixel each region of the liquid crystal panel based on the temperature detected by the temperature detection means, the scan electrode driving control means and the signal electrode driving control means is applied with a modified amplitude of the change means the scanning voltage and the signal voltage, the signal voltage generating means, the actual image data signal based on the estimated temperature of the predetermined pixel each region according to the detected temperature and the temperature estimating means of the temperature detecting means correcting means for correcting the intensity of such a target intensity at a given temperature of the liquid crystal panel for each of the predetermined pixel area (80,9
0、240、250、320、330)を具備し、この補正手段による補正画像データ信号に基づき信号電圧を発生する。 0,240,250,320,330) comprises a, for generating a signal voltage based on the corrected image data signals by the correction means.

【0014】これによれば、上記変更手段の採用のもと、補正手段が、温度検出手段の検出温度及び温度推定手段による上記所定画素領域毎の推定温度に基づき画像データ信号の実際の強度を上記所定画素領域毎に液晶パネルの所定温度における目標強度となるように補正する。 According to this, based on the adoption of the changing means, the correction means, the actual intensity of the image data signal based on the estimated temperature of the predetermined pixel each region according to the detected temperature and the temperature estimating means of the temperature detecting means corrected so that the target strength at a given temperature of the liquid crystal panel for each of the predetermined pixel area. これにより、液晶が温度依存性の高いものであっても、請求項1に記載の発明と同様の作用効果を達成できる。 Thus, even those liquid crystal high temperature dependence can be achieved the same effect as the invention described in claim 1.

【0015】また、請求項3に記載の発明によれば、請求項1又は2に記載の発明において、補正手段は、画像データ信号の実際の強度と目標強度との関係を表す直線式の傾き及び切片を上記所定画素領域毎の推定温度と液晶パネルの所定温度との温度差に応じてデータとして予め記憶する第1記憶手段(80)と、この第1記憶手段の記憶データに基づき上記所定画素領域毎の推定温度に応じて上記傾き及び切片を算出して補正データとして記憶する第2記憶手段(240、250、90)とを備えて、この第2記憶手段の補正データに基づき画像データ信号の実際の強度を上記所定画素領域毎に目標強度に補正する。 [0015] According to the invention described in claim 3, in the invention of claim 1 or 2, correction means, the slope of the linear equation representing the relationship between the actual intensity and the target intensity of the image data signal and a first storage means for storing in advance as data in accordance with sections on the temperature difference between the predetermined temperature of the estimated temperature and the liquid crystal panel for each said predetermined pixel area (80), the predetermined based on the stored data of the first storage means a second memory means (240,250,90) for storing the correction data by calculating the slope and intercept in accordance with the estimated temperature of each pixel area, the image data based on the corrected data of the second storage means the actual intensity of the signal is corrected to a target intensity for each of the predetermined pixel area.

【0016】これにより、請求項1又は2に記載の発明の作用効果をより一層確実に達成できる。 [0016] Thus, it can be further reliably achieve the effect of the invention according to claim 1 or 2.

【0017】 [0017]

【発明の実施の形態】以下、本発明の一実施形態を図面に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention with reference to the accompanying drawings. 図1は、本発明に係るマトリクス型液晶表示装置の一実施形態を示すブロック図である。 Figure 1 is a block diagram illustrating one embodiment of a matrix type liquid crystal display device according to the present invention.
当該液晶表示装置は液晶パネル10を備えており、この液晶パネル10は、図2にて示すごとく、両電極基板1 The liquid crystal display device includes a liquid crystal panel 10, the liquid crystal panel 10, as shown in FIG. 2, the electrode substrates 1
0a、10bの間に反強誘電性液晶10cを封入するとともに、両電極基板10a、10bの各外表面に各偏光板10d、10eを貼り付けて構成されている。 0a, together enclosing an antiferroelectric liquid crystal 10c between 10b, the electrode substrates 10a, the polarizing plates 10d to each outer surface of the 10b, it is configured Paste 10e.

【0018】電極基板10aは、透明なガラス基板11 The electrode substrate 10a is a transparent glass substrate 11
を有しており、このガラス基板11の内表面には、m条のカラーフィルタ層12(R、G、Bの各層からなる)、m条の透明電極13及び配向膜14が順次形成されている。 The has, on the inner surface of the glass substrate 11, a color filter layer 12 of Article m (R, made G, the respective layers of B), the transparent electrode 13 and an orientation film 14 of Article m are sequentially formed there. 一方、電極基板10bは、透明なガラス基板15を有しており、このガラス基板15の内表面には、 On the other hand, the electrode substrate 10b has a transparent glass substrate 15, on the inner surface of the glass substrate 15,
n条の透明電極16及び配向膜17が順次形成されている。 Transparent electrodes 16 and an orientation film 17 of the n strip are successively formed.

【0019】ここで、m条の透明電極13及びn条の透明電極16は、反強誘電性液晶10cと共に、図3にて例示するようなm×n個の画素G11、G12、…、G [0019] Here, the transparent electrode 16 of the transparent electrodes 13 and n Article Article m, together with anti-ferroelectric liquid crystal 10c, m × n pieces of pixels G11, G12 as illustrated in FIG. 3, ..., G
mnを形成するように、互いに交差して配置されている。 So as to form a mn, they are arranged to cross each other. なお、各カラーフィルタ層12は各ブラックマスク層(図示しない)と交互に設けられている。 Each color filter layer 12 is provided alternately with each black mask layer (not shown). また、m条の透明電極13は、図1にて示すm条の信号電極X1乃至Xmに相当し、一方、n条の透明電極16は、図1にて示すn条の走査電極Y1乃至Ynに相当する。 Further, the transparent electrode 13 of the Article m corresponds to the signal electrodes X1 to Xm of Article m shown in FIG. 1, while the transparent electrode 16 of the n shall, scan electrodes Y1 to Yn of the n strip shown in FIG. 1 It corresponds to.

【0020】なお、両偏光板10d、10eは、その各光軸をクロスニコルの位置に設定するように、貼り付けられている。 [0020] Incidentally, both polarizing plates 10d, 10e so as to set the optical axes to the position of crossed Nicols is stuck. これにより、反強誘電性液晶10cは、その反強誘電状態にて消光する。 Accordingly, the antiferroelectric liquid crystal 10c is quenched at its antiferroelectric state. なお、両電極基板10 Incidentally, the electrode substrates 10
a、10bの間隔は、図示しないスペーサにより、例えば、2μmに均一に保持されている。 a, 10b interval of, by a spacer (not shown), for example, are uniformly retained in the 2 [mu] m. また、反強誘電性液晶10cとしては、例えば、特開平5−119746 As the antiferroelectric liquid crystal 10c, for example, JP-A-5-119746
号公報に記載されているような4−(1−トリフルオルメチルヘプトキシカルボルフェニル)−4'−オクチルオキシカルベニルフェニル−4−カルボキシレートといった液晶組成物を用いる。 A liquid crystal composition such as JP, as described in 4- (1-trifluoromethyl-f script propoxycarbonyl Le phenyl) -4'-octyloxy carbenium sulfonyl-phenyl-4-carboxylate. なお、この種の反強誘電性液晶としては、反強誘電性液晶を複数混合した混合液晶、 As the antiferroelectric liquid crystal of this kind, a liquid crystal mixture of the antiferroelectric liquid crystal was a mixture of a plurality of,
或いは少なくとも1種類の反強誘電性液晶を含む混合液晶を用いてもよい。 Or it may be used mixed liquid crystal containing at least one anti-ferroelectric liquid crystal.

【0021】また、液晶表示装置は、走査電極駆動回路20及び信号電極駆動回路30を備えている。 Further, the liquid crystal display device includes a scan electrode driving circuit 20 and the signal electrode driving circuit 30. 走査電極駆動回路20は、電源回路40から書き込み電圧、保持電圧或いは消去電圧を走査電圧として入力される。 Scan electrode driving circuit 20, the write voltage from the power supply circuit 40, is input to the holding voltage or erase voltage as the scan voltage. そして、この走査電極駆動回路20は、コントロール回路1 Then, the scanning electrode driving circuit 20, the control circuit 1
00からの同期信号に基づき各走査電極Y1乃至Ynを線順次走査し、この走査に伴い、走査電極駆動回路20 The scanning electrodes Y1 to Yn on the basis of the sync signal from the 00 lines are sequentially scanned, with the scanning, the scanning electrode driving circuit 20
からの走査電圧を各走査電極Y1乃至Ynに順次印加する。 Sequentially applying a scanning voltage to the scanning electrodes Y1 to Yn from.

【0022】電源回路40は、後述するマイクロコンピュータ70により、走査電極駆動回路20へ付与すべき各電圧の最大値及び最小値を変更制御されて、このように変更制御した各電圧を走査電圧として走査電極駆動回路20に付与する。 The power supply circuit 40, a microcomputer 70 which will be described later, the maximum value and the minimum value of the voltage to be applied to the scanning electrode driving circuit 20 is changed controlled, the respective voltage thus change control as the scanning voltage applied to the scanning electrode driving circuit 20. 信号電極駆動回路30は、上記走査電圧のうちの書き込み電圧に同期してコントロール回路100からの補正画像データ信号(後述する)を電源回路50からの各電圧に応じて信号電圧として各信号電極X1乃至Xmに印加する。 Signal electrode driving circuit 30, the signal electrodes as the signal voltage according to the voltage from the power source circuit 50 the corrected image data signal (described later) from the control circuit 100 in synchronism with the write voltage of said scanning voltage X1 or applied to the Xm.

【0023】電源回路50は、後述するマイクロコンピュータ70により、信号電極駆動回路30へ付与すべき各電圧の最大値及び最小値を変更制御されて、このように変更制御した各電圧を信号電極駆動回路30に付与する。 The power supply circuit 50, a microcomputer 70 described later, is changed to control the maximum and minimum values ​​of each voltage to be applied to the signal electrode driving circuit 30, the signal electrode drive each voltage thus change control applied to the circuit 30. 温度センサ60a乃至60eは、液晶パネル10の温度を測定するためのもので、温度センサ60aは、液晶パネル10の電極基板10aの図1にて図示上縁左側隅角部に設けられて、当該上縁左側隅角部の温度を検出する。 Temperature sensors 60a to 60e are used to measure the temperature of the liquid crystal panel 10, the temperature sensor 60a is provided in the drawing on the edges left corner in Figure 1 of the electrode substrate 10a of the liquid crystal panel 10, the for detecting the temperature of the upper left corner.

【0024】温度センサ60bは、液晶パネル10の電極基板10aの図1にて図示上縁右側隅角部に設けられて、当該上縁右側隅角部の温度を検出する。 The temperature sensor 60b is provided in the drawing on the edge right corners in Figure 1 of the electrode substrate 10a of the liquid crystal panel 10, for detecting the temperature of the upper edge right corners. 温度センサ60cは、電極基板10aの図1にて図示下縁右側隅角部に設けられて、当該下縁右側隅角部の温度を検出する。 Temperature sensors 60c are provided on the illustrated lower edge right corners in Figure 1 of the electrode substrate 10a, for detecting the temperature of the lower edge right corners. 温度センサ60dは、電極基板10aの図1にて図示下縁左側隅角部に設けられて、当該下縁左側隅角部の温度を検出する。 Temperature sensor 60d is provided in the illustrated lower edge left corner in Figure 1 of the electrode substrate 10a, for detecting the temperature of the lower edge left corner. また、温度センサ60eは、電極基板10aの図1にて図示中央部に設けられて、当該中央部の温度を検出する。 The temperature sensor 60e is provided in the illustrated central portion in FIG. 1 of the electrode substrate 10a, for detecting the temperature of the central portion. なお、各温度センサ60a乃至60 Each temperature sensor 60a to 60
dは液晶パネル10の表示領域の外側に位置している。 d is located outside the display region of the liquid crystal panel 10.

【0025】マイクロコンピュータ70は、第1コンピュータプログラムを図4にて示すフローチャートに従い実行し、この実行中において、各温度センサ60a乃至60eの検出温度及び後述するROM80の記憶データに応じて両電源回路40、50の駆動に必要な演算処理及び補正データ(後述する)の書き込みに必要な処理をする。 The microcomputer 70 includes a first computer program running in accordance with the flowchart shown in FIG. 4, during this execution, both the power supply circuit in accordance with the stored data of the detected temperature and later to ROM80 of the temperature sensors 60a to 60e the processing required for writing processing and correction data necessary (described below) to drive the 40 and 50. なお、上記第1コンピュータプログラムは、マイクロコンピュータ70のROMに予め記憶されている。 Incidentally, the first computer program is previously stored in the ROM of the microcomputer 70.

【0026】ROM80には、走査電圧と平均温度(後述する)との関係を表す走査電圧−温度特性(図6にて符号P1参照)及び信号電圧と上記平均温度との関係を表す信号電圧−温度特性(図6にて符号P2参照)がデータとして予め記憶されている。 [0026] ROM80, the scanning voltage and the average temperature scanning voltage representing the relationship between (described below) - temperature characteristics (reference numeral P1 in Fig. 6) and the signal voltage and the signal voltage representing the relationship between the average temperature - (reference numeral P2 in FIG. 6) is previously stored as data temperature characteristics. また、ROM80には、画像データ信号の実際の階調度と目標階調度との関係を表す直線式(以下、階調度直線式という)の傾きと温度差(以下、温度差ΔTという)との関係を表す傾き−温度差特性(図7にて符号q参照)及び上記階調度直線式の切片と温度差ΔTとの関係を表す切片−温度差特性(図8にて符号Q参照)が予め記憶されている。 Further, the ROM 80, a linear equation representing the relationship between the actual gradient and the target gradient of the image data signal (hereinafter, floors that Furnishing linear equation) slope and temperature difference (hereinafter, referred to as the temperature difference [Delta] T) relationship between slope represents the - (reference numeral q in FIG. 7) temperature difference characteristics and the intercept represents the relationship between the sections and the temperature difference ΔT of the gradient linear equation - (reference numeral Q in FIG. 8) the temperature difference characteristic prestored It is.

【0027】ここで、本実施形態において上述のように階調度直線式の傾き及び切片、傾き−温度差特性及び切片−温度差特性を導入した根拠について説明する。 [0027] In the present embodiment the slope and intercept of the gradient linear equation as described above, the inclination - described grounds for the introduction of the temperature difference characteristic - Temperature difference characteristics and the intercept. 画像データ信号の階調度と液晶パネル10の表示面の輝度との関係を調べたところ、図9にて示すようなデータが得られた。 Examination of the relationship between the brightness of the display surface of the gradient and the liquid crystal panel 10 of the image data signals, data as depicted in FIG. 9 was obtained. ここで、液晶パネル10の温度が上記平均温度にあるときの階調度と輝度との関係は直線L1により表される。 Here, the relationship between the gradation and the luminance when the temperature of the liquid crystal panel 10 is in the average temperature is represented by a straight line L1. また、液晶パネル10の温度が上記平均温度よりも高いときの階調度と輝度との関係は直線L2により表される。 The temperature of the liquid crystal panel 10 is the relationship between the gradation and the luminance is higher than the average temperature is represented by a straight line L2. 一方、液晶パネル10の温度が上記平均温度よりも低いときの階調度と輝度との関係は直線L3により表される。 On the other hand, the temperature of the liquid crystal panel 10 is the relationship between the gradation and the luminance is lower than the average temperature is represented by a straight line L3.

【0028】これによれば、液晶パネル10の温度が上記平均温度よりも高いとき液晶パネル10の表示面の輝度は全体的に高くなることが分かる。 According to this, the luminance of the display surface of the liquid crystal panel 10 when the temperature is higher than the average temperature of the liquid crystal panel 10 it can be seen that overall increases. 一方、液晶パネル10の温度が上記平均温度よりも低いとき液晶パネル1 On the other hand, the liquid crystal panel 1 when the temperature of the liquid crystal panel 10 is lower than the average temperature
0の表示面の輝度は全体的に低くなることが分かる。 Brightness of the display surface of 0 is can be seen that overall low. 従って、液晶パネル10の表示面の輝度を、温度の変化とはかかわりなく、維持するようにするには、液晶パネル10の温度が上記平均温度にあるときの画像データ信号の実際の階調度と目標階調度との関係を図10にて示す直線Nにより特定する場合、液晶パネル10の温度が上記平均温度よりも高いときの階調度と輝度との関係が図10にて示す直線N1でもって特定され、一方、液晶パネル10の温度が上記平均温度よりも低いときの階調度と輝度との関係が図10にて示す直線N2でもって特定されるようにすればよいことが分かる。 Accordingly, the brightness of the display surface of the liquid crystal panel 10, regardless of changes in temperature, to maintain the actual gradient of the image data signal when the temperature of the liquid crystal panel 10 is in the above average temperature when specifying the straight line N that indicates the relationship between the target gradient in FIG. 10, the relationship between the gradation and the luminance when the temperature of the liquid crystal panel 10 is higher than the average temperature with a straight line N1 illustrated in FIG. 10 identified, whereas, the relationship between the gradation and the luminance when the temperature of the liquid crystal panel 10 is lower than the average temperature is understood that there may be as specified with a straight line N2 illustrated in FIG. 10.

【0029】ここで、上記目標階調度とは、画像データ信号の実際の階調度を、液晶パネル10の実際の温度と上記平均温度との間の温度差分だけ相殺するように補正した値を表す。 [0029] Here, the above-mentioned target gradient, the actual gradient of the image data signals, representative of the corrected value to offset only the temperature difference between the actual temperature and the average temperature of the liquid crystal panel 10 . また、各直線N、N1、N2は、液晶パネル10の温度をパラメータとする階調度直線式を特定する。 Further, each straight line N, N1, N2 identifies the gradient linear equation for the temperature of the liquid crystal panel 10 as a parameter. 即ち、この階調度直線式によれば、その傾き及び切片並びに画像データ信号の実際の階調度との関係で、 That is, according to this gradient linear equation, in relation to the actual gradient of the slope and intercept and image data signals,
液晶パネル10の実際の温度と上記平均温度との間の温度差ΔTに応じた画像データ信号の目標階調度を特定できることが分かる。 It can be seen that can identify the target gradient of the image data signal corresponding to the temperature difference ΔT between the actual temperature and the average temperature of the liquid crystal panel 10.

【0030】よって、上述した傾き−温度差特性q及び切片−温度差特性Qを予め求めてデータとしてROM8 [0030] Thus, the slope described above - the temperature difference characteristic q and intercept - as data obtained in advance the temperature difference characteristic Q ROM 8
0に記憶してある。 0 are stored in. RAM90には、一画面分の傾きと切片がデータとして繰り返し更新記憶されるようになっている。 The RAM 90, so that the slope and intercept of the one screen is repeatedly updated and stored as data. コントロール回路100は、マイクロコンピュータ110を備えており、このマイクロコンピュータ1 Control circuit 100 includes a microcomputer 110, the microcomputer 1
10は、第1コンピュータプログラムを図5にて示すフローチャートに従い実行し、この実行中において、同期信号(垂直同期信号VSYNC及び水平同期信号HSY 10, a first computer program running in accordance with the flowchart shown in FIG. 5, during this execution, the synchronization signal (vertical synchronization signal VSYNC and the horizontal synchronizing signal HSY
NC)、画像データ信号及びRAM90の記憶データに基づき信号電極駆動回路30の駆動に要する画像データ信号の補正処理を行う。 NC), performs correction processing of the image data signals required for driving the signal electrode driving circuit 30 based on the stored data of the image data signal and RAM 90.

【0031】このように構成した本実施形態において、 In the present embodiment configured as described above,
マイクロコンピュータ70が図4のフローチャートに従い第1コンピュータプログラムの実行を開始すれば、ステップ200において、各温度センサ60a乃至60e If the microcomputer 70 starts executing the first computer program in accordance with the flowchart of FIG. 4, in step 200, the temperature sensors 60a to 60e
の検出温度がディジタル変換されて入力される。 Detection temperature of the input is digitally converted. すると、ステップ210にて、液晶パネル10の表示面全体の温度分布が各温度センサ60a乃至60eの検出温度に基づき次のようにして推定される。 Then, at step 210, the temperature distribution of the entire display surface of the liquid crystal panel 10 is estimated as follows based on the detected temperature of the temperature sensors 60a to 60e.

【0032】まず、図11にて示すごとく、温度センサ60aの配置位置をXY直交座標面の原点(0、0)とする。 Firstly, as shown in FIG. 11, the arrangement position of the temperature sensor 60a as an origin of the XY orthogonal coordinate plane (0,0). ここで、液晶パネル10の電極基板10aの上縁及び左縁をそれぞれX軸及びY軸とする。 Here, the upper edge and the left edge of the electrode substrate 10a of the liquid crystal panel 10, respectively, and X-axis and Y-axis. なお、原点(0、0)は、画素G11(図3参照)の位置に対応する。 Note that the origin (0,0) corresponds to the position of the pixel G11 (see Fig. 3). これを前提に、温度センサ60bの配置位置を(X、Y)=(Xp、0)とし、温度センサ60cの配置位置を(X、Y)=(Xp、Yp)とし、温度センサ60dの配置位置を(X、Y)=(0、Yp)とし、温度センサ60eの配置位置を(X、Y)=(Xp/2、 Based on this premise, the position of the temperature sensor 60b (X, Y) = a (Xp, 0), the position of the temperature sensor 60c and (X, Y) = (Xp, Yp), the arrangement of the temperature sensor 60d position (X, Y) = (0, Yp) and to the arrangement position of the temperature sensor 60e (X, Y) = (Xp / 2,
Yp/2)とする。 Yp / 2) to.

【0033】ここで、(X、Y)を液晶パネル10の表示面上の任意の位置の座標とする。 [0033] Here, the (X, Y) coordinates of an arbitrary position on the display surface of the liquid crystal panel 10. また、(Xp、 In addition, (Xp,
0)、(Xp、Yp)及び(0、Yp)は、画素Gm 0), (Xp, Yp) and (0, Yp) is the pixel Gm
1、Gmn及びG1nの各位置に対応する。 1, corresponding to each position of Gmn and G1n. 以上のようなXY座標系のもと、液晶パネル10の表示面全体の温度分布を各温度センサ60a乃至60eの検出温度を用いて補間方法により推定する。 Original XY coordinate system as described above, it is estimated by interpolation method using the detected temperature of the temperature sensors 60a to 60e the temperature distribution of the entire display surface of the liquid crystal panel 10.

【0034】具体的には、各温度センサ60a乃至60 [0034] Specifically, each of the temperature sensors 60a to 60
eの検出温度をTa乃至Teで表すものとすると、各座標(0、0)、(Xp、0)及び(Xp/2、Yp/ When the detected temperature of e shall be represented by Ta to Te, the coordinates (0,0), (Xp, 0) and (Xp / 2, Yp /
2)を結ぶ三角領域1(図11参照)内の座標(X、 Connecting 2) Triangle 1 (see FIG. 11) of the coordinates (X,
Y)における温度T(X、Y)は、次の数1の式により与えられる。 Temperature in Y) T (X, Y) is given by the formula for a number 1.

【0035】 [0035]

【数1】 [Number 1] また、各座標(0、0)、(0、Yp)及び(Xp/ Moreover, each coordinate (0,0), (0, Yp) and (Xp /
2、Yp/2)を結ぶ三角領域2(図11参照)内の座標(X、Y)における温度T(X、Y)は、次の数2の式により与えられる。 2, Yp / 2) connecting the triangular region 2 (see FIG. 11) of the coordinates (X, temperature at Y) T (X, Y) is given by the formula for a number of 2.

【0036】 [0036]

【数2】 [Number 2] また、各座標(Xp、0)、(Xp、Yp)及び(Xp Moreover, each coordinate (Xp, 0), (Xp, Yp) and (Xp
/2、Yp/2)を結ぶ三角領域3(図11参照)内の座標(X、Y)における温度T(X、Y)は、次の数3 / 2, Yp / 2) Triangle 3 connecting (see Fig. 11) of the coordinates (X, Y) at the temperature T (X, Y), the number of the next 3
の式により与えられる。 It is given by the formula.

【0037】 [0037]

【数3】 [Number 3] また、各座標(Xp、Yp)、(0、Yp)及び(Xp Moreover, each coordinate (Xp, Yp), (0, Yp) and (Xp
/2、Yp/2)を結ぶ三角形域4(図11参照)内の座標(X、Y)における温度T(X、Y)は、次の数4 / 2, Yp / 2) triangles zone 4 connecting (see Fig. 11) of the coordinates (X, Y) at the temperature T (X, Y), the number of the next 4
の式により与えられる。 It is given by the formula.

【0038】 [0038]

【数4】 [Number 4] 以上述べた数1乃至数4の各式を用いて算出すれば、各温度センサ60a乃至60eの検出温度に応じて補間法により各三角領域における温度T(X、Y)を推定できる。 It is calculated using the equations of equations (1) through 4 described above, the temperature T (X, Y) of each triangular area by interpolation in accordance with the detected temperature of the temperature sensors 60a to 60e can be estimated.

【0039】このようにして温度分布が推定された後は、ステップ220において、各温度センサ60a乃至60eの検出温度の加算平均が上記平均温度に相当する温度平均値Taveとして算出される。 [0039] After the temperature distribution is estimated in this way, in step 220, the averaging of the detected temperature of the temperature sensors 60a to 60e is calculated as the average temperature Tave corresponding to the average temperature. ついで、ステップ230において、走査電圧及び信号電圧が、図6の走査電圧−温度特性及び信号電圧−温度特性に基づき上記平均温度に相当する温度平均値Taveに応じて決定される。 Next, in step 230, the scanning voltage and the signal voltage, the scan voltage of 6 - is determined according to the average temperature corresponds to the average temperature based on the temperature characteristics Tave - temperature characteristic and signal voltage. そして、走査電圧が電源回路40に出力されるとともに信号電圧が電源回路50に出力される。 The signal voltage is output to the power supply circuit 50 together with the scanning voltage is output to the power supply circuit 40.

【0040】これに伴い、電源回路40が走査電圧を複数の走査電極Y1乃至Ynに出力するとともに、電源回路50が信号電圧を複数の信号電圧X1乃至Xmに出力する。 [0040] Accordingly, with the power supply circuit 40 outputs the scanning voltage to the plurality of scan electrodes Y1 to Yn, the power supply circuit 50 outputs a signal voltage to the plurality of signal voltages X1 to Xm. その後、ステップ240において、上記階調度直線式の傾き及び切片が、傾き−温度差特性q(図7参照)及び切片−温度差特性Q(図8参照)に基づき液晶パネル10の表示面上の各座標位置の温度に応じて一画面分決定されて、ステップ250において、補正データとしてRAM90に記憶される。 Thereafter, in step 240, the slope and intercept of the gradient linear equation is slope - (see FIG. 7) Temperature difference characteristic q and intercept - temperature difference characteristic Q on the display surface of the liquid crystal panel 10 based on (see FIG. 8) is determined one screen in accordance with the temperature of each coordinate position, in step 250, it is stored in the RAM90 as the correction data.

【0041】また、コントロール回路100において、 [0041] In addition, in the control circuit 100,
マイクロコンピュータ110が同期信号に基づき図5のフローチャートに従い第2コンピュータプログラムの実行を開始すると、ステップ300にて画像データ信号がマイクロコンピュータ110に入力され。 When the microcomputer 110 starts executing the second computer program in accordance with the flow chart of basis Figure 5 on the synchronizing signal, the image data signal is input to the microcomputer 110 in step 300. すると、マイクロコンピュータ110は、ステップ310にて、同期信号に同期してRAM90内の一画面分の補正データを順次入力される。 Then, the microcomputer 110, at step 310, are sequentially input one screen of the correction data in the RAM90 in synchronism with the sync signal.

【0042】ここで、当該補正データは、液晶パネル1 [0042] Here, the correction data, the liquid crystal panel 1
0の表示面における各座標(X、Y)での傾き及び切片からなる。 Consisting slope and intercept at each coordinate (X, Y) on the display surface of the 0. また、画像データ信号の各階調度0乃至25 Further, each gradation of the image data signal 0 to 25
5は、各画素G11乃至Gmnの輝度に対応する。 5 corresponds to the luminance of each pixel G11 to Gmn. その後、ステップ320において、画像データ信号の目標階調度が、次の数5の階調度直線式に基づき、上記補正データに応じて算出される。 Thereafter, in step 320, the target gradient of the image data signal based on the gradient linear equation of the following equation (5), is calculated in accordance with the correction data.

【0043】 [0043]

【数5】m xy =Pxy・Mxy + Qxy ここで、数5の階調度直線式において、m xyは上記目標階調度を(X、Y)における値として表し、Mxyは(X、Y)における画像データ信号の実際の階調度を表す。 Equation ## where m xy = Pxy · Mxy + Qxy , in the number 5 of gradient linear equation, m xy represents the target gradient as a value in the (X, Y), Mxy is in (X, Y) It represents the actual gradient of the image data signals. また、Pxyは(X、Y)における傾きを表し、Q Further, Pxy represents slope at (X, Y), Q
xyは(X、Y)における切片を表す。 xy represents the intercept in (X, Y).

【0044】従って、液晶パネル10の表示面の一画面分の各(X、Y)における目標階調度m xyが、各座標(X、Y)での傾き及び切片に応じて数5の階調度直線式に基づき順次算出される。 [0044] Therefore, one screen for each (X, Y) of the display surface of the liquid crystal panel 10 is the target gradient m xy in the number 5 of gradient according to the inclination and intercept of the respective coordinates (X, Y) sequentially calculated based on the linear equation. すると、ステップ330において、各(X、Y)に対応する画像データ信号の階調度が、上記各目標階調度m xyに応じて順次補正される。 Then, in step 330, the (X, Y) is grayscales of the image data signal corresponding to, it is sequentially corrected in accordance with the each target gradient m xy.

【0045】そして、ステップ340において、同期信号が走査電極駆動回路20に出力されるとともに、目標階調度m xyに補正された画像データ信号が信号電圧として信号電圧駆動回路30に出力される。 [0045] Then, in step 340, along with the synchronization signal is output to the scanning electrode driving circuit 20, image data signals corrected to the target gradient m xy is output as the signal voltage to the signal voltage driving circuit 30. 以上のような処理に伴い、走査電極駆動回路20が、マイクロコンピュータ110からの同期信号に基づき各走査電極Y1乃至Ynを線順次走査し、この線順次走査に応じて電源回路40からの走査電圧を線順次走査された走査電極に印加する。 With the processing described above, the scan electrode driving circuit 20, and line-sequential scanning of the scanning electrodes Y1 to Yn on the basis of the sync signal from the microcomputer 110, the scan voltage from the power source circuit 40 in accordance with the line sequential scanning and it applies a line-sequential scanning by the scanning electrodes. 一方、信号電極駆動回路30が、電源回路50の電圧のもと、マイクロコンピュータ110からの信号電圧を信号電極X1乃至Xmに印加する。 On the other hand, the signal electrode driving circuit 30 is under the voltage of the power supply circuit 50, a signal voltage is applied from the microcomputer 110 to the signal electrodes X1 to Xm.

【0046】これに伴い、液晶パネル10は、走査電極駆動回路20からの走査電圧及び信号電極駆動回路30 [0046] Along with this, the liquid crystal panel 10, the scan voltage from the scanning electrode driving circuit 20 and the signal electrode driving circuit 30
からの信号電圧に応じてマトリクス駆動されて、画像データ信号の内容を表示する。 Is matrix driven in accordance with the signal voltage from, displaying the contents of the image data signals. この場合、画像データ信号は、その階調度にて、(X、Y)毎、即ち、画素毎に、 In this case, the image data signals at its gradient, (X, Y) each, that is, for each pixel,
液晶パネル10の温度分布推定値((X、Y)における推定値)と平均温度値Taveとの差をなくするように求めた各目標快調度m xyとなるように補正される。 Temperature distribution estimate of the liquid crystal panel 10 is corrected so that the target hitch degree m xy determined to eliminate the difference between the average temperature value Tave ((X, estimated value in Y)). このことは、液晶パネル10の輝度が画素毎にきめ細かく補正されることを意味する。 This means that the brightness of the liquid crystal panel 10 is finely corrected for each pixel.

【0047】従って、液晶パネル10の表示面において温度分布のバラツキがあっても、これに影響されることなく、反強誘電性液晶10cは上記平均温度値Tave [0047] Therefore, even if there is variation in the temperature distribution in the display surface of the liquid crystal panel 10, without being influenced by this, antiferroelectric liquid crystal 10c is the average temperature value Tave
における動作状態に維持され、その結果、液晶パネル1 Is maintained in the operating state in a result, the liquid crystal panel 1
0の表示面はその全面に亘り上記平均温度値Taveにおける輝度に常に良好に維持される。 The display surface of 0 is always favorably maintained in luminance at the average temperature value Tave over its entire surface. その結果、液晶パネル10の表示面における温度むらに影響されることなく、液晶パネル10の輝度むらを良好になくすることができる。 As a result, without being affected by the temperature unevenness in the display surface of the liquid crystal panel 10, the brightness unevenness of the liquid crystal panel 10 can be satisfactorily eliminated.

【0048】また、ステップ230での処理にて走査電圧及び信号電圧の各振幅を上述のごとく算出変更しているから、反強誘電性液晶10cのように温度依存性の高い液晶であっても、上記作用効果を良好に達成できる。 [0048] Further, since the respective amplitudes of the scanning voltage and the signal voltage at the processing in step 230 is calculated change as described above, even at high temperature dependency as antiferroelectric liquid crystal 10c crystal , it can be satisfactorily achieve the above function and effect.
なお、本発明の実施にあたり、上記フローチャートに従いマイクロコンピュータ70、110によりなされる処理は、アナログ回路やディジタル回路により処理するようにしてもよい。 Note that the practice of the present invention, processing performed by the microcomputer 70,110 in accordance with the above flowchart, may be processed by an analog circuit or a digital circuit.

【0049】また、本発明の実施にあたっては、液晶パネル10の液晶としては、反強誘電性液晶に限らず、強誘電性液晶等のスメクチック液晶を採用してもよく、また、当該スメクチック液晶と同様に温度依存性の高い液晶を採用してもよい。 [0049] Also, in the practice of the present invention, as the liquid crystal of the liquid crystal panel 10 is not limited to the anti-ferroelectric liquid crystal may be employed smectic liquid crystal such as a ferroelectric liquid crystal, also, the said smectic liquid crystal Likewise it may be used with high temperature dependency crystal. また、本発明の実施にあたり、上記実施形態では上述のごとく配置した5個の温度センサ60a乃至60eを採用した例について説明したが、これに限ることなく、液晶パネル10の温度による輝度むらは当該液晶パネルの背面に設ける回路基板の発熱により生ずることを考慮して、当該回路基板のうち最も発熱し易い部分に温度センサを配置すれば、より一層精度よく液晶パネル10の表示面の温度分布を推定できる。 Moreover, the practice of the present invention, in the above embodiment has been described an example adopting the five temperature sensors 60a to 60e arranged as described above, not limited to this, the luminance unevenness caused by the temperature of the liquid crystal panel 10 is the considering that caused by the heat generation of the circuit board provided on the back surface of the liquid crystal panel, by arranging a temperature sensor in the most exothermic easily portion of the circuit board, the more accurately the temperature distribution of the display surface of the liquid crystal panel 10 It can be estimated.

【0050】また、本発明の実施にあたり、液晶パネル10の定常状態における温度分布を予め測定してROM [0050] Also, the practice of the present invention, ROM in advance measures the temperature distribution in the steady state of the liquid crystal panel 10
80に記憶しておけば、5個の温度センサ60a乃至6 By storing the 80, five temperature sensors 60a to 6
0eに代えて、単一の温度センサを採用するだけで、上記記憶温度分布をもとに液晶パネル10の表示面における温度分布を推定できる。 Instead of 0e, simply employing a single temperature sensor may estimate the temperature distribution in the display surface of the liquid crystal panel 10 based on the storage temperature distribution. また、本発明の実施にあたり、車両に限ることなく、各種の情報機器や家電機器に採用されるマトリクス型液晶表示装置であって履歴特性を有する液晶を用いるものに本発明を適用して実施してもよい。 Moreover, the practice of the present invention is not limited to a vehicle, a matrix type liquid crystal display device which is employed to various information devices and Appliances performed by applying the present invention to those using a liquid crystal having a hysteresis it may be.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施形態を示すブロック図である。 1 is a block diagram illustrating an embodiment of the present invention.

【図2】図1の液晶パネルの模式的断面図である。 2 is a schematic cross-sectional view of a liquid crystal panel of FIG.

【図3】図1の液晶パネルの走査電極及び信号電極と画素との関係を示す模式的平面図である。 Figure 3 is a schematic plan view showing the relationship between the scanning electrodes and signal electrodes and the pixel of the liquid crystal panel of FIG.

【図4】図1のマイクロコンピュータ70の作用を示すフローチャートである。 4 is a flowchart showing the operation of microcomputer 70 of FIG. 1.

【図5】図1のマイクロコンピュータ110の作用を示すフローチャートである。 5 is a flowchart showing the operation of microcomputer 110 in FIG.

【図6】走査電圧及び信号電圧と平均温度との関係を示すグラフである。 6 is a graph showing the relationship between a scanning voltage and a signal voltage and the average temperature.

【図7】階調度直線式の傾きと温度差ΔTとの関係を示すグラフである。 7 is a graph showing the relationship between the slope and the temperature difference ΔT of floor Furnishing linear equation.

【図8】階調度直線式の切片と温度差ΔTとの関係を示すグラフである。 8 is a graph showing the relationship between the floor furnishings linear equation of intercept and the temperature difference [Delta] T.

【図9】液晶パネルの表示面における輝度と画像データ信号の階調度との関係を温度とパラメータとして示すグラフである。 9 is a graph showing the relationship between the gradient of the luminance and the image data signal on the display surface of the liquid crystal panel as the temperature and parameters.

【図10】画像データ信号の目標階調度と実際の階調度との関係を温度をパラメータとして示すグラフである。 [10] The relationship between the actual gradient between the target gradient of the image data signal is a graph showing the temperature as a parameter.

【図11】液晶パネルにおける5個の温度センサの配置位置を示す平面図である。 11 is a plan view showing the arrangement positions of the five temperature sensors in the liquid crystal panel.

【符号の説明】 DESCRIPTION OF SYMBOLS

10…液晶パネル、10c…反強誘電性液晶、20…走査電極駆動回路、30…信号電極駆動回路、40、50 10 ... liquid crystal panel, 10c ... antiferroelectric liquid crystal, 20 ... scanning electrode driving circuit, 30 ... signal electrode driving circuit, 40 and 50
…電源回路、60a乃至60e…温度センサ、70、1 ... power supply circuit, 60a to 60e ... temperature sensor, 70,1
10…マイクロコンピュータ、80…ROM、90…R 10 ... micro computer, 80 ... ROM, 90 ... R
OM、100…コントロール回路、X1乃至Xm…信号電極、Y1乃至Ym…走査電極。 OM, 100 ... control circuit, X1 through Xm ... signal electrodes, Y1 to Ym ... scan electrodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 直樹 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2H092 GA05 NA01 PA06 PA08 QA14 2H093 NA11 NA43 NA64 NC28 NC50 NC57 NC63 ND02 ND09 ND58 NE06 NF20 5C006 AA16 AA22 AF13 AF46 AF51 AF52 AF53 AF54 AF78 BA13 BB11 BC03 BC12 BF15 BF38 BF43 FA19 FA22 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Naoki Matsumoto Kariya, Aichi Showacho 1-chome 1 address stock Company DENSO in the F-term (reference) 2H092 GA05 NA01 PA06 PA08 QA14 2H093 NA11 NA43 NA64 NC28 NC50 NC57 NC63 ND02 ND09 ND58 NE06 NF20 5C006 AA16 AA22 AF13 AF46 AF51 AF52 AF53 AF54 AF78 BA13 BB11 BC03 BC12 BF15 BF38 BF43 FA19 FA22

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 複数条の走査電極(Y1乃至Yn)と、 1. A plural rows of scanning electrodes and (Y1 to Yn),
    複数条の信号電極(X1乃至Xm)と、これら複数条の走査電極と複数条の信号電極との間に設けられて当該各複数条の走査電極及び信号電極と共に複数のマトリクス状画素(G11乃至Gmn)を構成する液晶(10c) And plural rows of signal electrodes (X1 to Xm), a plurality of matrix pixels (G11 to provided with scanning electrodes and signal electrodes of the respective plural rows between the scan electrodes and the plural rows of the signal electrodes of the plural rows liquid crystal constituting the gmn) (10c)
    とを備える液晶パネル(10)と、 画像データ信号に基づき信号電圧を発生する信号電圧発生手段(100)と、 前記複数条の走査電極を走査電圧の印加により駆動制御する走査電極駆動制御手段(20、40)と、 前記複数条の信号電極を前記信号電圧の印加により駆動制御する信号電極駆動制御手段(30、50)とを備え、 前記走査電極駆動制御手段及び信号電極駆動制御手段の両駆動制御に応じて前記液晶パネルに表示させるようにしたマトリクス型液晶表示装置であって、 前記液晶パネルの少なくとも一つの位置の温度を検出する温度検出手段(60a乃至60e)と、 この温度検出手段の検出温度に基づき前記液晶パネルの所定画素領域毎の温度を推定する温度推定手段(21 Preparative liquid crystal panel (10) comprising, a signal voltage generating means for generating a signal voltage based on the image data signal (100), the scan electrode driving control means for driving and controlling by the application of the scan electrodes of the plural rows scanning voltage ( and 20, 40), said signal electrode driving control means (30, 50 a plurality Article signal electrode driving control by the application of the signal voltage) and provided with both of the scan electrode driving control means and the signal electrode driving control means a matrix type liquid crystal display device which is adapted to be displayed on the liquid crystal panel in accordance with a drive control, at least the temperature detection means for detecting the temperature of one position (60a to 60e), the temperature sensing means of the liquid crystal panel temperature estimating means for estimating a temperature of the predetermined pixel each region detected temperature based of the liquid crystal panel (21
    0)とを備え、 前記信号電圧発生手段が、 前記温度検出手段の検出温度及び前記温度推定手段による前記所定画素領域毎の推定温度に基づき前記画像データ信号の実際の強度を前記所定画素領域毎に前記液晶パネルの所定温度における目標強度となるように補正する補正手段(80、90、240、250、320、33 0) and wherein the signal voltage generating means, said temperature detecting means detecting the temperature and the actual intensity of the predetermined pixel each region of the image data signal based on the estimated temperature of the predetermined pixel each region by said temperature estimating means correcting means for correcting so that the target strength at a given temperature of the liquid crystal panel (80,90,240,250,320,33
    0)を具備し、 この補正手段による補正画像データ信号に基づき前記信号電圧を発生するマトリクス型液晶表示装置。 0) comprising a matrix-type liquid crystal display device for generating the signal voltage based on the corrected image data signals by the correction means.
  2. 【請求項2】 複数条の走査電極(Y1乃至Yn)と、 Wherein plural rows of scanning electrodes and (Y1 to Yn),
    複数条の信号電極(X1乃至Xm)と、これら複数条の走査電極と複数条の信号電極との間に設けられて当該各複数条の走査電極及び信号電極と共に複数のマトリクス状画素(G11乃至Gmn)を構成する温度依存性の高い特性の液晶(10c)とを備える液晶パネル(10) And plural rows of signal electrodes (X1 to Xm), a plurality of matrix pixels (G11 to provided with scanning electrodes and signal electrodes of the respective plural rows between the scan electrodes and the plural rows of the signal electrodes of the plural rows the liquid crystal temperature-dependent highly characteristic constituting the gmn) (10c) and a liquid crystal panel (10)
    と、 画像データ信号に基づき信号電圧を発生する信号電圧発生手段(100)と、 前記複数条の走査電極を走査電圧の印加により駆動制御する走査電極駆動制御手段(20、40)と、 前記複数条の信号電極を前記信号電圧の印加により駆動制御する信号電極駆動制御手段(30、50)とを備え、 前記走査電極駆動制御手段及び信号電極駆動制御手段の両駆動制御に応じて前記液晶パネルに表示させるようにしたマトリクス型液晶表示装置であって、 前記液晶パネルの少なくとも一つの位置の温度を検出する温度検出手段(60a乃至60e)と、 この温度検出手段の検出温度に基づき前記走査電圧及び信号電圧の各振幅を変更する変更手段(230)と、 前記温度検出手段の検出温度に基づき前記液晶パネルの所定画素領域毎の温度 When a signal voltage generating means for generating a signal voltage based on the image data signal (100), the scan electrode driving control means for driving and controlling by the application of the scan electrode scanning voltage of said plural rows and (20, 40), said plurality the strip signal electrodes and a drive control signal electrode driving control means (30, 50) by application of the signal voltage, the liquid crystal panel in response to both the drive control of the scan electrode driving control means and the signal electrode driving control means a matrix type liquid crystal display device which is adapted to be displayed on said temperature detecting means for detecting the temperature of at least one position of the liquid crystal panel (60a to 60e), the scan voltage based on the detected temperature of the temperature detecting means and a changing means for changing the respective amplitude of the signal voltage (230), the temperature of the predetermined pixel each region of the liquid crystal panel based on the detected temperature of said temperature detecting means を推定する温度推定手段(21 Temperature estimating means for estimating (21
    0)とを備え、 前記走査電極駆動制御手段及び信号電極駆動制御手段が前記走査電圧及び信号電圧を前記変更手段による変更振幅でもって印加し、 前記信号電圧発生手段が、 前記温度検出手段の検出温度及び前記温度推定手段による前記所定画素領域毎の推定温度に基づき前記画像データ信号の実際の強度を前記所定画素領域毎に前記液晶パネルの所定温度における目標強度となるように補正する補正手段(80、90、240、250、320、33 0) and wherein the scan electrode driving control means and the signal electrode driving control means applies with the scanning voltage and the signal voltage changes amplitude due to the changing means, said signal voltage generating means, the detection of the temperature detecting means temperature and said temperature estimating means according to the predetermined pixel based on the estimated temperature of each region the image data signal the actual intensity is corrected so that the target strength at a predetermined temperature of the liquid crystal panel for each of the predetermined pixel region correcting means ( 80,90,240,250,320,33
    0)を具備し、 この補正手段による補正画像データ信号に基づき前記信号電圧を発生するマトリクス型液晶表示装置。 0) comprising a matrix-type liquid crystal display device for generating the signal voltage based on the corrected image data signals by the correction means.
  3. 【請求項3】 前記補正手段は、 前記画像データ信号の実際の強度と目標強度との関係を表す直線式の傾き及び切片を前記所定画素領域毎の推定温度と前記液晶パネルの前記所定温度との温度差に応じてデータとして予め記憶する第1記憶手段(80)と、 この第1記憶手段の記憶データに基づき前記所定画素領域毎の推定温度に応じて前記傾き及び切片を算出して補正データとして記憶する第2記憶手段(240、25 Wherein said correction means, wherein the predetermined temperature of the actual intensity and the slope and intercept of the linear equation representing the relationship between the target strength and the estimated temperature of the predetermined pixel each region the liquid crystal panel of the image data signal and a first storage means for storing in advance as data in response to the temperature difference (80), corrected by calculating the slope and intercept in accordance with the estimated temperature of the predetermined pixel each region based on the data stored in the first storage means second storage means for storing as data (240,25
    0、90)とを備えて、 この第2記憶手段の補正データに基づき前記画像データ信号の実際の強度を前記所定画素領域毎に前記目標強度に補正することを特徴とする請求項1又は2に記載のマトリクス型液晶表示装置。 0,90) and a claim 1 or 2, characterized in that to correct the actual intensity of the image data signal based on the correction data of the second storage means to the target intensity for each of the predetermined pixel area matrix liquid crystal display device according to.
JP10251398A 1998-09-04 1998-09-04 Matrix type liquid crystal display device Granted JP2000081607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10251398A JP2000081607A (en) 1998-09-04 1998-09-04 Matrix type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10251398A JP2000081607A (en) 1998-09-04 1998-09-04 Matrix type liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2000081607A true JP2000081607A (en) 2000-03-21

Family

ID=17222259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10251398A Granted JP2000081607A (en) 1998-09-04 1998-09-04 Matrix type liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2000081607A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034135A1 (en) * 2002-10-10 2004-04-22 Sanyo Electric Co., Ltd. Liquid crystal panel drive device
WO2007074661A1 (en) * 2005-12-28 2007-07-05 Nec Display Solutions, Ltd. Image display device
JP2007298957A (en) * 2006-04-03 2007-11-15 Seiko Epson Corp Image display apparatus and image display method
JP2008046411A (en) * 2006-08-17 2008-02-28 Seiko Epson Corp Memory type liquid crystal panel and memory type liquid crystal driving device
JP2008170536A (en) * 2007-01-09 2008-07-24 Seiko Epson Corp Display driving device, display device and electronic equipment
US7420538B2 (en) 2003-12-03 2008-09-02 Sharp Kabushiki Kaisha Liquid crystal display device and driving device thereof, and method for driving liquid crystal display device
JP2008256821A (en) * 2007-04-03 2008-10-23 Sony Corp Display device, optical module and projection display device
JP2008257010A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Display drive and electronic equipment
CN102486912A (en) * 2010-12-02 2012-06-06 伊格尼斯创新公司 System and method for thermal compensation in amoled display
JP2012159633A (en) * 2011-01-31 2012-08-23 Seiko Epson Corp Active matrix substrate, electro-optical device and electronic apparatus
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034135A1 (en) * 2002-10-10 2004-04-22 Sanyo Electric Co., Ltd. Liquid crystal panel drive device
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9472139B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US7420538B2 (en) 2003-12-03 2008-09-02 Sharp Kabushiki Kaisha Liquid crystal display device and driving device thereof, and method for driving liquid crystal display device
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
JP2007178709A (en) * 2005-12-28 2007-07-12 Nec Display Solutions Ltd Image display apparatus
WO2007074661A1 (en) * 2005-12-28 2007-07-05 Nec Display Solutions, Ltd. Image display device
CN101346753B (en) 2005-12-28 2010-12-15 Nec显示器解决方案株式会社 Image display apparatus
US8368685B2 (en) 2005-12-28 2013-02-05 Nec Display Solutions, Ltd. Image display apparatus
JP2007298957A (en) * 2006-04-03 2007-11-15 Seiko Epson Corp Image display apparatus and image display method
US9842544B2 (en) 2006-04-19 2017-12-12 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
US9530352B2 (en) 2006-08-15 2016-12-27 Ignis Innovations Inc. OLED luminance degradation compensation
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
JP2008046411A (en) * 2006-08-17 2008-02-28 Seiko Epson Corp Memory type liquid crystal panel and memory type liquid crystal driving device
JP2008170536A (en) * 2007-01-09 2008-07-24 Seiko Epson Corp Display driving device, display device and electronic equipment
JP2008256821A (en) * 2007-04-03 2008-10-23 Sony Corp Display device, optical module and projection display device
JP2008257010A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Display drive and electronic equipment
US9117400B2 (en) 2009-06-16 2015-08-25 Ignis Innovation Inc. Compensation technique for color shift in displays
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9418587B2 (en) 2009-06-16 2016-08-16 Ignis Innovation Inc. Compensation technique for color shift in displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US9262965B2 (en) 2009-12-06 2016-02-16 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10032399B2 (en) 2010-02-04 2018-07-24 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10395574B2 (en) 2010-02-04 2019-08-27 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US20120139955A1 (en) * 2010-12-02 2012-06-07 Ignis Innovation Inc. System and methods for thermal compensation in amoled displays
US20170025067A1 (en) * 2010-12-02 2017-01-26 Ignis Innovation Inc. System and methods for thermal compensation in amoled displays
US9489897B2 (en) * 2010-12-02 2016-11-08 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US20140375623A1 (en) * 2010-12-02 2014-12-25 Ignis Innovation Inc. System and methods for thermal compensation in amoled displays
CN102486912A (en) * 2010-12-02 2012-06-06 伊格尼斯创新公司 System and method for thermal compensation in amoled display
US8907991B2 (en) * 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
JP2012159633A (en) * 2011-01-31 2012-08-23 Seiko Epson Corp Active matrix substrate, electro-optical device and electronic apparatus
US10032400B2 (en) 2011-05-20 2018-07-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9355584B2 (en) 2011-05-20 2016-05-31 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10127846B2 (en) 2011-05-20 2018-11-13 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10325537B2 (en) 2011-05-20 2019-06-18 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9589490B2 (en) 2011-05-20 2017-03-07 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9978297B2 (en) 2011-05-26 2018-05-22 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10417945B2 (en) 2011-05-27 2019-09-17 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10043448B2 (en) 2012-02-03 2018-08-07 Ignis Innovation Inc. Driving system for active-matrix displays
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9536460B2 (en) 2012-05-23 2017-01-03 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US10176738B2 (en) 2012-05-23 2019-01-08 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9940861B2 (en) 2012-05-23 2018-04-10 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9368063B2 (en) 2012-05-23 2016-06-14 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US10311790B2 (en) 2012-12-11 2019-06-04 Ignis Innovation Inc. Pixel circuits for amoled displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10140925B2 (en) 2012-12-11 2018-11-27 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9536465B2 (en) 2013-03-14 2017-01-03 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US10198979B2 (en) 2013-03-14 2019-02-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9997107B2 (en) 2013-03-15 2018-06-12 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US10186190B2 (en) 2013-12-06 2019-01-22 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US10395585B2 (en) 2013-12-06 2019-08-27 Ignis Innovation Inc. OLED display system and method
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10403230B2 (en) 2015-05-27 2019-09-03 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values

Similar Documents

Publication Publication Date Title
US7134091B2 (en) Quality of displayed images with user preference information
JP5268041B2 (en) Display device
CN100412944C (en) Overdrive circuit and liquid crystal display panel driving apparatus including the same
US5668569A (en) Tiled, flat-panel displays with luminance-correcting capability
EP0281160B1 (en) Liquid crystal apparatus
JP3974630B2 (en) Luminance adjustment method, a liquid crystal display device, and a computer program
KR100847823B1 (en) The liquid crystal display device
US5136282A (en) Ferroelectric liquid crystal apparatus having separate display areas and driving method therefor
CN1956031B (en) Flat display apparatus and picture quality controlling method thereof
US6317114B1 (en) Method and apparatus for image stabilization in display device
US5654732A (en) Display apparatus
JP3727873B2 (en) The liquid crystal display panel driving circuit and the liquid crystal display
JP2614280B2 (en) A liquid crystal device
US20030179175A1 (en) Liquid crystal display apparatus
US7542021B2 (en) Common voltage compensating circuit and method of compensating common voltage for liquid crystal display device
US7148868B2 (en) Liquid crystal display
US7106287B2 (en) Method and apparatus for driving liquid crystal display
CN100520900C (en) Method for operating active-matrix display
CN100545899C (en) Liquid crystal display
US6222516B1 (en) Active matrix liquid crystal display and method of driving the same
US20080074404A1 (en) Display driving apparatus and display apparatus comprising the same
US20080284716A1 (en) Display Devices With Ambient Light Sensing
US6900796B2 (en) Liquid crystal display device and method for driving the same
JP4650845B2 (en) Color liquid crystal display device and a gamma correction method therefor
EP0533473A1 (en) Display control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Written amendment

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130831

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250