JP2000044201A - Hydrogen generator - Google Patents

Hydrogen generator

Info

Publication number
JP2000044201A
JP2000044201A JP10210766A JP21076698A JP2000044201A JP 2000044201 A JP2000044201 A JP 2000044201A JP 10210766 A JP10210766 A JP 10210766A JP 21076698 A JP21076698 A JP 21076698A JP 2000044201 A JP2000044201 A JP 2000044201A
Authority
JP
Japan
Prior art keywords
hydrogen
stirring
rotor
catalyst
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10210766A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
哲生 飯島
Toshihiko Kondo
利彦 近藤
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10210766A priority Critical patent/JP2000044201A/en
Publication of JP2000044201A publication Critical patent/JP2000044201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generator improved in hydrogen generating efficiency by strengthening the contact of a catalyst with a rotor in a liquid layer. SOLUTION: In the hydrogen generator provided with a photocatalyst and/or a magnetic particulate catalyst for generating hydrogen in a liquid phase, a reactor 1 for housing a liquid hydrogen generating material and stirring device parts 2, 3, 4, 6 for stirring the liquid hydrogen generating material and the catalyst, the stirring device parts are formed so as to intermittently invert the rotation direction. In the device for generating hydrogen in the liquid phase by using the photocatalyst, the magnetic particulate catalytic material and the like by the irradiation with light and/or mechanical operation such as stirring, the catalytic reaction in the liquid phase is activated and hydrogen is efficiently generated by intermittently inverting the direction of stirring and providing holes and/or fins on the rotor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素発生装置、更に
詳細には、いわゆる光触媒材料などを用いて水素を効果
的に発生させ、水素を原料とする燃料電池等に用いられ
る水素発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen generator, and more particularly, to a hydrogen generator used for a fuel cell or the like using hydrogen as a raw material, which effectively generates hydrogen by using a so-called photocatalytic material or the like.

【0002】[0002]

【従来の技術】従来、半導体光触媒とよばれる材料のな
かで、Cu2Oを使った例では、水の可視光全分解反応
における量子収率は0.3%程度といわれてきた。
2. Description of the Related Art Conventionally, in the case of using Cu 2 O among materials called semiconductor photocatalysts, it has been said that the quantum yield in the visible light total decomposition reaction of water is about 0.3%.

【0003】しかし、近年これらの材料をいれた反応器
内を攪拌することにより、その水素発生量が増加し、数
10μmol/h程度の値がえられるという報告がある
(八嶋政明、ら「Cu2Oを用いる水の可視光全分解反
応の高効率化」、ほか。日本化学会、春季大会、講演番
号2H201〜2H208(1998))。その機構の
詳細は不明だが、攪拌という機械的運動エネルギーが何
らかのメカニズムによって化学反応に使われていると考
えられている。
[0003] However, in recent years, it has been reported that stirring a reactor containing these materials increases the amount of generated hydrogen, and a value of about several tens of mol / h can be obtained (Yashima Masaaki, et al., "Cu Higher Efficiency of Total Visible Light Decomposition Reaction of Water Using 2 O ", et al. The Chemical Society of Japan, Spring Meeting, Lecture No. 2H201 to 2H208 (1998)). The details of the mechanism are unknown, but it is thought that the mechanical kinetic energy of agitation is used in chemical reactions by some mechanism.

【0004】例えば、上記文献によれば、回転子を1個
入れた反応器内で通常のマグネティックスターラーを用
いて1800rpmの回転数で回転させたところ、可視
光(>480nm)領域で数10μmol/hの水素発
生があり、111時間の反応で使用した触媒(Cu
2O,700μmol)を上回る水素、酸素(H2:19
20μmol,O2:930μmol)の発生があった
という。また、Cu2Oなどの触媒を用いると、光の照
射を止めても(攪拌のみでも)水素の発生がみられた。
For example, according to the above-mentioned literature, when a conventional magnetic stirrer is used to rotate a reactor at 1800 rpm in a reactor containing one rotor, several tens μmol / m in the visible light (> 480 nm) region. h, and the catalyst (Cu
Hydrogen, oxygen (H 2 : 19) exceeding 2 O (700 μmol)
20 μmol, O 2 : 930 μmol). Further, when a catalyst such as Cu 2 O was used, generation of hydrogen was observed even when the irradiation of light was stopped (even with only stirring).

【0005】しかしながら、水素の発生効率は十分とは
いえず、またその発生のメカニズムを考慮すると、第1
にメカノーケミカル反応であること、第2に光触媒の場
合にはメカノーケミカル反応に加えて光触媒効果によっ
て反応がエンハンス(enhance)されるメカニズ
ムが推測できる。
[0005] However, the efficiency of hydrogen generation is not sufficient.
Second, in the case of a photocatalyst, it can be inferred that the reaction is enhanced by a photocatalytic effect in addition to the mechanochemical reaction.

【0006】[0006]

【発明が解決しようとする課題】本願は上記知見に鑑
み、触媒と液層中の回転子との接触を増大させることを
主眼とし、水素発生の効率アップのためになされたもの
である。
SUMMARY OF THE INVENTION In view of the above findings, the present invention has been made to increase the contact between a catalyst and a rotor in a liquid layer and to improve the efficiency of hydrogen generation.

【0007】[0007]

【発明が解決するための手段】上記課題を解決するた
め、本発明による水素発生装置は、液相より水素を発生
させる光触媒および/または磁性微粒子触媒、さらに液
状の水素発生材料を収納するための反応器と前記液状水
素発生材料及び触媒を撹拌するための撹拌装置部を有す
る水素発生装置において、前記撹拌装置部は撹拌方向を
断続的に反転させるようになっていることを特徴とす
る。
In order to solve the above-mentioned problems, a hydrogen generator according to the present invention comprises a photocatalyst for generating hydrogen from a liquid phase and / or a magnetic fine particle catalyst, and a liquid hydrogen generating material. In a hydrogen generator having a reactor and a stirring device for stirring the liquid hydrogen generating material and the catalyst, the stirring device is configured to intermittently reverse a stirring direction.

【0008】[0008]

【実施例】図1に本願の実施例を示す。本願は本実施例
に限定されるものではなく、容易に類推できる範囲で変
形が施された構成であってもよい。
FIG. 1 shows an embodiment of the present invention. The present application is not limited to the present embodiment, and may have a configuration modified in a range that can be easily analogized.

【0009】1は反応器、2はモータ、3,3’,3”
はともに回転子、4はモータと回転子をつなぐ回転軸で
あり、5で示す双方向に回転させる。回転方向は、6の
モータ2の電気回路によって制御される(撹拌装置部は
上述のモータ2、回転子3,3’、3”、回転軸4、電
気回路6により構成される)。7はモータ2を支えると
ともに反応器1を覆うふたであるが、好ましくは密閉構
造とするのがよい、8は発生したガスの出口であって、
図示していない分析器、あるいは貯蔵容器に導入され
る。9は液相より水素を発生させる光触媒および/また
は磁性微粒子触媒、10は液状の水素発生材料、例えば
分解される水である。
1 is a reactor, 2 is a motor, 3, 3 ', 3 "
Are both a rotor, and 4 is a rotating shaft connecting the motor and the rotor. The direction of rotation is controlled by an electric circuit of the motor 6 (the stirring unit is constituted by the motor 2, the rotors 3, 3 ', 3 ", the rotating shaft 4, and the electric circuit 6). A lid that supports the motor 2 and covers the reactor 1, and preferably has a closed structure. Reference numeral 8 denotes an outlet of the generated gas.
It is introduced into an analyzer (not shown) or a storage container. 9 is a photocatalyst and / or a magnetic fine particle catalyst for generating hydrogen from a liquid phase, and 10 is a liquid hydrogen generating material, for example, water to be decomposed.

【0010】11は反応器1内を光照射する光照射装置
部(光源)であって、通常は可視光である。この光照射
装置部は反応器内を照射可能なように構成されており、
たとえば反応器が透明の場合には、図1に示すように外
部に設けることができるが、反応器内に設けてもよい。
しかし、Fe34をはじめ磁性材料で構成される触媒
(磁性微粒子触媒)では必ずしも必要な構成部品ではな
い。
Reference numeral 11 denotes a light irradiation unit (light source) for irradiating the inside of the reactor 1 with light, which is usually visible light. This light irradiation device is configured to be able to irradiate the inside of the reactor,
For example, when the reactor is transparent, it can be provided outside as shown in FIG. 1, but may be provided inside the reactor.
However, a catalyst (magnetic fine particle catalyst) composed of a magnetic material such as Fe 3 O 4 is not always a necessary component.

【0011】図2、図3は、図1の3ないし3”の回転
子の構成例であって、円板状の回転子を複数層に設けた
図を示している。図2は円板状の回転子の表面及び裏面
に、例えば90度ごとにフィン31を設けた例で、フィ
ンの方向は上段(A−A’方向)と下段(B−B’方
向)とは角度をもって構成されてよい。また、フィンの
構造はその断面が三角形状としたが、より大きな面積で
あっても、曲線であっても、それらの組み合わせであっ
てもよい。
FIGS. 2 and 3 show examples of the configuration of the rotor 3 to 3 ″ in FIG. 1 in which disk-shaped rotors are provided in a plurality of layers. FIG. In the example in which the fins 31 are provided on the front and back surfaces of the rotor in the form of, for example, every 90 degrees, the direction of the fins is configured such that the upper stage (AA ′ direction) and the lower stage (BB ′ direction) have angles. The fin structure has a triangular cross section, but may have a larger area, a curved line, or a combination thereof.

【0012】図3は円板状の回転子に表面から裏面に貫
通する穴部32を設けた中空状の回転子の構成であっ
て、図2と同様上段(A−A’方向)と下段(B−B’
方向)とで角度を持たせるのがよい。いずれも液の流れ
を多くつくり、触媒機能をより活性にするためのもので
ある。
FIG. 3 shows a configuration of a hollow rotor in which a hole 32 penetrating from a front surface to a rear surface is provided in a disk-shaped rotor. As shown in FIG. 2, an upper stage (AA 'direction) and a lower stage are shown. (BB '
Direction) and an angle. All of these are intended to increase the flow of the liquid and make the catalytic function more active.

【0013】実験によれば、図3の回転子を用いて、前
記文献と同様な実験を行った。触媒にはナフィオンをコ
ーティングしたCu2Oを用い、回転方向を数秒から数
10秒ごとに逆転させて水素発生量を調べたところ、少
なくとも前記文献にくらべて数倍量の発生を確認した。
なお、水素発生量の測定はガスクロマトグラフィ(島津
製作所GC−8A)を用いて行った。
According to the experiment, an experiment similar to that of the above-mentioned document was conducted using the rotor shown in FIG. When Nafion-coated Cu 2 O was used as the catalyst, the rotation direction was reversed every few seconds to several tens of seconds, and the amount of generated hydrogen was examined.
In addition, the measurement of the amount of generated hydrogen was performed using gas chromatography (Shimadzu Corporation GC-8A).

【0014】触媒材料として、ナフィオンをコーティン
グしたCu2Oのほか、CuMO2(M:Fe,Co,N
i)、M’WO2(M’:Co,Ni)、Co4Nb
29、FeM”O4(M”:Al,Ga,W)、から選
ばれた少なくとも1種からなる材料でも同様に効率的な
水素発生を確認した。また、光照射の不要のFe34
どを用いた触媒であっても従来のスターラーを用いた反
応器より高い水素発生を示した。
As a catalyst material, in addition to Cu 2 O coated with Nafion, CuMO 2 (M: Fe, Co, N
i), M'WO 2 (M ': Co, Ni), Co 4 Nb
Efficient hydrogen generation was also confirmed with a material composed of at least one selected from 2 O 9 and FeM ″ O 4 (M ″: Al, Ga, W). Further, even with a catalyst using Fe 3 O 4 or the like which does not require light irradiation, hydrogen generation was higher than in a reactor using a conventional stirrer.

【0015】[0015]

【発明の効果】光触媒材料、磁性微粒子触媒材料、等を
用いて光照射および/または攪拌等の機械的操作によっ
て液相から水素を発生させる装置において、攪拌の方向
を断続的に反転させ、また回転子には、穴および/また
はフィンを設けたことにより、液相での触媒反応が活性
化されたため、効率的な水素発生が可能となった。
According to the present invention, in a device for generating hydrogen from a liquid phase by mechanical operation such as light irradiation and / or stirring using a photocatalyst material, a magnetic fine particle catalyst material, or the like, the direction of stirring is intermittently reversed. Since the rotor was provided with holes and / or fins, the catalytic reaction in the liquid phase was activated, so that efficient hydrogen generation became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による水素発生装置の一実施例の断面
図。
FIG. 1 is a sectional view of one embodiment of a hydrogen generator according to the present invention.

【図2】回転子の一例の斜視図。FIG. 2 is a perspective view of an example of a rotor.

【図3】回転子の他の例の斜視図。FIG. 3 is a perspective view of another example of a rotor.

【符号の説明】[Explanation of symbols]

1 反応器 2 モータ 3,3’,3” 回転子 4 回転軸 6 モータの電気回路 8 発生したガスの出口 9 触媒 10 分解される水 11 光源 Reference Signs List 1 reactor 2 motor 3, 3 ', 3 "rotor 4 rotating shaft 6 motor electric circuit 8 outlet of generated gas 9 catalyst 10 decomposed water 11 light source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒川 正泰 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 4G069 AA02 AA08 BA22A BA48A BA48C BB04A BB06A BB06B BC17A BC31A BC55A BC60A BC66A BC67A BC68A BE34A CC32 CC33 DA08 EA01Y EB18Y FB23 FB79  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masayasu Arakawa 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Telegraph and Telephone Co., Ltd. F-term (reference) 4G069 AA02 AA08 BA22A BA48A BA48C BB04A BB06A BB06B BC17A BC31A BC55A BC60A BC66A BC67A BC68A BE34A CC32 CC33 DA08 EA01Y EB18Y FB23 FB79

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液相より水素を発生させる光触媒および
/または磁性微粒子触媒、さらに液状の水素発生材料を
収納するための反応器と前記液状水素発生材料及び触媒
を撹拌するための撹拌装置部を有する水素発生装置にお
いて、前記撹拌装置部は撹拌方向を断続的に反転させる
ようになっていることを特徴とする水素発生装置。
1. A reactor for accommodating a photocatalyst and / or a magnetic fine particle catalyst for generating hydrogen from a liquid phase, a reactor for accommodating a liquid hydrogen generating material, and a stirring device for stirring the liquid hydrogen generating material and the catalyst. The hydrogen generator according to claim 1, wherein the stirring unit is configured to intermittently reverse the stirring direction.
【請求項2】 前記反応器内を光照射可能な光照射装置
部を有することを特徴とする請求項1記載の水素発生装
置。
2. The hydrogen generator according to claim 1, further comprising a light irradiation unit capable of irradiating the inside of the reactor with light.
【請求項3】 前記攪拌装置部はモータに接続された回
転子を直接駆動するようになっていることを特徴とする
請求項1から2項記載のいずれかの水素発生装置。
3. The hydrogen generator according to claim 1, wherein the stirring device directly drives a rotor connected to a motor.
【請求項4】 前記回転子の面にフィンおよび/または
表面から裏面に貫通する穴を有していることを特徴とす
る請求項3項記載の水素発生装置。
4. The hydrogen generator according to claim 3, wherein the rotor has a fin and / or a hole penetrating from the front surface to the back surface.
【請求項5】 前記回転子は複数層で構成され、前記回
転子に設けられた、穴および/またはフィンは互いに各
層で重ならないように構成されたことを特徴とする請求
項4記載の水素発生装置。
5. The hydrogen according to claim 4, wherein the rotor is composed of a plurality of layers, and holes and / or fins provided on the rotor are configured not to overlap with each other in each layer. Generator.
【請求項6】反応器内に設けられる光触媒または磁性触
媒は、Cu2O、ナフィオンをコーティングしたCu
2O、CuMO2(M:Fe,Co,Ni)、M’WO4
(M’:Co,Ni)、Co4Nb29、FeM”O
4(M”:Al,Ga,W)、Fe34から選ばれた少
なくとも1種からなる材料で構成されたことを特徴とす
る請求項1から5項記載のいずれかの記載の水素発生装
置。
6. The photocatalyst or the magnetic catalyst provided in the reactor is made of Cu 2 O, Nafion-coated Cu.
2 O, CuMO 2 (M: Fe, Co, Ni), M′WO 4
(M ': Co, Ni) , Co 4 Nb 2 O 9, FeM "O
4 (M ": Al, Ga , W), Fe 3 O 4 from selected at least one comprising that material composed of hydrogen generation of any description described 5 of Claims 1, wherein apparatus.
JP10210766A 1998-07-27 1998-07-27 Hydrogen generator Pending JP2000044201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10210766A JP2000044201A (en) 1998-07-27 1998-07-27 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10210766A JP2000044201A (en) 1998-07-27 1998-07-27 Hydrogen generator

Publications (1)

Publication Number Publication Date
JP2000044201A true JP2000044201A (en) 2000-02-15

Family

ID=16594786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10210766A Pending JP2000044201A (en) 1998-07-27 1998-07-27 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP2000044201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246355A (en) * 2007-03-29 2008-10-16 Tokyo Electric Power Co Inc:The Photocatalytic reaction apparatus
KR101541746B1 (en) 2014-05-02 2015-08-05 금오공과대학교 산학협력단 Photocatalytic hydrogen production from water under visible light and hydrogen production from water using it
WO2016084025A2 (en) 2014-11-28 2016-06-02 Ulusal Bor Arastirma Enstitusu A cartridge structure designed for generation of hydrogen gas
CN110038573A (en) * 2019-05-15 2019-07-23 沈阳工大蓝金环保产业技术研究院有限公司 Heterogeneous fenton catalyst Nafion/Fe3+Composite membrane and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246355A (en) * 2007-03-29 2008-10-16 Tokyo Electric Power Co Inc:The Photocatalytic reaction apparatus
KR101541746B1 (en) 2014-05-02 2015-08-05 금오공과대학교 산학협력단 Photocatalytic hydrogen production from water under visible light and hydrogen production from water using it
WO2016084025A2 (en) 2014-11-28 2016-06-02 Ulusal Bor Arastirma Enstitusu A cartridge structure designed for generation of hydrogen gas
WO2016084025A3 (en) * 2014-11-28 2016-07-14 Ulusal Bor Arastirma Enstitusu A cartridge structure designed for generation of hydrogen gas
CN110038573A (en) * 2019-05-15 2019-07-23 沈阳工大蓝金环保产业技术研究院有限公司 Heterogeneous fenton catalyst Nafion/Fe3+Composite membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
Li et al. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange
Jiang et al. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide
Zhang et al. Synthesis of titania-supported platinum catalyst: the effect of pH on morphology control and valence state during photodeposition
Balzani et al. Electron transfer in chemistry
JP2013530834A (en) Water splitting using photocatalyst
Shi et al. Fe‐incorporated Ni/MoO2 hollow heterostructure nanorod arrays for high‐efficiency overall water splitting in alkaline and seawater media
Zhang et al. Towards a molecular level understanding of the multi-electron catalysis of water oxidation on metal oxide surfaces
Lu et al. Non-precious metal activated MoSi2N4 monolayers for high-performance OER and ORR electrocatalysts: A first-principles study
Ali et al. Role of the radiations in water splitting for hydrogen generation
Liu et al. Mo− N bonds effect between MoSx coupling with CoN for efficient photocatalytic hydrogen production
Otgonbayar et al. Novel ternary composite of LaYAgO4 and TiO2 united with graphene and its complement: Photocatalytic performance of CO2 reduction into methanol
Zhu et al. Se-incorporation stabilizes and activates metastable MoS2 for efficient and cost-effective water gas shift reaction
CN109433229A (en) A kind of preparation method of CdS/CoO nano-heterogeneous structure
Wang et al. Embedding Nano‐Piezoelectrics into Heterointerfaces of S‐Scheme Heterojunctions for Boosting Photocatalysis and Piezophotocatalysis
Bootluck et al. S-Scheme α-Fe 2 O 3/TiO 2 Photocatalyst with Pd Cocatalyst for Enhanced Photocatalytic H 2 Production Activity and Stability
JP2000044201A (en) Hydrogen generator
Madi et al. 2D/2D V2C mediated porous g-C3N4 heterojunction with the role of monolayer/multilayer MAX/MXene structures for stimulating photocatalytic CO2 reduction to fuels
Zhang et al. Pyridine Grafted on SnO2‐Loaded Carbon Nanotubes Acting as Cocatalyst for Highly Efficient Electroreduction of CO2
Pollet et al. Using Ultrasound to Effectively Homogenise Catalyst Inks: Is this Approach Still Acceptable?: Recommendations on the use of ultrasound for mixing catalyst inks
Heo et al. Photocatalytic and electrocatalytic reduction of CO2 by MXene-based nanomaterials: A review
Li et al. Recent advances in the design of single-atom electrocatalysts by defect engineering
Lu et al. Elemental diversity-enhanced HER and OER photoelectrochemical catalytic performance in FeCo-AuNP/nitrogen-carbon composite catalysts
Fukutani et al. Hydrogenomics: Efficient and selective hydrogenation of stable molecules utilizing three aspects of hydrogen
Yan et al. Vibronic Coupling of Adjacent Single-Atom Co and Zn Sites for Bifunctional Electrocatalysis of Oxygen Reduction and Evolution Reactions
Tributsch Multi-electron transfer catalysis for energy conversion based on abundant transition metals