JP2000065850A - Thermal type acceleration sensor - Google Patents

Thermal type acceleration sensor

Info

Publication number
JP2000065850A
JP2000065850A JP10239624A JP23962498A JP2000065850A JP 2000065850 A JP2000065850 A JP 2000065850A JP 10239624 A JP10239624 A JP 10239624A JP 23962498 A JP23962498 A JP 23962498A JP 2000065850 A JP2000065850 A JP 2000065850A
Authority
JP
Japan
Prior art keywords
temperature
acceleration
temperature difference
thermocouple
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10239624A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kaneko
洋之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10239624A priority Critical patent/JP2000065850A/en
Publication of JP2000065850A publication Critical patent/JP2000065850A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/006Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses
    • G01P15/008Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses by using thermal pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal type acceleration sensor having an output terminal capable of monitoring the state of the sensor always other than a normal acceleration output, and capable of informing a system of unexpected sensitivity reduction caused by the change of fluid. SOLUTION: This acceleration sensor is so composed that a heater 22 used as a heat generating source is installed on the central beam among heat- separated three beams 21 and that a first thermocouple 23 is installed on the left beam and the central beam in the state where a cold junction 24 and a hot junction 25 are arranged near the center parts of the left and central beams respectively, and that, in the same way, a second thermocouple 26 is installed on the right beam and the central beam in the state where a cold junction 27 and a hot junction 28 are arranged near the center parts of the right and central beams respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉された容器内に
発熱手段と、この容器内に満たされた流体の温度を測定
する測温手段とを備え、作用する加速度に対応した検出
出力を得る熱型加速度センサにおいて、密閉容器内の圧
力・ガス組成の変化が生じ感度が変化した場合には異常
と判断する出力信号を生成できる、高精度・高信頼の加
速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a heat generating means in a closed container and a temperature measuring means for measuring the temperature of a fluid filled in the container, and obtains a detection output corresponding to an applied acceleration. The present invention relates to a high-accuracy and high-accuracy acceleration sensor capable of generating an output signal for judging an abnormality when a change in pressure / gas composition in a closed container causes a change in sensitivity in a thermal acceleration sensor.

【0002】[0002]

【従来の技術】従来の熱型加速度センサとしては、例え
ば米国特許5581034号公報記載の“CONVEC
TIVE ACCELEROMETER AND IN
CLINOMETER”に開示されているものがあり、
これを図7に示す。図では省略してあるが密閉容器内に
は液体や、気体等の流体が満たされている。中央付近に
は3本のワイヤ01,02,03が張って有り、中心の
ワイヤ01に電流を流し発熱させると、周囲の流体の温
度が上昇する。流体の温度が上がると密度が低下するの
で、加速度の加わっている方向と反対方向に流体が移動
し密閉容器の壁に到達するとそこで熱を奪われて今度は
密度が高くなって先程とは反対方向に流体が移動を行
う。この密閉容器内の対流により密閉容器内に温度分布
が生じるが、この温度分布は印加されている加速度の大
きさ・方向で変化するため、温度分布の変化を他の2本
のワイヤ02、03の電気抵抗変化として捉えることで
加速度を検出することができる。図8には従来の熱型加
速度センサにおける、加速度検出の回路例を示す。図7
で示された測温用のワイヤ(抵抗体)02,03を直列
に接続し、この分圧電位と、別の参照用抵抗における分
圧電位との差△Voutにより加速度を検出している。
このような熱による対流を利用したセンサは、構造が簡
単で一般の加速度センサのように可動部が無いので、衝
撃に強く信頼性が高いといった特徴がある。また対流を
利用しているため応答速度が比較的遅く不要な高周波加
速度成分が外部の電気的フィルタ無しで除去されるの
で、自動車の傾斜等を測定するセンサとして好適であ
る。
2. Description of the Related Art As a conventional thermal acceleration sensor, for example, "CONVEC" described in US Pat.
TIVE ACCELEROMETER AND IN
CLINOMETER ",
This is shown in FIG. Although not shown in the drawing, the closed container is filled with a fluid such as a liquid or a gas. Three wires 01, 02, and 03 are stretched near the center. When an electric current is applied to the center wire 01 to generate heat, the temperature of the surrounding fluid rises. When the temperature of the fluid rises, the density decreases, so the fluid moves in the direction opposite to the direction in which acceleration is applied, and when it reaches the wall of the closed vessel, heat is deprived there and this time, the density increases and it is opposite to the previous The fluid moves in the direction. Due to the convection in the closed container, a temperature distribution is generated in the closed container. Since the temperature distribution changes depending on the magnitude and direction of the applied acceleration, the change in the temperature distribution is caused by the other two wires 02 and 03. The acceleration can be detected by capturing the change in the electrical resistance of the object. FIG. 8 shows an example of a circuit for detecting acceleration in a conventional thermal acceleration sensor. FIG.
Are connected in series, and acceleration is detected based on a difference ΔVout between the divided potential and a divided potential of another reference resistor.
Such a sensor using convection due to heat has a feature that it has a strong structure and a high reliability since it has no movable part unlike a general acceleration sensor. Further, since convection is used, the response speed is relatively slow, and unnecessary high-frequency acceleration components are removed without an external electric filter. Therefore, the present invention is suitable as a sensor for measuring the inclination of an automobile.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例では以下に示す問題点が生じる。上記のような対流
による温度分布を利用したセンサでは、感度を高めるた
めにはできるだけ熱伝導率の低い流体を使うのがよい。
ガスでいえば例えばXeの熱伝導率はAirの約1/5
であるのでかなりの感度上昇が期待できる。また感度は
流体の圧力にも依存し、圧力が高い程感度も高くなる。
したがって高感度を得るためには、熱伝導率が低く、圧
力の高い流体を密閉容器内に封じ込める必要がある。流
体を密閉容器内に封じ込めるには、一般には容器を溶接
したり接着したりする訳だが、特に高感度化を狙って高
圧で空気と異なった特殊な気体を使用する場合には、高
信頼の密閉が必要である。ところが、製造バラツキ・系
時変化等何らかの理由で気密が保てなくなり、圧力が低
下したり、また外部とほぼ同気圧の場合でも密閉容器内
部の特殊ガスが外界の空気と置換されたりすると、感度
が低下してしまう。従来例では、図8に示されるよう
に、単に二点間の温度差を測定し、加速度出力としてい
たため、上述の様な予期せぬ気密性の低下が生じた場合
にも単に感度が低下するだけであり、センサ自体の異常
を検出することは不可能であった。
However, the above-described conventional example has the following problems. In the sensor using the temperature distribution due to the convection as described above, it is preferable to use a fluid having a low thermal conductivity as much as possible in order to increase the sensitivity.
In terms of gas, for example, the thermal conductivity of Xe is about 1/5 that of Air.
Therefore, a considerable increase in sensitivity can be expected. The sensitivity also depends on the pressure of the fluid, and the higher the pressure, the higher the sensitivity.
Therefore, in order to obtain high sensitivity, it is necessary to confine a fluid having a low thermal conductivity and a high pressure in an airtight container. In order to confine a fluid in a closed container, welding or bonding of the container is generally used, but especially when a special gas different from air is used at high pressure for high sensitivity, high reliability is required. Sealing is required. However, if the airtightness cannot be maintained for some reason, such as manufacturing variations and system changes, the pressure will drop, and if the special gas inside the sealed container is replaced with outside air even when the pressure is almost the same as the outside, the sensitivity will not be maintained. Will decrease. In the conventional example, as shown in FIG. 8, since the temperature difference between two points is simply measured and the acceleration output is obtained, the sensitivity is simply reduced even when the unexpected airtightness is reduced as described above. It was impossible to detect the abnormality of the sensor itself.

【0004】本発明は前記のような問題点を解決するた
めになされたものであり、通常の加速度出力の他に、セ
ンサの状態を常時モニタできる出力端子を有し、流体の
変化による予期せぬ感度低下をシステムに知らせること
が可能な、熱型加速度センサを提供することを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and has an output terminal capable of constantly monitoring the state of a sensor in addition to a normal acceleration output. It is an object of the present invention to provide a thermal acceleration sensor capable of notifying a system of a drop in sensitivity.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明の請求項1記載の熱型加速度センサでは、密閉さ
れた容器と、該容器内に設けられた発熱手段と、該発熱
手段の温度を測定する第一の測温手段と、前記発熱手段
から一定距離離れた位置の温度を測定する第二の測温手
段と、前記発熱手段から一定距離離れた、前記位置とは
別の位置の温度を測定する第三の測温手段と、を有し、
加速度の印加により生じる、前記両部位の温度差から加
速度を検出する熱型加速度センサにおいて、前記第一の
測温手段と前記第二の測温手段との温度差を演算して第
一の温度差信号を出力するとともに、第一の測温手段と
第三の測温手段との温度差を演算し第二の温度差信号を
出力し、第一の温度差信号と第二の温度差信号との差か
ら加速度を検出し、第一の温度差信号と第二の温度差信
号との和からセンサの異常を検出する構成とした。本発
明の請求項2記載の熱型加速度センサでは、請求項1記
載の発明において、前記加速度の検出は、第一の温度差
信号と第二の温度差信号との差から検出する代わりに、
前記両部位の温度差を直接測定する第四の測温手段を設
け、該第四の測温手段の出力から加速度を検出する構成
とした。本発明の請求項3記載の熱型加速度センサで
は、請求項1または2記載の発明において、前記第一の
測温手段ないし第四の測温手段のいずれかまたは全て
が、単一の熱電対もしくは熱電対を複数直列接続したサ
ーモパイルであり、熱電対もしくはサーモパイルの温接
点と冷接点との温度差を利用した構成とした。
According to a first aspect of the present invention, there is provided a thermal acceleration sensor, comprising: a sealed container; a heat generating means provided in the container; A first temperature measuring means for measuring the temperature, a second temperature measuring means for measuring the temperature at a position at a certain distance from the heat generating means, and a position at a certain distance from the heat generating means, different from the position And third temperature measuring means for measuring the temperature of
In a thermal acceleration sensor for detecting acceleration from a temperature difference between the two portions caused by application of acceleration, a first temperature is calculated by calculating a temperature difference between the first temperature measuring means and the second temperature measuring means. Outputs the difference signal, calculates the temperature difference between the first temperature measuring means and the third temperature measuring means, outputs the second temperature difference signal, and outputs the first temperature difference signal and the second temperature difference signal. The acceleration is detected from the difference between the first temperature difference signal and the second temperature difference signal, and the abnormality of the sensor is detected from the sum of the first temperature difference signal and the second temperature difference signal. In the thermal acceleration sensor according to claim 2 of the present invention, in the invention according to claim 1, instead of detecting the acceleration from the difference between the first temperature difference signal and the second temperature difference signal,
Fourth temperature measuring means for directly measuring the temperature difference between the two parts is provided, and the acceleration is detected from the output of the fourth temperature measuring means. According to a third aspect of the present invention, in the thermal acceleration sensor according to the first or second aspect, any one or all of the first to fourth temperature measuring means is a single thermocouple. Alternatively, the thermopile is a thermopile in which a plurality of thermocouples are connected in series, and a configuration utilizing a temperature difference between a hot junction and a cold junction of the thermocouple or the thermopile.

【0006】[0006]

【発明の実施の形態】図1に本発明の実施の形態1を示
す。従来例では、カンパッケージのリードに発熱ワイヤ
や測温ワイヤを張った構造としていたが、本実施の形態
では製造が簡単で大量生産による低コストが見込める半
導体製造プロセスを利用した方法で説明する。もちろん
本実施の形態の構造は半導体製造プロセスを用いなくと
も実現可能である。
FIG. 1 shows a first embodiment of the present invention. In the conventional example, a structure in which a heating wire or a temperature measuring wire is stretched on a lead of a can package is used. However, in the present embodiment, a method using a semiconductor manufacturing process that is easy to manufacture and can be expected to be manufactured at low cost by mass production will be described. Of course, the structure of the present embodiment can be realized without using a semiconductor manufacturing process.

【0007】本実施の形態は、半導体基盤20上に酸化
膜等の熱伝導率の低い物質で作られた細長い梁21が三
本形成されている。この梁以外の部分は半導体基盤20
がエッチング除去された空間なので、気体等の流体が自
由に移動することができる。ただしこのセンサ全体は一
番外周のリム部で接続固定されている。熱分離された三
本の梁21のうち中央の梁上には発熱源であるヒータ2
2が設けられている。また、左側の梁と中央の梁上には
第1熱電対23が、冷接点24と温接点25がそれぞれ
左、中央の梁の中心部付近に配置された状態で設けら
れ、また同様に右側の梁と中央の梁上には第2熱電対2
6が、冷接点27と温接点28がそれぞれ右、中央の梁
の中心部付近に配置された状態で設けられている。本実
施の形態では熱電対としたが熱電対を複数本直列接続し
たいわゆるサーモパイルでも一向に構わない。
In this embodiment, three elongated beams 21 made of a material having a low thermal conductivity such as an oxide film are formed on a semiconductor substrate 20. The part other than this beam is the semiconductor substrate 20
Is a space removed by etching, so that fluid such as gas can move freely. However, the entire sensor is connected and fixed at the outermost rim. A heater 2 as a heat source is provided on a central beam among the three beams 21 thermally separated.
2 are provided. A first thermocouple 23 is provided on the left beam and the center beam, and a cold junction 24 and a hot junction 25 are provided near the center of the left and center beams, respectively. The second thermocouple 2 on the beam at the center and the beam at the center
6 is provided in a state where the cold junction 27 and the hot junction 28 are arranged near the center of the right and center beams, respectively. Although a thermocouple is used in the present embodiment, a so-called thermopile in which a plurality of thermocouples are connected in series may be used.

【0008】続いて、この実施の形態による熱型加速度
センサの信号処理に関して図2を用いて説明する。図に
おいて、TCLおよびTCRは、図1に示した第1熱電
対23および第2熱電対26に相当し、これらの熱電対
からの起電力は増幅器30,31により増幅される。こ
こで第1熱電対23の出力はヒータ22と左側の測温部
との温度差△T1を、また第2熱電対26の出力はヒー
タ22と右側の測温部との温度差△T2を示している。
その後の処理回路でそれぞれの出力の和(△Tout1
=△T2+△T1=2(Th−(TL+TR)/2)
と、それぞれの出力の差(△Tout2=△T2−△T
1=TL−TR)を出力する。この和△Tout1はE
RROR信号として、また差△Tout2は加速度出力
信号として扱われる。なお、Thはヒータの温度、TL
は左側測温部での温度、TRは右側測温部での温度であ
る。
Next, signal processing of the thermal acceleration sensor according to this embodiment will be described with reference to FIG. In the figure, TCL and TCR correspond to the first thermocouple 23 and the second thermocouple 26 shown in FIG. 1, and the electromotive force from these thermocouples is amplified by the amplifiers 30 and 31. Here, the output of the first thermocouple 23 is the temperature difference ΔT1 between the heater 22 and the left temperature measuring unit, and the output of the second thermocouple 26 is the temperature difference ΔT2 between the heater 22 and the right temperature measuring unit. Is shown.
In the subsequent processing circuit, the sum of each output ($ Tout1
= △ T2 + △ T1 = 2 (Th- (TL + TR) / 2)
And the difference between the respective outputs (△ Tout2 = △ T2- △ T
1 = TL-TR). This sum △ Tout1 is E
The RROR signal and the difference ΔTout2 are treated as an acceleration output signal. Here, Th is the temperature of the heater, TL
Is the temperature at the left temperature measuring section, and TR is the temperature at the right temperature measuring section.

【0009】次に、実施の形態1の作用を述べる。図3
は、加速度がZ軸方向のみに加わっている時(センサの
傾斜=0に相当する)と加速度がX軸方向にのみかかっ
ている時(センサの傾斜=90度に相当する)で、気体
が空気(以下、Air)とのキャノン(以下、Xe)の
場合の合計四種類のX軸上の温度分布を示している。な
おXY平面は先の半導体基盤20の表面に相当し、X軸
はヒータ22と直角方向、Y軸はヒータ22と平行方
向、Z軸はXY平面、すなわち半導体基盤20と鉛直方
向の軸をそれぞれ示す。ヒータ22にはある一定の電流
を流し発熱させているので、図3中Thと記された温度
まで上昇している。
Next, the operation of the first embodiment will be described. FIG.
When the acceleration is applied only in the Z-axis direction (corresponding to sensor inclination = 0) and when the acceleration is applied only in the X-axis direction (corresponding to sensor inclination = 90 degrees), the gas The figure shows a total of four types of temperature distribution on the X-axis in the case of cannon (hereinafter, Xe) with air (hereinafter, Air). Note that the XY plane corresponds to the surface of the semiconductor substrate 20, the X axis is a direction perpendicular to the heater 22, the Y axis is a direction parallel to the heater 22, and the Z axis is an XY plane, that is, an axis perpendicular to the semiconductor substrate 20. Show. Since a certain current is applied to the heater 22 to generate heat, the temperature has risen to the temperature indicated by Th in FIG.

【0010】まず、気体がAirの場合を説明する。図
3中曲線40、41がこれに相当する。Z=1Gの時
は、X軸上の温度分布は理想的には曲線41のように左
右対称となり、中央のヒータ22から一定距離の梁上に
ある左側の測温位置Lと、右側の測温位置Rの点での温
度は等しくなる。次に、加速度がZ軸からX軸方向に変
化すると気体の対流分布に変化が生じ、図3中40のよ
うに温度分布も非対称となり、温度差△TAir が生ず
る。なおこの△TAir は設計にもよるが、ヒータ22と
の温度差に比べると小さい値である。また加速度出力の
線形性を高めるために、通常△TAir はX=1GとX=
−1Gとで同じ値になる様に設計するので、TL、TR
の平均温度とヒータ温度との差は加速度によらずほぼ一
定の値を保つ。図3中ではTh−(TL+TR)/2
(@Air)で示された値である。
First, the case where the gas is Air will be described. Curves 40 and 41 in FIG. 3 correspond to this. When Z = 1G, the temperature distribution on the X axis is ideally bilaterally symmetrical as shown by a curve 41, and the left temperature measurement position L on the beam at a certain distance from the center heater 22 and the right temperature measurement position L The temperature at the temperature position R becomes equal. Next, when the acceleration changes from the Z-axis to the X-axis, the convection distribution of the gas changes, and the temperature distribution becomes asymmetric as shown in FIG. 3 and a temperature difference ΔT Air occurs. Note that ΔT Air is a small value as compared with the temperature difference with the heater 22, although it depends on the design. In order to improve the linearity of acceleration output, ΔT Air is usually set to X = 1G and X =
TL, TR
The difference between the average temperature and the heater temperature keeps a substantially constant value regardless of the acceleration. In FIG. 3, Th− (TL + TR) / 2
This is a value indicated by (@Air).

【0011】次に気体がXeであった場合の温度分布を
説明する。この場合は温度分布は曲線43,44で表さ
れる。Z=1Gの場合は先のAirと同様に温度分布は
曲線44の様にヒータ位置を中心に左右対称となり、温
度差△TXeは0である。X=1Gの場合は曲線43の様
になり、やはり温度差△TXeが生じる。ここでXeは熱
伝導率がAirの約1/5と小さいため、温度分布もA
irの場合と異なり、同じ加速度が印加された場合でも
△TXe>△TAir となるので、Xeの場合はAirより
も大きな温度差を生じ、感度が高くなる。また先程と同
様に、通常△TXeはX=1GとX=−1Gとで同じ値に
なる様に設計するので、TL、TRの平均温度とヒータ
温度との差はやはり加速度によらずほぼ一定の値を保
つ。図3中ではTh−(TL+TR)/2(@Xe)で
示された値である。ここでAirとXeとを比較すると
Xeは熱伝導率がAirに比べて低いので、Th−(T
L+TR)/2(@Air)<Th−(TL+TR)/
2(@Xe)が加速度によらずに常に成立している。
Next, the temperature distribution when the gas is Xe will be described. In this case, the temperature distribution is represented by curves 43 and 44. In the case of Z = 1G, the temperature distribution is symmetrical about the heater position as indicated by the curve 44 as in the case of Air, and the temperature difference ΔT Xe is zero. In the case of X = 1G, it becomes like a curve 43, and a temperature difference ΔT Xe also occurs. Here, since Xe has a thermal conductivity as small as about 1/5 of Air, the temperature distribution is also A
Unlike the case of ir, even if the same acceleration is applied, △ T Xe > △ T Air , so that in the case of Xe, a temperature difference larger than that of Air is generated, and the sensitivity is increased. Also, similarly to the above, usually, ΔT Xe is designed to have the same value at X = 1G and X = −1G, so that the difference between the average temperature of TL and TR and the heater temperature is almost independent of acceleration. Keep a constant value. In FIG. 3, it is a value represented by Th− (TL + TR) / 2 (@Xe). Here, when Air is compared with Xe, Xe has a lower thermal conductivity than Air, and therefore Th- (T
L + TR) / 2 (@Air) <Th− (TL + TR) /
2 (@Xe) always holds regardless of acceleration.

【0012】図2における加速度検出方法では、通常の
加速度出力を△Tout2で示された演算を行うことで
得ることができる。一方、同時に△Tout1で示され
た演算を行い結果をERROR信号として出力するが、
このTh−(TL+TR)/2という値は、上述したよ
うに加速度によらず、気密容器内の気体の種類、圧力等
に依存するので、あらかじめある一定の値をしきい値と
しておけば、気密容器内の気体の組成や、圧力変化によ
る感度低下を検出することが可能である。
In the acceleration detection method shown in FIG. 2, a normal acceleration output can be obtained by performing an operation represented by ΔTout2. On the other hand, at the same time, the operation indicated by $ Tout1 is performed and the result is output as an ERROR signal.
As described above, the value of Th− (TL + TR) / 2 depends on the type, pressure, and the like of the gas in the hermetic container without depending on the acceleration. It is possible to detect the composition of the gas in the container and a decrease in sensitivity due to a change in pressure.

【0013】またこの出力は加速度の検出を行っている
動作中常に出力させることが可能なので、例えば可動質
量を有し、可動質量に働く加速度により生じる梁の変位
・歪みにより検出する別タイプの加速度センサの自己診
断装置のように、自己診断中には加速度の検出が行えな
いといった不都合な点が全くない。
Further, since this output can be always output during the operation of detecting the acceleration, for example, another type of acceleration having a movable mass and being detected by displacement / strain of a beam caused by the acceleration acting on the movable mass. Unlike a sensor self-diagnosis device, there is no disadvantage that acceleration cannot be detected during self-diagnosis.

【0014】図4に実施の形態1における熱加速度セン
サの製造方法例を示す。 (a) 半導体基盤20の表面に、熱抵抗の低い絶縁
膜、例えば酸化膜51を形成し、所定の位置にヒータ2
2を金属薄膜、あるいはポリSi等で、またそれぞれ所
定の位置に第1熱電対23、第2熱電対26をパターニ
ング形成する。熱電対は、例えばAL/ポリSiやN型
ポリSi/P型ポリSiの組み合わせ等が考えられる。 (b) その後不要な絶縁膜の部分を部分的にエッチン
グ除去する。 (c) そして最後に、ドライエッチや、ウェットエッ
チ等を組み合わせて、対流の妨げにならないように半導
体基盤20の所定の部分をエッチング除去し熱分離構造
と、ヒータ22や測温手段を形成する。
FIG. 4 shows an example of a method of manufacturing the thermal acceleration sensor according to the first embodiment. (A) An insulating film having a low thermal resistance, for example, an oxide film 51 is formed on the surface of the semiconductor substrate 20, and the heater 2
A first thermocouple 23 and a second thermocouple 26 are formed at predetermined positions by patterning a metal thin film or a poly-Si or the like. The thermocouple may be, for example, a combination of AL / poly Si or N-type poly-Si / P-type poly-Si. (B) Then, unnecessary portions of the insulating film are partially etched away. (C) Finally, dry etching, wet etching, and the like are combined to remove a predetermined portion of the semiconductor substrate 20 by etching so as not to hinder convection, thereby forming a heat isolation structure, a heater 22, and a temperature measuring means. .

【0015】図5には実施の形態2を説明する。基本的
構造は実施の形態1と同じだが、左右の測温部の温度差
を演算ではなく、直接検出するために、新たに第3熱電
対60を形成している。この第3熱電対60は、温接点
61を左側に、冷接点62を右側に配置し、両接点間の
温度差が直接第3熱電対60の起電力として出力され
る。
FIG. 5 illustrates a second embodiment. The basic structure is the same as that of the first embodiment, but a third thermocouple 60 is newly formed in order to directly detect the temperature difference between the left and right temperature measuring units, not to calculate. The third thermocouple 60 has a hot junction 61 on the left and a cold junction 62 on the right, and the temperature difference between the two contacts is directly output as an electromotive force of the third thermocouple 60.

【0016】図6には本実施の形態を利用した際の加速
度及び異常検出出力を行う、加速度の検出方法を示す。
概略動作は実施の形態1と同じであるので省略するが、
実施の形態1では、演算によって左右の測温部の温度差
を算出していたのに対し、本実施の形態では第3熱電対
60の起電力がそのまま加速度出力信号となるため、実
施の形態1に比べ加速度検出精度が向上する。もちろん
実施の形態1と同様に、第1熱電対23と第2熱電対2
6との出力差を演算し加速度出力としても良いが、中心
梁内でわずかに接点間の温度差が生ずると、出力誤差と
なる。特に設計によっては小さな温度差を検出しなけれ
ばならない場合もでてくる。例えばセンサのサイズを小
さくしたい場合である。対流による温度分布は密閉容器
のサイズにも大きく依存し、一般的にサイズを縮小する
と温度分布にも差が無くなり、二つの測温部の温度差も
小さくならざるを得ない。この場合相対的に、ヒータ2
2と左右測温部の温度差と、左右測温部同士の温度差と
が大きくなってしまう。左右同じ第1熱電対23,第2
熱電対26で、中央のヒータ22に近接して配置された
二つの接点の温度差は理想的には0であるが、実際には
製造のバラツキ等でわずかに異なることも考えられる。
これは出力誤差として現れてくる。このような場合で
も、本実施の形態では第3熱電対60を配置し左右の測
温部の温度差を第3熱電対60で直接検出し加速度出力
を得ているので、高精度なセンサが得られる。
FIG. 6 shows an acceleration detection method for performing acceleration and abnormality detection output when the present embodiment is used.
The schematic operation is the same as that of the first embodiment, and therefore will not be described.
In the first embodiment, the temperature difference between the left and right temperature measuring units is calculated by calculation, whereas in the present embodiment, the electromotive force of the third thermocouple 60 becomes the acceleration output signal as it is, Acceleration detection accuracy is improved as compared with 1. Of course, similarly to the first embodiment, the first thermocouple 23 and the second thermocouple 2
6 may be used as the acceleration output, but if a slight temperature difference occurs between the contacts in the center beam, an output error occurs. Particularly, a small temperature difference must be detected depending on the design. For example, when it is desired to reduce the size of the sensor. The temperature distribution due to the convection largely depends on the size of the closed vessel. Generally, when the size is reduced, the difference in the temperature distribution disappears, and the temperature difference between the two temperature measuring units has to be reduced. In this case, relatively, the heater 2
2, the temperature difference between the left and right temperature measuring units and the temperature difference between the left and right temperature measuring units become large. Left and right same first thermocouple 23, second thermocouple
In the thermocouple 26, the temperature difference between the two contacts disposed close to the central heater 22 is ideally zero, but it may actually be slightly different due to manufacturing variations.
This appears as an output error. Even in such a case, in the present embodiment, the third thermocouple 60 is disposed, and the temperature difference between the left and right temperature measuring units is directly detected by the third thermocouple 60 to obtain the acceleration output. can get.

【0017】以下簡単な式で説明する。 左測温部温度:To−△T、 右測温部温度:To+△T (To>△T) 加速度Z=1Gの場合の左、右測温部の温度 中央左側ヒータ近傍測温部:Th 中央右側ヒータ近傍測温部:Th+△Th (Th>△Th) とすると、左側第1熱電対23の温度差△T1は △T1=Th−(To−△T) …式1 右側第2熱電対26の温度差△T2は △T2=Th+△Th−(To+△T) …式2 となるので、これらの和・差はそれぞれ、 和:式1+式2 2Th−2To+△Th …式3 差:式1−式2 −△Th+2△T …式4 となる。ここで、△Th〜△T<To,Thとすると、
式3は 2(Th−To) …式5 となるので、ヒータ測温部での誤差は、ERROR出力
に大きな影響を与えない。一方、式4で分かるように加
速度出力には大きな誤差を生じてしまう。
The following is a description of a simple equation. Left temperature measuring part temperature: To-ΔT, Right temperature measuring part temperature: To + ΔT (To> ΔT) Temperature of left and right temperature measuring parts when acceleration Z = 1G Temperature measuring part near center left heater: Th Assuming that the temperature measuring part near the center right heater is Th + △ Th (Th> △ Th), the temperature difference ΔT1 of the left first thermocouple 23 is ΔT1 = Th− (To−ΔT) Equation 1 Right second thermoelectric The temperature difference ΔT2 of the pair 26 is ΔT2 = Th + ΔTh− (To + ΔT) Expression 2. Therefore, their sum and difference are respectively: Sum: Expression 1 + Expression 22 2Th−2To + ΔTh Expression 3 : Equation 1-Equation 2-{Th + 2} T ... Equation 4 Here, if △ Th ~ △ T <To, Th,
Equation 3 becomes 2 (Th−To) Equation 5. Therefore, an error in the heater temperature measurement unit does not significantly affect the ERROR output. On the other hand, as can be seen from Expression 4, a large error occurs in the acceleration output.

【0018】[0018]

【発明の効果】以上述べてきたように、本発明による熱
型加速度センサでは、単にヒータから離れた二点間の温
度差を加速度出力にしただけではなく、同時にヒータ温
度とそれぞれ二点間の平均温度差を常に出力する構成と
したので、例えば気密封止された容器の予期せぬ故障等
で、気密封止内のガス組成が変化したり、圧力が変化
し、感度が低下した場合でも、ERROR出力を同時に
モニタすることで、センサの異常をシステムが検知する
ことができるので、信頼性の高いシステムを構築できる
といった効果が得られる。
As described above, in the thermal acceleration sensor according to the present invention, not only the temperature difference between two points apart from the heater is output as an acceleration output, but also the temperature difference between the heater temperature and each of the two points at the same time. Since the average temperature difference is always output, for example, due to an unexpected failure of the hermetically sealed container, the gas composition in the hermetic seal changes, the pressure changes, and even if the sensitivity is reduced. , And ERROR output, the system can detect sensor abnormalities, so that a highly reliable system can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明実施の形態1による熱型加速度
センサを示す斜視図、(b)は平面図である。
FIG. 1A is a perspective view showing a thermal acceleration sensor according to Embodiment 1 of the present invention, and FIG. 1B is a plan view.

【図2】実施の形態1による熱型加速度センサの加速度
検出方法を示す図である。
FIG. 2 is a diagram showing an acceleration detection method of the thermal acceleration sensor according to the first embodiment.

【図3】AirとXeの場合の温度分布の違いを示す図
である。
FIG. 3 is a diagram showing a difference in temperature distribution between Air and Xe.

【図4】実施例1の熱型加速度センサの製造方法を示す
図である。
FIG. 4 is a diagram illustrating a method of manufacturing the thermal acceleration sensor according to the first embodiment.

【図5】本発明実施の形態2を示す図である。FIG. 5 is a diagram showing a second embodiment of the present invention.

【図6】実施の形態2による加速度検出方法を示す図で
ある。
FIG. 6 is a diagram showing an acceleration detection method according to a second embodiment.

【図7】(a)は従来の熱型加速度センサを示す平面
図、(b)は側面図、(c)は正面図である。
7A is a plan view showing a conventional thermal acceleration sensor, FIG. 7B is a side view, and FIG. 7C is a front view.

【図8】従来の熱型加速度センサの加速度検出方法を示
す図である。
FIG. 8 is a diagram illustrating an acceleration detection method of a conventional thermal acceleration sensor.

【符号の説明】[Explanation of symbols]

20 半導体基盤 21 梁 22 ヒータ 23 第1熱電対 24 冷接点 25 温接点 26 第2熱電対 27 冷接点 28 温接点 30 増幅器 31 増幅器 40 曲線 41 曲線 43 曲線 44 曲線 51 酸化膜 60 第3熱電対 61 温接点 62 冷接点 Reference Signs List 20 semiconductor substrate 21 beam 22 heater 23 first thermocouple 24 cold junction 25 hot junction 26 second thermocouple 27 cold junction 28 hot junction 30 amplifier 31 amplifier 40 curve 41 curve 43 curve 44 curve 51 oxide film 60 third thermocouple 61 Hot junction 62 Cold junction

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉された容器と、 該容器内に設けられた発熱手段と、 該発熱手段の温度を測定する第一の測温手段と、 前記発熱手段から一定距離離れた位置の温度を測定する
第二の測温手段と、 前記発熱手段から一定距離離れた、前記位置とは別の位
置の温度を測定する第三の測温手段と、を有し、 加速度の印加により生じる、前記両部位の温度差から加
速度を検出する熱型加速度センサにおいて、 前記第一の測温手段と前記第二の測温手段との温度差を
演算して第一の温度差信号を出力するとともに、第一の
測温手段と第三の測温手段との温度差を演算し第二の温
度差信号を出力し、第一の温度差信号と第二の温度差信
号との差から加速度を検出し、第一の温度差信号と第二
の温度差信号との和からセンサの異常を検出するように
したことを特徴とする熱型加速度センサ。
1. A closed container, a heat generating means provided in the container, a first temperature measuring means for measuring a temperature of the heat generating means, and a temperature at a position separated by a certain distance from the heat generating means. A second temperature measuring means for measuring, and a third temperature measuring means for measuring a temperature at a position different from the position, separated from the heat generating means by a certain distance, and In a thermal acceleration sensor that detects acceleration from a temperature difference between both parts, while calculating a temperature difference between the first temperature measuring means and the second temperature measuring means and outputting a first temperature difference signal, Calculate the temperature difference between the first temperature measurement means and the third temperature measurement means, output the second temperature difference signal, and detect the acceleration from the difference between the first temperature difference signal and the second temperature difference signal Then, the abnormality of the sensor is detected from the sum of the first temperature difference signal and the second temperature difference signal. A thermal acceleration sensor, characterized in that:
【請求項2】 前記加速度の検出は、第一の温度差信号
と第二の温度差信号との差から検出する代わりに、前記
両部位の温度差を直接測定する第四の測温手段を設け、
該第四の測温手段の出力から加速度を検出するようにし
たことを特徴とする請求項1に記載の熱型加速度セン
サ。
2. The method according to claim 1, wherein the acceleration is detected by a fourth temperature measuring means for directly measuring the temperature difference between the two parts, instead of detecting the difference from the first temperature difference signal and the second temperature difference signal. Provided,
2. The thermal acceleration sensor according to claim 1, wherein an acceleration is detected from an output of the fourth temperature measuring means.
【請求項3】 前記第一の測温手段ないし第四の測温手
段のいずれかまたは全てが、単一の熱電対もしくは熱電
対を複数直列接続したサーモパイルであり、熱電対もし
くはサーモパイルの温接点と冷接点との温度差を利用し
たものであることを特徴とする請求項1または請求項2
に記載の熱型加速度センサ。
3. A thermocouple in which one or all of the first to fourth temperature measuring means is a single thermocouple or a plurality of thermocouples connected in series, and a hot junction of the thermocouple or the thermopile. 3. The method as claimed in claim 1, wherein the temperature difference between the cold junction and the cold junction is utilized.
4. A thermal acceleration sensor according to claim 1.
JP10239624A 1998-08-26 1998-08-26 Thermal type acceleration sensor Pending JP2000065850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10239624A JP2000065850A (en) 1998-08-26 1998-08-26 Thermal type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10239624A JP2000065850A (en) 1998-08-26 1998-08-26 Thermal type acceleration sensor

Publications (1)

Publication Number Publication Date
JP2000065850A true JP2000065850A (en) 2000-03-03

Family

ID=17047500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239624A Pending JP2000065850A (en) 1998-08-26 1998-08-26 Thermal type acceleration sensor

Country Status (1)

Country Link
JP (1) JP2000065850A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514140A (en) * 2000-11-03 2004-05-13 メンシク インコーポレイテッド Thermal convection accelerometer with closed loop heater control
EP1615038A3 (en) * 2004-06-09 2006-05-24 Memsic, Inc. Thermal accelerometer for measurements in a direction perpendicular to the surface of a substrate
JP2008509390A (en) * 2004-08-06 2008-03-27 ハンクック センシス カンパニー リミテッド Acceleration and tilt angle measuring device using thermal convection of fluid and its measuring method
JP2010025843A (en) * 2008-07-23 2010-02-04 Denso Corp Pressure sensor
CN102650648A (en) * 2011-02-24 2012-08-29 瑞萨电子株式会社 Semiconductor device and manufacturing method thereof
CN113325198A (en) * 2021-06-09 2021-08-31 东南大学 Flexible heat convection type acceleration sensor and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514140A (en) * 2000-11-03 2004-05-13 メンシク インコーポレイテッド Thermal convection accelerometer with closed loop heater control
EP1615038A3 (en) * 2004-06-09 2006-05-24 Memsic, Inc. Thermal accelerometer for measurements in a direction perpendicular to the surface of a substrate
JP2008509390A (en) * 2004-08-06 2008-03-27 ハンクック センシス カンパニー リミテッド Acceleration and tilt angle measuring device using thermal convection of fluid and its measuring method
JP2010025843A (en) * 2008-07-23 2010-02-04 Denso Corp Pressure sensor
CN102650648A (en) * 2011-02-24 2012-08-29 瑞萨电子株式会社 Semiconductor device and manufacturing method thereof
CN113325198A (en) * 2021-06-09 2021-08-31 东南大学 Flexible heat convection type acceleration sensor and preparation method thereof
CN113325198B (en) * 2021-06-09 2022-04-29 东南大学 Flexible heat convection type acceleration sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
US6631638B2 (en) Fluid flow sensor
KR100741520B1 (en) Semiconductor pressure sensor having diaphragm
US8359919B2 (en) Thermal humidity sensor
JPS63243885A (en) Flow velocity detector
US6589433B2 (en) Accelerometer without proof mass
US20140216127A1 (en) Separated type pressure gauge
US20020007674A1 (en) Accelerometer without proof mass
US6725716B1 (en) Thermo-sensitive flow rate sensor and method of manufacturing the same
JP2000065850A (en) Thermal type acceleration sensor
JPH11118553A (en) Flow sensor
JPH02259527A (en) Flow rate detection sensor for fluid
JP5224089B2 (en) Thermal sensor
JP3112180B2 (en) Humidity sensor
EP0452134B1 (en) Diaphragm-type sensor
JP3386250B2 (en) Thermal dependency detector
US20190207074A1 (en) Thermal barometric altimeter
JP3345695B2 (en) Acceleration sensor
JP3358684B2 (en) Thermal dependency detector
JPH0584867B2 (en)
JPH102773A (en) Thermal air flowmeter
JPH08105777A (en) Mass flow sensor
JP2860086B2 (en) Microcap for humidity sensor and humidity sensor
JP2018141664A (en) Flow sensor
JP2005172445A (en) Flow sensor
CN220153640U (en) Gas flow sensor chip with high sensitivity