JP2000058826A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JP2000058826A
JP2000058826A JP10230464A JP23046498A JP2000058826A JP 2000058826 A JP2000058826 A JP 2000058826A JP 10230464 A JP10230464 A JP 10230464A JP 23046498 A JP23046498 A JP 23046498A JP 2000058826 A JP2000058826 A JP 2000058826A
Authority
JP
Japan
Prior art keywords
gate electrode
nitride film
conductive member
semiconductor substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10230464A
Other languages
Japanese (ja)
Inventor
Katsunori Onishi
克典 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10230464A priority Critical patent/JP2000058826A/en
Publication of JP2000058826A publication Critical patent/JP2000058826A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce an inter-band current consuming excessive power by making an insulating film excepting the lower section of a gate electrode thicker than an insulating film in the lower section of the gate electrode. SOLUTION: A gate oxide film 12 is formed onto a silicon substrate 11, and a polycrystalline silicon layer and a nitride film are formed successively onto the gate oxide film 12. The nitride film is patterned and a nitride film pattern is formed, and the polycrystalline silicon layer is removed selectively by etching while using the nitride film pattern as a mask, and a gate electrode 14 is shaped. An oxide film 23 is formed by a heat treatment while employing the nitride film pattern and the nitride film as masks, and a polycrystalline silicon film 17 is deposited on the whole surface. Consequently, the oxide film 23 excepting the lower section of the gate electrode 14 is made thicker than the oxide film 12 in the lower section of the gate electrode 14. Accordingly, an inner-band current consuming excessive power can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置及びその
製造方法に関し、特にLDD構造のMOS型トランジス
タに関する。
The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a MOS transistor having an LDD structure.

【0002】[0002]

【従来の技術】従来、LDD構造のMOS型トランジス
タとしては、図11に示すものが知られている。図中の
符番1はn型のシリコン基板であり、該基板1上にゲー
ト酸化膜2を介してゲート電極(S)3が形成されてい
る。このゲート電極3の側壁には、絶縁物からなるスぺ
ーサ4が形成されている。前記基板1の表面には、ゲー
ト電極3と自己整合的に低濃度(p 型)の拡散層5a,
6aが形成されている。また、前記基板1の表面には、
ゲート電極3及びスぺーサ4と自己整合的に高濃度(p
型)の拡散層5b,6bが形成されている。ここで、拡
散層5a,5bよりソース領域(S)7が構成され、拡
散層6a,6bよりドレイン領域(D)8が構成されて
いる。
2. Description of the Related Art FIG. 11 shows a conventional MOS transistor having an LDD structure. Reference numeral 1 in the figure denotes an n-type silicon substrate, on which a gate electrode (S) 3 is formed via a gate oxide film 2. A spacer 4 made of an insulating material is formed on a side wall of the gate electrode 3. On the surface of the substrate 1, a low-concentration (p-type) diffusion layer 5a is formed in a self-aligned manner with the gate electrode 3.
6a are formed. Also, on the surface of the substrate 1,
High concentration (p) in a self-aligned manner with the gate electrode 3 and the spacer 4
(Type) diffusion layers 5b and 6b are formed. Here, the source region (S) 7 is composed of the diffusion layers 5a and 5b, and the drain region (D) 8 is composed of the diffusion layers 6a and 6b.

【0003】ところで、こうした構成のトランジスタに
おいて、基板1とゲート電極3,ソース領域7及びドレ
イン領域8における電流の経路は、図12に示すように
なっている。つまり、トランジスタとして動作させる場
合は、電流の経路はドレイン−ソース間であるが、この
電流をオフにした際にも図12の経路で電流(バンド間電
流)が流れる。
In a transistor having such a configuration, a current path in the substrate 1, the gate electrode 3, the source region 7, and the drain region 8 is as shown in FIG. In other words, when operating as a transistor, the current path is between the drain and the source. Even when this current is turned off, a current (inter-band current) flows through the path in FIG.

【0004】また、バンド間トンネル電流の電圧依存
(ドレイン電流のドレイン電圧に対する依存性)の例
は、図9に示す通りである。但し、図9はpチャンネル
の場合である。図9において、縦軸はドレイン電流を対
数で示し、横軸はドレイン電圧を示す。図9より、電流
はソース・ドレイン電圧に対して指数的な依存をする。
また、電流はゲート電極ードレイン領域間電圧に依存す
る。例えば、A点はVd=−3V/Vg=0V、B点は
Vd=−2V/Vg=1Vとともに、DーG間電圧は3
Vとなる。なお、電流はほぼ等しい。
FIG. 9 shows an example of the voltage dependence of the interband tunnel current (the dependence of the drain current on the drain voltage). However, FIG. 9 shows the case of the p channel. In FIG. 9, the vertical axis shows the drain current in logarithm, and the horizontal axis shows the drain voltage. From FIG. 9, the current has an exponential dependence on the source-drain voltage.
Further, the current depends on the voltage between the gate electrode and the drain region. For example, point A has Vd = -3V / Vg = 0V, point B has Vd = -2V / Vg = 1V, and the DG voltage is 3V.
V. The currents are almost equal.

【0005】また、バンド間トンネル電流のゲート酸化
膜依存の例は、図10に示す通りある。但し、図10は
p チャンネルの場合である。図10において、縦軸はド
レイン電流を対数で示し、横軸はゲート酸化膜厚を示
す。電流はゲート酸化膜厚に対してな依存をする。例え
ば、ゲート酸化膜厚8nmから9nmに増加すると、電流
は0.37pA/μmから0.16pA/μmへ半分以
下に減少する。
FIG. 10 shows an example of the dependence of the interband tunnel current on the gate oxide film. However, FIG.
This is for the p channel. In FIG. 10, the vertical axis shows the drain current in logarithm, and the horizontal axis shows the gate oxide film thickness. The current greatly depends on the gate oxide film thickness. For example, when the gate oxide film thickness increases from 8 nm to 9 nm, the current decreases less than half from 0.37 pA / μm to 0.16 pA / μm.

【0006】[0006]

【発明が解決しようとする課題】本発明はこうした事情
を考慮してなされたので、ゲート電極寄りのドレイン端
でのゲート酸化膜厚を増すことにより、余分な電力を消
費するバンド間電流を減らすことが可能な半導体装置及
びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. Therefore, the inter-band current which consumes extra power is reduced by increasing the gate oxide film thickness at the drain end near the gate electrode. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本願第1の発明は、第1
導電型の半導体基板と、この半導体基板上に設けられた
絶縁膜と、前記半導体基板上に前記絶縁膜を介して形成
されたゲート電極と、前記半導体基板上でかつ前記ゲー
ト電極の側壁に設けられた導電性部材と、前記半導体基
板上でかつ前記導電性部材の側壁に設けられた絶縁物
と、前記半導体基板の表面に前記ゲート電極と自己整合
的に形成された第2導電型の低濃度領域と、前記半導体
基板の表面に前記ゲート電極、導電性部材及び絶縁物と
自己整合的に形成された第2導電型の高濃度領域とを具
備し、前記ゲート電極下部以外の前記絶縁膜がゲート電
極下部の前記絶縁膜と比べて厚くなっていることを特徴
とする半導体装置である。
Means for Solving the Problems The first invention of the present application is the first invention.
A conductive semiconductor substrate, an insulating film provided on the semiconductor substrate, a gate electrode formed on the semiconductor substrate via the insulating film, and a gate electrode provided on the semiconductor substrate and on a side wall of the gate electrode. A conductive member, an insulator provided on the semiconductor substrate and on a side wall of the conductive member, and a second conductive type low formed on the surface of the semiconductor substrate in self-alignment with the gate electrode. A second conductivity type high-concentration region formed in a self-alignment manner with the gate electrode, the conductive member and the insulator on the surface of the semiconductor substrate, and the insulating film other than the lower portion of the gate electrode. Is thicker than the insulating film below the gate electrode.

【0008】本願第2の発明は、第1導電型の半導体基
板上に絶縁膜を介してゲート電極、窒化膜パターンを形
成する工程と、前記ゲート電極の側壁に窒化膜スペーサ
を形成する工程と、前記ゲート電極及び窒化膜スぺーサ
をマスクとして熱処理を行い、ゲート電極下部以外の前
記絶縁膜を厚くする工程と、前記窒化膜パターン及び窒
化膜スペーサを除去した後、全面に導電性部材を堆積す
る工程と、この導電性部材を反応性イオンエッチング
し、前記ゲート電極の側壁に導電性部材を残存させる工
程と、前記ゲート電極及び導電性部材をマスクとして前
記半導体基板に第2導電型の不純物を導入し、第2導電
型の低濃度領域を形成する工程と、前記導電性部材の側
壁に絶縁膜スぺーサを形成する工程と、前記ゲート電
極、導電性部材及び絶縁膜スぺーサをマスクとして前記
半導体基板に第2導電型の不純物を導入し、第2導電型
の高濃度領域を形成する工程とを具備することを特徴と
する半導体装置の製造方法である。
According to a second aspect of the present invention, there is provided a process for forming a gate electrode and a nitride film pattern on a semiconductor substrate of a first conductivity type via an insulating film, and a process for forming a nitride film spacer on a side wall of the gate electrode. Performing a heat treatment using the gate electrode and the nitride film spacer as a mask to increase the thickness of the insulating film except for the portion below the gate electrode; and removing the nitride film pattern and the nitride film spacer, and then forming a conductive member on the entire surface. Depositing the conductive member, reactive ion etching the conductive member to leave the conductive member on the side wall of the gate electrode, and forming a second conductive type on the semiconductor substrate using the gate electrode and the conductive member as a mask. Introducing an impurity to form a low concentration region of the second conductivity type; forming an insulating film spacer on a side wall of the conductive member; A second conductivity type impurity is introduced into the semiconductor substrate to Makusupesa as a mask, a method of manufacturing a semiconductor device characterized by comprising the step of forming a high-concentration region of the second conductivity type.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例に係るLD
D構造のMOS型トランジスタの製造方法を図1 〜図8
を参照して説明する。なお、下記実施例は本発明の一例
を示すもので、膜厚、材料、温度、時間等の数値は記述
したものに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an LD according to an embodiment of the present invention will be described.
1 to 8 show a method of manufacturing a MOS transistor having a D structure.
This will be described with reference to FIG. The following embodiments are merely examples of the present invention, and numerical values such as film thickness, material, temperature, and time are not limited to those described.

【0010】(1)まず、p型のシリコン基板11上
に、膜厚8nmのゲート酸化膜12をドライ酸化法(9
00℃、50分)により形成した。つづいて、前記ゲー
ト酸化膜12上にゲート電極材料層としての厚さ200
nmの多結晶シリコン層、厚さ150nmの窒化膜を順
次形成した。ここで、窒化膜は、窒化膜スぺーサ形成後
のゲート酸化でゲート電極が酸化されるのを防ぐためで
ある。更に、前記窒化膜をパターニングして窒化膜パタ
ーン13を形成した後、この窒化膜パターン13をマス
クとして前記多結晶シリコン層を選択的にエッチング除
去し、ゲート電極14を形成した(図1参照)。
(1) First, an 8 nm-thick gate oxide film 12 is formed on a p-type silicon substrate 11 by a dry oxidation method (9).
(00 ° C., 50 minutes). Subsequently, a thickness 200 as a gate electrode material layer is formed on the gate oxide film 12.
A polycrystalline silicon layer having a thickness of 150 nm and a nitride film having a thickness of 150 nm were sequentially formed. Here, the nitride film is for preventing the gate electrode from being oxidized by the gate oxidation after the formation of the nitride film spacer. Further, after patterning the nitride film to form a nitride film pattern 13, the polycrystalline silicon layer was selectively etched away using the nitride film pattern 13 as a mask to form a gate electrode 14 (see FIG. 1). .

【0011】(2)次に、全面に厚さ30nmの窒化膜
15を堆積した(図2参照)。つづいて、前記窒化膜1
5を反応性イオンエッチング(RIE)により窒化膜1
5がゲート電極14の側壁に残存するまで除去した(図
3参照)。更に、前記窒化膜パターン13及び窒化膜1
5をマスクとして熱処理を行い、膜厚12nm程度の酸
化膜23を形成した。この後、全面に多結晶シリコン層
17を堆積した(図4参照)。
(2) Next, a 30-nm-thick nitride film 15 was deposited on the entire surface (see FIG. 2). Subsequently, the nitride film 1
5 is nitrided film 1 by reactive ion etching (RIE).
5 was removed until it remained on the side wall of the gate electrode 14 (see FIG. 3). Further, the nitride film pattern 13 and the nitride film 1
5 was used as a mask, and an oxide film 23 having a thickness of about 12 nm was formed. Thereafter, a polycrystalline silicon layer 17 was deposited on the entire surface (see FIG. 4).

【0012】(3)次に、この多結晶シリコン層17を
RIEによりエッチングし、ゲート電極14の側壁にの
み導電性部材としての幅100nmの多結晶シリコン層
(ポリスぺーサ)17aを残存させた。なお、ポリスぺ
ーサを採用することでゲート長は最小フォト長よりも長
くなってしまう。この例ではフォト長0.35μmと6
%ほど増加する。しかし、低消費電力をねらったトラン
ジスタではポリ長を大きくとることが多く、実際上大き
な問題とはならない。つづいて、前記ゲート電極14及
びポリスぺーサ17aをマスクとして前記素子領域にn
型の不純物(リン)を加速電圧40keV,ドーズ量1
×10-14 の条件で導入し、n- 型の拡散層15a,1
6aを形成した。更に、全面に膜厚100nmの絶縁膜
18を堆積した(図5参照)。
(3) Next, the polycrystalline silicon layer 17 is etched by RIE to leave a polycrystalline silicon layer (polyspacer) 17a having a width of 100 nm as a conductive member only on the side wall of the gate electrode 14. . The gate length becomes longer than the minimum photo length by using the policer. In this example, the photo length is 0.35 μm and 6
% Increase. However, a transistor intended for low power consumption often has a large poly length, which is not a serious problem in practice. Subsequently, n is added to the element region using the gate electrode 14 and the polysilicon 17a as a mask.
Type impurity (phosphorus) at an acceleration voltage of 40 keV and a dose of 1
Introduced under the condition of × 10 −14 , the n type diffusion layers 15a, 15
6a was formed. Further, an insulating film 18 having a thickness of 100 nm was deposited on the entire surface (see FIG. 5).

【0013】(4)次に、前記絶縁膜18をRIEによ
りエッチング除去し、絶縁物としての幅100nmの絶
縁スぺーサ19を前記ポリスぺーサ17aの側壁に形成
した(図6参照)。このエッチングの際、前記酸化膜2
3の一部もエッチング除去された。つづいて、前記拡散
層15a,16a の表面を酸化し、膜厚100nmの酸
化膜20を形成した(図7参照)。
(4) Next, the insulating film 18 was removed by etching by RIE, and an insulating spacer 19 having a width of 100 nm as an insulator was formed on the sidewall of the polysilicon spacer 17a (see FIG. 6). During this etching, the oxide film 2
Part of 3 was also etched away. Subsequently, the surfaces of the diffusion layers 15a and 16a were oxidized to form an oxide film 20 having a thickness of 100 nm (see FIG. 7).

【0014】(5)前記ゲート電極14、ポリスぺーサ
17a及び絶縁スぺーサ19をマスクとして基板11の
素子領域にn型不純物(ひ素)を加速電圧60keV、
ドーズ量3×10-15 の条件で導入し、n+ 型の拡散層
15b,16bを形成した。その結果、拡散層15a ,
15bよりソース領域21が構成され、拡散層16a1
6bよりドレイン領域22が構成されて、LDD構造の
MOS型トランジスタを製造した(図8参照)。
(5) An n-type impurity (arsenic) is accelerated to the element region of the substrate 11 at an acceleration voltage of 60 keV by using the gate electrode 14, the polysilicon spacer 17a and the insulating spacer 19 as a mask.
Introduced under the condition of a dose of 3 × 10 −15 , n + type diffusion layers 15b and 16b were formed. As a result, the diffusion layers 15a,
15b constitutes the source region 21, and the diffusion layer 16a1
The drain region 22 was composed of 6b, and a MOS transistor having an LDD structure was manufactured (see FIG. 8).

【0015】上記実施例に係るLDD構造のMOS 型トラ
ンジスタは、ゲート電極14の側壁にポリスぺーサ17
aを介して絶縁スぺーサ19を設け、ゲート電極14寄
りのドレイン端で厚い酸化膜23を設けた構成となって
いるため、バンド間トンネル電流を削減し、ゲート−ド
レイン間の電界を緩和することができる。
In the MOS transistor having the LDD structure according to the above embodiment, the polysilicon 17 is provided on the side wall of the gate electrode 14.
Since the insulating spacer 19 is provided through the gate electrode a and the thick oxide film 23 is provided at the drain end near the gate electrode 14, the interband tunnel current is reduced and the electric field between the gate and the drain is reduced. can do.

【0016】なお、上記実施例では、導電性部材として
多結晶シリコンを用いた場合についての述べたが、これ
に限定されない。
In the above embodiment, the case where polycrystalline silicon is used as the conductive member has been described. However, the present invention is not limited to this.

【0017】[0017]

【発明の効果】以上詳述したように本発明によれば、ゲ
ート電極寄りのドレイン端でのゲート酸化膜厚を増すこ
とにより、余分な電力を消費するバンド間電流を減らし
てソース・ドレイン間の電界の緩和をなし得る半導体装
置及びその製造方法を提供できる。
As described above in detail, according to the present invention, by increasing the gate oxide film thickness at the drain end near the gate electrode, it is possible to reduce the interband current that consumes extra power and reduce the source-drain current. Semiconductor device capable of alleviating the electric field and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、ゲート電極を形成する
までの図。
FIG. 1 is a view showing one step of a MOS transistor having an LDD structure according to an embodiment of the present invention, up to formation of a gate electrode.

【図2】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、全面に窒化膜を形成す
るまでの図。
FIG. 2 is a view showing one step of a MOS type transistor having an LDD structure according to one embodiment of the present invention, up to formation of a nitride film on the entire surface;

【図3】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、ゲート電極の側壁を窒
化膜で被覆するまでの図。
FIG. 3 is a view showing one step of the MOS transistor having the LDD structure according to one embodiment of the present invention, up to the step of covering the side wall of the gate electrode with a nitride film.

【図4】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、全面にポリスぺーサと
なる多結晶シリコン層を形成するまでの図。
FIG. 4 is a view showing one step of an MOS transistor having an LDD structure according to one embodiment of the present invention, up to formation of a polysilicon layer serving as a polysilicon over the entire surface;

【図5】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、全面に絶縁スぺーサと
なる絶縁膜を形成するまでの図。
FIG. 5 is a view showing one step of a MOS transistor having an LDD structure according to one embodiment of the present invention, up to formation of an insulating film serving as an insulating spacer over the entire surface;

【図6】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、ポリスぺーサの側壁に
絶縁スぺーサを形成するまでの図。
FIG. 6 is a view showing one step of a MOS transistor having an LDD structure according to an embodiment of the present invention, up to formation of an insulating spacer on a side wall of the polysilicon spacer.

【図7】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、露出する拡散層表面に
酸化膜を形成するまでの図。
FIG. 7 is a view showing one step of a MOS transistor having an LDD structure according to an embodiment of the present invention, up to formation of an oxide film on an exposed diffusion layer surface;

【図8】本発明の一実施例に係るLDD構造のMOS型
トランジスタの一工程図であり、ソース、ドレイン領域
を形成するまでの図。
FIG. 8 is a view showing one step of a MOS transistor having an LDD structure according to one embodiment of the present invention, up to formation of source and drain regions.

【図9】ソース・ドレイン電流とドレイン電圧との関係
を示す特性図。
FIG. 9 is a characteristic diagram showing a relationship between a source / drain current and a drain voltage.

【図10】ドレイン電流とゲート酸化膜厚との関係を示
す特性図。
FIG. 10 is a characteristic diagram showing a relationship between a drain current and a gate oxide film thickness.

【図11】従来のLDD構造のMOS型トランジスタの
断面図。
FIG. 11 is a sectional view of a conventional MOS transistor having an LDD structure.

【図12】基板と、ゲート、ソース、ドレイン間の電流
の経路の説明図。
FIG. 12 is an explanatory diagram of a current path between a substrate and a gate, a source, and a drain.

【符号の説明】[Explanation of symbols]

11…p型のシリコン基板、 12…ゲート酸化膜、 13…窒化膜パターン、 14…ゲート電極、 15…窒化膜、 17a…ポリスぺーサ(導電性部材)、 19…絶縁スぺーサ(絶縁物)、 20,23…酸化膜、 21…ソース領域、 22…ドレイン領域。 11: p-type silicon substrate, 12: gate oxide film, 13: nitride film pattern, 14: gate electrode, 15: nitride film, 17a: policer (conductive member), 19: insulating spacer (insulator) ), 20, 23: oxide film, 21: source region, 22: drain region.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板と、この半導体
基板上に設けられた絶縁膜と、前記半導体基板上に前記
絶縁膜を介して形成されたゲート電極と、前記半導体基
板上でかつ前記ゲート電極の側壁に設けられた導電性部
材と、前記半導体基板上でかつ前記導電性部材の側壁に
設けられた絶縁物と、前記半導体基板の表面に前記ゲー
ト電極と自己整合的に形成された第2導電型の低濃度領
域と、前記半導体基板の表面に前記ゲート電極、導電性
部材及び絶縁物と自己整合的に形成された第2導電型の
高濃度領域とを具備し、前記ゲート電極下部以外の前記
絶縁膜がゲート電極下部の前記絶縁膜と比べて厚くなっ
ていることを特徴とする半導体装置。
A first conductive type semiconductor substrate; an insulating film provided on the semiconductor substrate; a gate electrode formed on the semiconductor substrate via the insulating film; A conductive member provided on a side wall of the gate electrode, an insulator provided on the semiconductor substrate and on a side wall of the conductive member, and formed on the surface of the semiconductor substrate in a self-aligned manner with the gate electrode; A low-concentration region of the second conductivity type, and a high-concentration region of the second conductivity type formed on the surface of the semiconductor substrate in a self-aligned manner with the gate electrode, a conductive member, and an insulator. The semiconductor device, wherein the insulating film other than the lower part of the electrode is thicker than the insulating film below the gate electrode.
【請求項2】 第1導電型の半導体基板上に絶縁膜を介
してゲート電極、窒化膜パターンを形成する工程と、前
記ゲート電極の側壁に窒化膜スペーサを形成する工程
と、前記ゲート電極及び窒化膜スぺーサをマスクとして
熱処理を行い、ゲート電極下部以外の前記絶縁膜を厚く
する工程と、前記窒化膜パターン及び窒化膜スペーサを
除去した後、全面に導電性部材を堆積する工程と、この
導電性部材を反応性イオンエッチングし、前記ゲート電
極の側壁に導電性部材を残存させる工程と、前記ゲート
電極及び導電性部材をマスクとして前記半導体基板に第
2導電型の不純物を導入し、第2導電型の低濃度領域を
形成する工程と、前記導電性部材の側壁に絶縁膜スぺー
サを形成する工程と、前記ゲート電極、導電性部材及び
絶縁膜スぺーサをマスクとして前記半導体基板に第2導
電型の不純物を導入し、第2導電型の高濃度領域を形成
する工程とを具備することを特徴とする半導体装置の製
造方法。
A step of forming a gate electrode and a nitride film pattern on a semiconductor substrate of a first conductivity type via an insulating film; a step of forming a nitride film spacer on a side wall of the gate electrode; Performing a heat treatment using the nitride film spacer as a mask to increase the thickness of the insulating film other than the lower portion of the gate electrode; and, after removing the nitride film pattern and the nitride film spacer, depositing a conductive member on the entire surface; Reactive ion etching this conductive member, leaving a conductive member on the side wall of the gate electrode, and introducing a second conductivity type impurity into the semiconductor substrate using the gate electrode and the conductive member as a mask; Forming a low concentration region of the second conductivity type, forming an insulating film spacer on a side wall of the conductive member, and masking the gate electrode, the conductive member and the insulating film spacer. Forming a high-concentration region of the second conductivity type by introducing a second conductivity type impurity into the semiconductor substrate.
JP10230464A 1998-08-17 1998-08-17 Semiconductor device and manufacture thereof Pending JP2000058826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10230464A JP2000058826A (en) 1998-08-17 1998-08-17 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10230464A JP2000058826A (en) 1998-08-17 1998-08-17 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000058826A true JP2000058826A (en) 2000-02-25

Family

ID=16908260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10230464A Pending JP2000058826A (en) 1998-08-17 1998-08-17 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000058826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295621A (en) * 2008-06-02 2009-12-17 Panasonic Corp Semiconductor device and method of manufacturing the same
CN102097491B (en) * 2009-12-15 2013-04-24 上海华虹Nec电子有限公司 Sonos and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295621A (en) * 2008-06-02 2009-12-17 Panasonic Corp Semiconductor device and method of manufacturing the same
CN102097491B (en) * 2009-12-15 2013-04-24 上海华虹Nec电子有限公司 Sonos and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH053206A (en) Offset gate transistor and manufacture thereof
KR19980029024A (en) MOSFET and manufacturing method
KR0177785B1 (en) Transistor with offset structure and method for manufacturing the same
KR100514526B1 (en) Semiconductor device and fabricating method thereof
US20090065859A1 (en) Trench transistor and method for manufacturing the same
JP2000058826A (en) Semiconductor device and manufacture thereof
JPH0370139A (en) Manufacture of semiconductor device
JP2776059B2 (en) Insulated gate field effect transistor
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH05243262A (en) Manufacture of semiconductor device
KR100376874B1 (en) Method for manufacturing transistor of semiconductor device
JP3260200B2 (en) Method for manufacturing semiconductor device
KR940004415B1 (en) Making method and structure of mosfet
JPH07115195A (en) Mos transistor and its manufacture
JPH0778979A (en) Fabrication of semiconductor device
KR100571384B1 (en) Semiconductor device and manufacturing method thereof
KR100504196B1 (en) Method for fabricating of semiconductor memory device
JP2000100964A (en) Semiconductor device
JP2002289841A (en) Semiconductor device and manufacturing method therefor
KR20020019139A (en) Semiconductor devices and manufacturing method thereof
JPS6057971A (en) Manufacture of semiconductor device
KR20020096393A (en) Method for Fabricating MOS transistor
JP2004207613A (en) Semiconductor device and manufacturing method thereof
JPH1126766A (en) Mos field effect transistor and manufacture thereof