JP2000017731A - Joint structure of concrete member to steel pipe member - Google Patents
Joint structure of concrete member to steel pipe memberInfo
- Publication number
- JP2000017731A JP2000017731A JP10201273A JP20127398A JP2000017731A JP 2000017731 A JP2000017731 A JP 2000017731A JP 10201273 A JP10201273 A JP 10201273A JP 20127398 A JP20127398 A JP 20127398A JP 2000017731 A JP2000017731 A JP 2000017731A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- steel
- pipe member
- concrete
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 401
- 239000010959 steel Substances 0.000 title claims abstract description 401
- 239000004567 concrete Substances 0.000 title claims abstract description 85
- 239000000463 material Substances 0.000 claims abstract description 98
- 239000000945 filler Substances 0.000 claims abstract description 40
- 239000011324 bead Substances 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 abstract description 13
- 230000001070 adhesive Effects 0.000 abstract description 13
- 239000004570 mortar (masonry) Substances 0.000 description 36
- 238000005304 joining Methods 0.000 description 15
- 238000003466 welding Methods 0.000 description 14
- 239000002131 composite material Substances 0.000 description 11
- 230000002093 peripheral Effects 0.000 description 10
- 238000005452 bending Methods 0.000 description 7
- 208000001285 Stress Fractures Diseases 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 6
- 239000006260 foam Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 230000003014 reinforcing Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 238000009415 formwork Methods 0.000 description 3
- 230000001771 impaired Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 2
- 239000011440 grout Substances 0.000 description 2
- 230000001965 increased Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011513 prestressed concrete Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 101710027986 FA02 Proteins 0.000 description 1
- 210000001503 Joints Anatomy 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009430 construction management Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002035 prolonged Effects 0.000 description 1
- 239000003247 radioactive fallout Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願に係る発明は、土木又は
建築構造物等において、鋼管部材とコンクリート部材と
を接合する構造に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for joining steel pipe members and concrete members in civil engineering or building structures.
【0002】[0002]
【従来の技術】土木又は建築構造物等の構造材料とし
て、コンクリート又は鋼材が広く用いられている。コン
クリートは施工現場で任意の形状の部材を形成すること
ができ、維持管理が容易という利点を有しており、鋼材
は軽量で強固な構造を構築できるという利点を備えてい
る。そして、上記それぞれの利点を生かした構造として
コンクリート・鋼複合構造が提案されており、例えば、
道路橋・鉄道橋等における上床版及び下床版をコンクリ
ートで構成し、これらを鋼管斜材で連結するコンクリー
ト・鋼複合トラス橋がある。2. Description of the Related Art Concrete or steel is widely used as a structural material for civil engineering or building structures. Concrete has an advantage that a member of an arbitrary shape can be formed at a construction site and maintenance is easy, and a steel material has an advantage that a lightweight and strong structure can be constructed. And concrete / steel composite structure has been proposed as a structure taking advantage of each of the above advantages, for example,
There is a concrete / steel composite truss bridge in which the upper deck and the lower deck of road bridges and railway bridges are made of concrete, and these are connected by steel pipe diagonal members.
【0003】このような構造物においては、コンクリー
ト部材と鋼部材との接合部で力を円滑に伝達するととも
に、大きな局部的応力の発生を抑え、構造上の弱点とな
らないようにしなければならない。このようなコンクリ
ート部材と鋼部材との接合構造として、例えば、コンク
リート・鋼複合トラス橋では、トラスの上弦材・下弦材
及び斜材を鋼部材によって一体に組み立て、上弦材及び
下弦材にスタッドジベル等を設けておいてコンクリート
からなる上床版及び下床版と一体化する構造が考えられ
ている。しかし、このような構造では鋼材の使用量が多
く、構築費用が多大となるとともに、鋼トラスの組み立
てに高い精度が要求され、コンクリートと鋼部材との複
合構造とするメリットが生かされないことになる。[0003] In such a structure, it is necessary to smoothly transmit the force at the joint between the concrete member and the steel member, to suppress the generation of large local stress, and not to cause a structural weakness. As such a joint structure between a concrete member and a steel member, for example, in a concrete / steel composite truss bridge, the upper chord, the lower chord and the diagonal of the truss are integrally assembled by a steel member, and the stud dowel is attached to the upper chord and the lower chord. A structure has been considered in which an upper floor and a lower floor made of concrete are integrated with each other. However, in such a structure, a large amount of steel is used, the construction cost becomes large, and high precision is required for assembling the steel truss, so that advantages of a composite structure of concrete and steel members cannot be utilized. .
【0004】このため、鋼斜材のそれぞれを直接コンク
リートの上床版又は下床版と接合する構造を採用するの
が望ましく、次のような接合構造が考えられている。図
10に示す接合構造は、斜材である鋼部材101の端部
に、この部材の軸線とほぼ直角に鋼板102を溶接し、
この鋼板から複数のスタッドジベル103を立設する。
そして、このスタッドジベル103を埋込むようにコン
クリートを打設して鋼部材101と一体に接合されたコ
ンクリート部材104を形成するものである。また、図
11に示す接合構造は、図10に示す例と同様に鋼部材
111の端部に鋼板112を溶接接合し、この鋼板11
2に穿設されたねじ孔にPC鋼棒又は棒鋼等の棒状鋼材
113を螺合する。そして、このPC鋼棒又は棒鋼をコ
ンクリート内に埋込むことによってコンクリート部材1
14と鋼部材111とを一体化するものである。For this reason, it is desirable to adopt a structure in which each of the steel diagonal members is directly joined to the upper slab or the lower slab of concrete, and the following joining structures have been considered. In the joint structure shown in FIG. 10, a steel plate 102 is welded to an end of a steel member 101, which is a diagonal member, substantially perpendicularly to the axis of the member.
A plurality of stud dowels 103 are erected from this steel plate.
Then, concrete is cast so as to embed the stud dowel 103 to form a concrete member 104 integrally joined with the steel member 101. Further, in the joining structure shown in FIG. 11, a steel plate 112 is welded to the end of a steel member 111 in the same manner as in the example shown in FIG.
A bar-shaped steel material 113 such as a PC steel rod or a steel bar is screwed into the screw hole formed in Step 2. By embedding this PC steel bar or steel bar in concrete, concrete member 1
14 and the steel member 111 are integrated.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、図10
又は図11に示すような接合構造では次のような問題点
がある。図10に示すような構造では、鋼部材101に
作用する力は、端部の鋼板102及びこれに溶接接合さ
れたスタッドジベル103を介してコンクリート部材1
04に伝達される。このため、鋼部材101と鋼板10
2との溶接部及び鋼板102とスタッドジベル103と
の溶接部は十分な強度及び信頼性が要求され、溶接工程
の管理及び検査を厳重に行なう必要がある。また、溶接
接合されるスタッドジベル103には高強度の鋼材を用
いることが難しく、必要なスタッドジベルの数が多くな
って配置が困難となる場合が生じる。さらに、複合トラ
ス橋等ではコンクリート部材と鋼部材との接合部に繰り
返し変動する力が作用することになり、鋼部材101と
鋼板102との溶接接合部およびスタッドジベル103
の基部が疲労破壊を起こすことが考えられる。However, FIG.
Alternatively, the joining structure as shown in FIG. 11 has the following problems. In the structure as shown in FIG. 10, the force acting on the steel member 101 is transmitted to the concrete member 1 via the steel plate 102 at the end and the stud dowel 103 welded thereto.
04. Therefore, the steel member 101 and the steel plate 10
2 and the weld between the steel plate 102 and the stud dowel 103 are required to have sufficient strength and reliability, and it is necessary to strictly control and inspect the welding process. In addition, it is difficult to use a high-strength steel material for the stud dowel 103 to be welded and joined, and the number of necessary stud dowels may increase, which may make the arrangement difficult. Further, in a composite truss bridge or the like, a force that fluctuates repeatedly acts on the joint between the concrete member and the steel member, and the weld joint between the steel member 101 and the steel plate 102 and the stud dowel 103
May cause fatigue fracture.
【0006】一方、図11に示すような構造では、棒状
鋼材113としてPC鋼棒等の高強度鋼を用いることが
でき、本数を低減して接合部の構造を簡単なものにする
ことができるが、棒状鋼材に螺条が設けられており、コ
ンクリート部材114と鋼部材111との接合部に大き
な軸力又は曲げモーメントが繰り返し作用すると、上記
螺条が設けられている部分で棒状鋼材113に疲労破壊
が生じることが考えられる。また、図10に示す構造と
同様に、鋼部材111と鋼板112との溶接接合部に疲
労破壊が生じるおそれもある。On the other hand, in the structure shown in FIG. 11, a high-strength steel such as a PC steel bar can be used as the bar-shaped steel material 113, and the number of bars can be reduced to simplify the structure of the joint. However, when a thread is provided on the bar-shaped steel material and a large axial force or bending moment repeatedly acts on the joint between the concrete member 114 and the steel member 111, the bar-shaped steel material 113 is formed at the portion where the thread is provided. It is possible that fatigue fracture occurs. Further, similarly to the structure shown in FIG. 10, there is a possibility that fatigue fracture may occur at the welded joint between the steel member 111 and the steel plate 112.
【0007】本願に係る発明は、上記のような問題点に
鑑みてなされたものであり、その目的は、簡単な構造で
耐疲労性に優れ、構造上の弱点のないコンクリート部材
と鋼管部材との接合構造を提供することである。The invention according to the present application has been made in view of the above-mentioned problems, and an object thereof is to provide a concrete member and a steel pipe member having a simple structure, excellent fatigue resistance, and having no structural weakness. Is to provide a bonding structure.
【0008】[0008]
【課題を解決するための手段】上記問題点を解決するた
めに、請求項1に記載の発明は、 鋼管部材の端部から
該鋼管部材の内部に棒状鋼材の一部が差し入れられ、
この鋼管部材の前記棒状鋼材が差し入れられた部分の内
面に突起が形成されており、 この鋼管部材の端部付近
の内側に、前記棒状鋼材を包み込み、硬化して該棒状鋼
材及び前記鋼管部材と付着する充填材が充填され、 該
鋼管部材の端部が、コンクリートに突き当てられるよう
にコンクリート部材が形成され、 前記棒状鋼材の前記
鋼管部材端から突き出した部分が前記コンクリート部材
内に埋込まれていることを特徴とするコンクリート部材
と鋼管部材との接合構造を提供するものである。In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a part of a bar-shaped steel material is inserted into the steel pipe member from an end of the steel pipe member,
A projection is formed on an inner surface of a portion of the steel pipe member into which the bar-shaped steel material is inserted, and inside the vicinity of an end of the steel pipe member, the bar-shaped steel material is wrapped and hardened to harden the bar-shaped steel material and the steel pipe member. A filler member is filled, a concrete member is formed such that an end of the steel pipe member is brought into contact with concrete, and a portion of the bar-shaped steel material protruding from the end of the steel pipe member is embedded in the concrete member. The present invention provides a joint structure between a concrete member and a steel pipe member.
【0009】上記構成において、棒状鋼材は鉄筋又はP
C鋼材等を用いることができ、コンクリート又は充填材
との付着による力の伝達を円滑に行なうために、周面に
凹凸がほぼ一様に設けられた異形鉄筋又は異形PC鋼棒
を用いるのが望ましい。上記鋼管部材の内面に形成され
る突起は、鋼管部材と強固に接合されるものであればよ
く、一つ一つが独立した山状、線状、環状のものであっ
てもよいし、鋼管部材の内面の周方向に連続した環状又
は螺旋状等、様々な形態のものを採用することができ
る。また、この突起は請求項2に記載のように溶接ビー
トで形成するのが望ましいが、鋼片、棒鋼、線材等を溶
接等の手段によって添加するものであってもよく、また
鋼管素材の圧延時に設けるものであってもよい。なお、
請求項2に記載の構成とすることにより、突起を効率よ
く形成することができるとともに、形成された溶接ビー
ドからなる突起は強固に鋼管と一体化される。[0009] In the above structure, the bar-shaped steel material is a reinforcing steel or P
C steel or the like can be used, and in order to smoothly transmit the force due to the adhesion with the concrete or the filler, it is preferable to use a deformed reinforcing steel bar or a deformed PC steel rod having irregularities provided almost uniformly on the peripheral surface. desirable. The protrusion formed on the inner surface of the steel pipe member may be any one that is firmly joined to the steel pipe member, and each one may be an independent mountain-shaped, linear, or annular one, or a steel pipe member. Various forms, such as an annular shape or a spiral shape continuous in the circumferential direction of the inner surface of the member, can be adopted. It is desirable that the projections be formed by welding beats as described in claim 2. However, the projections may be formed by adding a billet, a bar, a wire, or the like by welding or the like. It may be provided sometimes. In addition,
According to the configuration of the second aspect, the projections can be efficiently formed, and the projections formed of the formed weld beads are firmly integrated with the steel pipe.
【0010】上記充填材は、鋼管部材の内面及びこの内
面に設けられた突起と密着するとともに、鋼管部材内側
に差し入れられた棒状鋼材を包み込むように充填できる
ものであって、硬化した後にこれらの鋼材と強く付着す
るものであれば様々な材料を用いることができ、例え
ば、コンクリート、モルタル、セメント系グラウト材、
エポキシ等の合成樹脂、樹脂コンクリート、樹脂モルタ
ル等がある。また、セメント系の材料では硬化時の収縮
を抑制するための混和剤又はアルミニウム粉等を混合し
て用いるのが望ましい。[0010] The filler is in contact with the inner surface of the steel pipe member and the projections provided on the inner surface, and can be filled so as to wrap the rod-shaped steel material inserted inside the steel pipe member. Various materials can be used as long as they strongly adhere to steel, such as concrete, mortar, cement grout,
There are synthetic resins such as epoxy, resin concrete, resin mortar, and the like. In addition, in the case of a cement-based material, it is desirable to use a mixture of an admixture for suppressing shrinkage during curing or aluminum powder.
【0011】このような構成のコンクリート部材と鋼部
材との接合構造では、鋼管部材に作用する圧縮力は、鋼
管部材の端部から突き当てられたコンクリート部材に伝
達される。また、引張力は鋼管部材内側の充填材との付
着力により、一旦充填材に伝えられ、さらに棒状鋼材に
伝えられる。そして、この棒状鋼材は鋼管部材端から突
き出す部分がコンクリート部材内に埋込まれているの
で、この棒状鋼材を介してコンクリート部材に引張力が
伝達される。このように引張力は棒状鋼材の周面の広い
範囲に分布して作用する付着力によって伝達されるの
で、極部的に応力が集中することが少なく、変動する軸
力や曲げモーメントが長期間にわたって繰り返し作用す
る場合にも、棒状鋼材に疲労破壊を生じるおそれがなく
なる。また、上記接合構造では、大きな力が作用する部
分に溶接接合を用いる必要がなく、構造上の弱点を無く
すことができる。In the joint structure between the concrete member and the steel member having such a configuration, the compressive force acting on the steel tube member is transmitted to the concrete member struck from the end of the steel tube member. Further, the tensile force is transmitted to the filler once by the adhesive force with the filler inside the steel pipe member, and further transmitted to the bar-shaped steel material. Since the rod-shaped steel material has a portion protruding from the end of the steel pipe member embedded in the concrete member, a tensile force is transmitted to the concrete member via the rod-shaped steel material. As described above, since the tensile force is transmitted by the adhesive force that acts by distributing over a wide range of the peripheral surface of the rod-shaped steel material, stress is less concentrated locally, and the fluctuating axial force and bending moment are prolonged. In the case of acting repeatedly over a long period of time, there is no possibility that fatigue fracture will occur in the bar-shaped steel material. Further, in the above-described joint structure, it is not necessary to use a weld joint in a portion where a large force acts, and it is possible to eliminate structural weakness.
【0012】一方、鋼管部材の内面には、ほぼ均等に複
数の突起が形成されているので、鋼管部材と充填材との
付着性能が高められ、また充填材の付着力が低下又は消
失しても充填材の固結体が鋼管部材から抜け出さないよ
うに拘束される。このため、より確実に引張力をコンク
リート部材へ伝達することができ、信頼性、耐疲労性に
優れた接合構造が得られる。On the other hand, since the plurality of projections are formed substantially evenly on the inner surface of the steel pipe member, the adhesion performance between the steel pipe member and the filler is enhanced, and the adhesive force of the filler is reduced or lost. Also, the consolidated body of the filler is restrained so as not to escape from the steel pipe member. For this reason, the tensile force can be more reliably transmitted to the concrete member, and a joint structure excellent in reliability and fatigue resistance can be obtained.
【0013】さらに、鋼管部材の端部は、多くのスタッ
ドジベル等を設ける必要がなく、構造を簡単なものとす
ることができ、これと接合されるコンクリート部材のコ
ンクリート打設時に充填不良等の欠陥が生じるのを低減
することができる。Further, the end portion of the steel pipe member does not need to be provided with many stud dowels or the like, and can have a simple structure. The occurrence of defects can be reduced.
【0014】請求項3に記載の発明は、 鋼管部材の端
部から該鋼管部材の内部に棒状鋼材の一部が差し入れら
れ、 前記棒状鋼材の前記鋼管部材内に差し入れられた
先端部が、該鋼管部材の軸線とほぼ垂直に配置され中空
部を閉塞するように該鋼管部材と接合された鋼板材に、
相対変位を拘束するように係止され、 この鋼管部材の
端部付近の内側に、前記棒状鋼材を包み込み、硬化して
該棒状鋼材及び前記鋼管部材と付着する充填材が充填さ
れ、 該鋼管部材の端部が、コンクリートに突き当てら
れるようにコンクリート部材が形成され、 前記棒状鋼
材の前記鋼管部材端から突き出した部分が前記コンクリ
ート部材内に埋込まれていることを特徴とするコンクリ
ート部材と鋼管部材との接合構造を提供するものであ
る。According to a third aspect of the present invention, a part of a rod-shaped steel material is inserted into the steel pipe member from an end of the steel pipe member, and the tip of the rod-shaped steel material inserted into the steel pipe member is formed by A steel plate member joined to the steel pipe member so as to close the hollow portion and is disposed substantially perpendicular to the axis of the steel pipe member,
The steel pipe member is locked so as to restrain the relative displacement, and the steel pipe member is filled with a filler material that wraps around the bar-shaped steel material and hardens and adheres to the bar-shaped steel material and the steel pipe member. A concrete member is formed such that an end of the steel member is abutted against concrete, and a portion of the bar-shaped steel material protruding from an end of the steel pipe member is embedded in the concrete member. It is to provide a joint structure with a member.
【0015】上記鋼板材は、鋼管部材内の中空部に未硬
化の充填材が充填された時に、漏出が生じない程度に隙
間なく閉塞するように取り付けられるものである。ま
た、鋼管部材との接合は、必ずしも全周にわたって接合
する必要はなく、棒状鋼材の位置を維持し、未硬化の充
填材を支持することができる程度に固定されればよく、
例えば、溶接接合を採用するときには、周方向の数カ所
程度を接合するものでよい。なお、棒状鋼材の先端部と
鋼板材との係止構造は適宜に選択することができるが、
鋼板材が鋼管内に接合された後に、鋼管の端部から差し
入れた棒状鋼材を容易に係止することができるものが望
ましい。[0015] The above-mentioned steel sheet material is mounted so that when the hollow portion in the steel pipe member is filled with the uncured filler, there is no gap so as not to cause leakage. In addition, the joining with the steel pipe member does not necessarily need to be joined over the entire circumference, and it is sufficient that the position of the bar-shaped steel material is maintained and fixed so that the uncured filler can be supported,
For example, when welding is adopted, it may be joined at several places in the circumferential direction. In addition, the locking structure between the tip of the bar-shaped steel material and the steel plate material can be appropriately selected,
It is desirable that the bar-shaped steel material inserted from the end of the steel pipe be easily locked after the steel sheet material is joined into the steel pipe.
【0016】このような構成の接合構造では、棒状鋼材
の、鋼管部材に差し入れられた部分の先端部が鋼板材に
係止されており、定着機構における力の伝達経路が分散
され、さらに接合部分の信頼性を高めることができる。
また、鋼管内に差し入れられた棒状鋼材を所定位置に保
持して、充填材を注入を行なうことが容易となるととも
に、鋼板材が充填材の型枠として機能し、作業の効率が
向上する。In the joining structure having such a configuration, the tip end of the portion of the bar-shaped steel material inserted into the steel pipe member is locked to the steel plate material, the transmission path of the force in the fixing mechanism is dispersed, and the joining portion is further reduced. Reliability can be improved.
Further, the rod-shaped steel material inserted into the steel pipe is held at a predetermined position to easily inject the filler, and the steel plate functions as a mold for the filler, thereby improving the work efficiency.
【0017】請求項4に記載の発明は、 請求項1、請
求項2又は請求項3に記載のコンクリート部材と鋼管部
材との接合構造において、 前記鋼管部材の端部に、こ
の鋼管部材の軸線とほぼ直角に端部鋼板が接合され、
前記棒状鋼材は、前記端部鋼板に設けられた開孔に挿通
して、前記鋼管部材内に差し入れられているものとす
る。According to a fourth aspect of the present invention, in the joint structure between a concrete member and a steel pipe member according to any one of the first to third aspects, an axis of the steel pipe member is provided at an end of the steel pipe member. And the end steel plate is joined almost at right angles,
It is assumed that the rod-shaped steel material is inserted into the steel pipe member through an opening provided in the end steel plate.
【0018】上記鋼管部材と端部鋼板との接合は、例え
ば溶接等の従来から知られている一般的な方法でよい。
上記端部鋼板に設けられた開孔は、これに挿通される棒
状鋼材よりやや大きいものとするのが望ましいが、複数
の棒状鋼材を挿通することができるような大きな開孔を
設けてもよく、棒状鋼材と端部鋼板とが係合されるもの
ではなく、力を伝達しないようにする。The steel pipe member and the end steel plate may be joined by a conventionally known general method such as welding.
The opening provided in the end steel plate is desirably slightly larger than the rod-shaped steel material inserted therethrough, but it may be provided with a large opening through which a plurality of rod-shaped steel materials can be inserted. In addition, the bar-shaped steel material and the end steel plate are not engaged with each other, so that no force is transmitted.
【0019】このような構成の接合構造では、鋼管部材
と充填材との付着性が損なわれた場合でも、棒状鋼材と
一体となった充填材の固結体が端部鋼板に突き当たり、
充填材が鋼管部材から抜け出すことがない。このため、
引張力が確実に鋼管部材から棒状部材に伝達され、接合
部分の高い信頼性が得られる。また、上記接合構造で
は、圧縮力が端部鋼板を介してコンクリートに伝達さ
れ、コンクリートに局部的に大きな応力が発生するのが
回避される。In the joint structure having such a configuration, even when the adhesion between the steel pipe member and the filler is impaired, the solidified body of the filler integrated with the rod-shaped steel material abuts against the end steel plate,
The filler does not escape from the steel pipe member. For this reason,
The tensile force is reliably transmitted from the steel pipe member to the rod-shaped member, and high reliability of the joint is obtained. Further, in the above-mentioned joint structure, the compressive force is transmitted to the concrete via the steel plate at the end, thereby avoiding locally generating a large stress in the concrete.
【0020】請求項5に記載の発明は、請求項4に記載
のコンクリート部材と鋼管部材との接合構造において、
前記端部鋼板の前記鋼管部材と接合された面の鋼管部
材内中央部に、硬化した前記充填材より柔軟に変形する
介挿部材が接着され、硬化した充填材と該端部鋼板と
が、鋼管内の中央部付近で隔離されているものとする。According to a fifth aspect of the present invention, in the joint structure between a concrete member and a steel pipe member according to the fourth aspect,
An insertion member that is more flexibly deformed than the hardened filler is bonded to the center portion of the steel pipe member on the surface of the end steel sheet joined to the steel pipe member, and the hardened filler and the end steel sheet are bonded together. It shall be isolated near the center of the steel pipe.
【0021】上記接合構造のように、鋼管部材内に棒状
鋼材が挿入され、この鋼管部材と棒状鋼材とが硬化した
充填材によって一体化されていると、鋼管部材とコンク
リート部材との間に引き離そうとする力が作用したとき
に、棒状鋼材の引張力によって硬化した充填材に変形が
生じる。つまり、棒状鋼材の周辺部と、鋼管部材の内面
と付着した部分との間にせん断変形が生じる。そして、
この充填材が上記端部鋼板に密接するように充填されて
いると、この硬化した充填材が端部鋼板に強く押し付け
られ、図9に示すように端部鋼板の中央部および鋼管部
材との接合部に大きな曲げモーメントが生じる。このよ
うな曲げモーメントが繰り返し作用すると、端部鋼板と
鋼管部材との溶接接合部に疲労破壊が生じるおそれがあ
る。この部分は、破壊が生じても直ちに構造上の問題が
生じるものではないが、耐久性の劣化等の原因となる。
しかし、請求項5に記載の接合構造のように、端部鋼板
に介挿部材が接着されていることにより、棒状鋼材に大
きな引張力が作用したときの充填材の変形は、上記介挿
部材に吸収されて、端部鋼板に作用する曲げモーメント
が低減される。As in the above joint structure, when a rod-shaped steel material is inserted into a steel pipe member and the steel pipe member and the rod-shaped steel material are integrated by a hardened filler, the steel pipe member and the concrete member are separated from each other. When a force is applied, the filler hardened by the tensile force of the bar-shaped steel material is deformed. That is, shear deformation occurs between the peripheral portion of the rod-shaped steel material and the portion adhered to the inner surface of the steel pipe member. And
When the filler is filled so as to be in close contact with the end steel plate, the hardened filler is pressed strongly against the end steel plate, and as shown in FIG. A large bending moment occurs at the joint. When such a bending moment acts repeatedly, there is a possibility that fatigue fracture may occur in a welded joint between the end steel plate and the steel pipe member. Although this portion does not cause a structural problem immediately even if it is broken, it causes deterioration of durability and the like.
However, since the interposition member is adhered to the end steel plate as in the joint structure according to claim 5, the deformation of the filler when a large tensile force acts on the bar-shaped steel material is reduced by the insertion member. And the bending moment acting on the end steel plate is reduced.
【0022】なお、上記介挿部材は、鋼管部材の内側の
全面には接着せず、中央部のみとして周辺部は充填材が
端部鋼板と直接に接触するように構成するのが望まし
い。このように周辺部で充填材が端部鋼板と当接してい
ることにより、硬化した充填材と鋼管部材との付着が切
れた場合にも、充填材と鋼管部材との相対変位が拘束さ
れることになる。It is preferable that the interposition member is not adhered to the entire inner surface of the steel pipe member, but is formed only at the center portion so that the filler directly contacts the end steel plate at the periphery. Since the filler is in contact with the end steel plate at the peripheral portion in this manner, even when the adhesion between the hardened filler and the steel pipe member is broken, the relative displacement between the filler and the steel pipe member is restricted. Will be.
【0023】[0023]
【発明の実施の形態】以下、本願に係る発明の実施の形
態を図に基づいて説明する。図1は、本願発明の一実施
形態であるコンクリート部材と鋼管部材との接合構造が
適用されるコンクリート・鋼複合トラス橋を示す概略側
面図及び断面図である。この複合トラス橋は、複数の橋
脚1a,1b及び橋台(図示しない)上に支持された連
続トラス2を有するものであり、このトラス構造は、プ
レストレスストコンクリートからなる上床版11と、こ
の下方に支持されるプレストレストコンクリートの下床
版12と、上記上床版11と下床版12とを連結する鋼
管の斜材13とで主要部が構成され、上床版11が上弦
材として、下床版12が下弦材として機能するものとな
っている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view and a sectional view showing a concrete / steel composite truss bridge to which a joint structure between a concrete member and a steel pipe member according to an embodiment of the present invention is applied. This composite truss bridge has a continuous truss 2 supported on a plurality of piers 1a and 1b and an abutment (not shown). The truss structure includes an upper deck 11 made of prestressed concrete and The main part is composed of a lower floor slab 12 of prestressed concrete supported by a slab, and a steel pipe diagonal member 13 connecting the upper floor slab 11 and the lower floor slab 12, and the upper floor slab 11 is used as an upper chord material, Reference numeral 12 functions as a lower chord material.
【0024】上記上床版11は、橋の軸線方向に連続し
ており、この上に路面が形成されるもので、軸線方向及
びこれと直角方向にPC鋼材(図示しない)が埋設され
ている。そして、これらのPC鋼材を緊張し、コンクリ
ートに定着することによってプレストレスが導入されて
おり、上弦材として機能することによる圧縮力又は引張
力が作用した時にも、有害なひび割れ等が生じないよう
になっている。一方、下床版12も橋の軸線方向にプレ
ストレスが導入され、トラスの下弦材として機能するこ
とによる圧縮力及び引張力に耐え得るようになってい
る。上記斜材13は橋の軸線方向に傾斜するように配置
されており、傾斜方向が逆となった斜材13a,13b
が交互に配列されてワレントラスを形成している。そし
て、それぞれの斜材13a,13bは端部が上床版11
及び下床版12と接合されている。The upper floor slab 11 is continuous in the axial direction of the bridge, on which a road surface is formed, and a PC steel material (not shown) is buried in the axial direction and at right angles thereto. Prestress is introduced by tensioning these PC steel materials and fixing them to concrete, so that even when a compressive force or a tensile force due to functioning as the upper chord material acts, harmful cracks and the like do not occur. It has become. On the other hand, the prestress is also introduced into the lower floor slab 12 in the axial direction of the bridge, so that the lower slab 12 can withstand the compressive and tensile forces caused by functioning as the lower chord of the truss. The diagonal members 13 are arranged so as to be inclined in the axial direction of the bridge, and the diagonal members 13a and 13b whose inclination directions are reversed.
Are alternately arranged to form a warren truss. Each of the diagonal members 13a and 13b has an end portion on the upper floor slab 11.
And the lower deck 12.
【0025】図2は、上記コンクリート・鋼複合トラス
橋におけるコンクリートの上床版11と、鋼管からなる
斜材との接合部であって、本願発明の一実施形態である
コンクリート部材と鋼管部材との接合構造を示す断面図
である。この接合構造では、斜材13aの主要部を形成
する鋼管21の端部に、この鋼管の軸線と直角に端部鋼
板22が溶接接合されており、この端部鋼板22が上床
版11のコンクリートと当接して圧縮力を伝達するよう
になっている。図3は、この端部鋼板22を示す図、つ
まり図2中に示すA−A線での矢視図であり、この端部
鋼板22には鋼管内部に通じる開孔22aが複数設けら
れ、PC鋼棒23の一部がこれらの開孔22aから鋼管
内に挿通されている。鋼管内にはこのPC鋼棒23を埋
め込み、この鋼管の内周面と密着するように膨張性モル
タルが充填されており、硬化した膨張性モルタル26に
よって、上記PC鋼棒23と鋼管21とが一体化されて
いる。したがって、鋼管21から膨張性モルタル26、
PC鋼棒23を介して、該PC鋼棒23の他端部が埋込
まれたコンクリートの上床版11に引張力が伝達される
ようになっている。FIG. 2 shows a joint between the concrete upper slab 11 and the diagonal member made of steel pipe in the concrete / steel composite truss bridge. It is sectional drawing which shows a joining structure. In this joint structure, an end steel plate 22 is welded to an end of a steel pipe 21 forming a main part of the diagonal member 13a at a right angle to an axis of the steel pipe, and the end steel plate 22 is connected to the concrete of the upper floor slab 11 by a concrete method. To transmit the compressive force. FIG. 3 is a view showing the end steel plate 22, that is, a view taken along the line AA shown in FIG. 2, and the end steel plate 22 is provided with a plurality of openings 22a communicating with the inside of the steel pipe. A part of the PC steel bar 23 is inserted into the steel pipe through these openings 22a. The PC steel rod 23 is embedded in the steel pipe, and is filled with expandable mortar so as to be in close contact with the inner peripheral surface of the steel pipe. The hardened expandable mortar 26 separates the PC steel rod 23 from the steel pipe 21. It is integrated. Therefore, the expandable mortar 26 from the steel pipe 21,
The tensile force is transmitted via the PC steel bar 23 to the upper slab 11 of concrete in which the other end of the PC steel bar 23 is embedded.
【0026】上記PC鋼棒23は、全長にわたって周面
に凸部がほぼ一様に設けられた異形鋼棒であり、この凸
部がらせん状に設けられている。このらせん状の凸部
は、充填材である膨張性モルタル26との付着力を増大
する効果を有するとともに、ナットにねじ込んで係止す
るねじ山としての機能を有するものである。The PC steel bar 23 is a deformed steel bar in which a convex portion is provided substantially uniformly on the peripheral surface over the entire length, and the convex portion is provided in a spiral shape. The helical projection has an effect of increasing the adhesive force with the expandable mortar 26 as the filler, and also has a function as a screw thread that is screwed into the nut and locked.
【0027】上記鋼管21の内部には、図4に示すよう
に、差し入れられたPC鋼棒23の先端付近に、この鋼
管の軸線と直角に鋼板材24が溶接接合されている。こ
の鋼板材24は、鋼管内に注入される未硬化の膨張性モ
ルタル26を支持することができる程度に鋼管内の周方
向の数か所が接合されたものである。この鋼板材24に
は、差し入れられるPC鋼棒の本数と同数の円孔が設け
られており、この円孔の背面側、つまりPC鋼棒を差し
入れる端部と反対側にナット25が溶接接合されてい
る。そして、鋼管21に差し入れられたPC鋼棒23の
先端が上記ナット25に螺合され、このナット25を介
して鋼板材24に係止されている。なお、上記PC鋼棒
23の鋼管21内に突き入れられる長さは、膨張性モル
タル26とPC鋼棒23との付着力がPC鋼棒の引張強
度を上回るように決定されている。As shown in FIG. 4, a steel plate 24 is welded to the inside of the steel pipe 21 near the tip of the inserted PC steel rod 23 at right angles to the axis of the steel pipe. The steel plate material 24 is formed by joining several places in the circumferential direction in the steel pipe so as to support the unhardened expansive mortar 26 injected into the steel pipe. The steel plate 24 is provided with the same number of circular holes as the number of PC steel rods to be inserted, and a nut 25 is welded to the back side of the circular hole, that is, on the side opposite to the end where the PC steel rod is inserted. Have been. The tip of the PC steel rod 23 inserted into the steel pipe 21 is screwed to the nut 25 and is locked to the steel plate 24 via the nut 25. Note that the length of the PC steel bar 23 protruding into the steel pipe 21 is determined so that the adhesive force between the expandable mortar 26 and the PC steel bar 23 exceeds the tensile strength of the PC steel bar.
【0028】また、鋼管21の、PC鋼材23が内挿さ
れた部分の内面には、図5(a)に示すように、らせん
状の突起21aが形成されている。この突起21aは、
図5(b)に示すように、鋼管21の内面に高さ約3m
m以上のビード溶接をらせん状に連続し、約30mmの
ピッチで施すことによって形成されたものである。な
お、上記突起は図5に示すようならせん状のものに限定
されるものではなく、様々な形態のものを採用すること
ができ、円周状の突起を複数段に別けて形成してもよい
し、図6に示すような複数の山状の突起21bを、ほぼ
一様に分布するように形成してもよい。As shown in FIG. 5A, a helical projection 21a is formed on the inner surface of the steel pipe 21 where the PC steel material 23 is inserted. This projection 21a
As shown in FIG. 5B, the inner surface of the steel pipe 21 has a height of about 3 m.
It is formed by applying bead welding of m or more continuously in a spiral shape at a pitch of about 30 mm. Note that the projection is not limited to a spiral one as shown in FIG. 5, and various shapes can be adopted. Even if the circumferential projection is formed in a plurality of stages, Alternatively, a plurality of mountain-shaped protrusions 21b as shown in FIG. 6 may be formed so as to be distributed substantially uniformly.
【0029】上記膨張性モルタル26は、鋼板材24を
型枠として、鋼管21内の端部鋼板22と鋼板材24と
で挟まれた部分に充填されており、セメントと砂と水と
を混合し、膨張性を生じさせる混和剤を混入したもの
で、注入時には高い流動性を有し、鋼管21内面の突起
21a及びPC鋼棒23の周りに隙間なく充填される。
この膨張性モルタル26は硬化して上記PC鋼棒23及
び鋼管21の内面と強く付着するものであり、この付着
力によってPC鋼棒23と膨張性モルタル26と鋼管2
1とが一体となって、鋼管21からなる斜材13に作用
する引張力が膨張性モルタル24及びPC鋼棒23を介
してコンクリートからなる上床版11に伝達される。The expandable mortar 26 is filled in a portion of the steel pipe 21 sandwiched between the end steel plate 22 and the steel plate 24 using the steel plate 24 as a mold. In addition, it is mixed with an admixture which causes expansion, has high fluidity at the time of injection, and is filled around the projections 21a on the inner surface of the steel pipe 21 and the PC steel rod 23 without gaps.
The expandable mortar 26 is hardened and strongly adheres to the PC steel rod 23 and the inner surface of the steel pipe 21. The adhesive force causes the PC steel rod 23, the expandable mortar 26, and the steel pipe 2.
1 and the tensile force acting on the diagonal member 13 made of the steel pipe 21 is transmitted to the upper slab 11 made of concrete via the expandable mortar 24 and the PC steel bar 23.
【0030】また、端部鋼板22の内側中央部には、図
7に示すように、発泡ウレタンの円板29(介挿部材)
が接着されており、鋼管21内の周辺部では膨張性モル
タル26が端部鋼板22と直接に接触しているが、中央
部ではこの発泡ウレタンの円板29によって膨張性モル
タル26と端部鋼板22とが隔離されている。As shown in FIG. 7, a urethane foam disk 29 (interposed member) is provided at the center of the inner side of the end steel plate 22.
At the peripheral portion in the steel pipe 21, the expandable mortar 26 is in direct contact with the end steel plate 22, but at the center, the expandable mortar 26 and the end steel plate are formed by the urethane foam disk 29. 22 are isolated.
【0031】上記発泡ウレタンの円板29は、膨張性モ
ルタルの充填時には、PC鋼棒23と端部鋼板22との
隙間をふさぎ、膨張性モルタルの漏出を防ぐものであ
り、硬化後は、膨張性モルタル26と端部鋼板22とを
隔離して、PC鋼棒23の引張力によって膨張性モルタ
ル26が外側へ膨らむように変形しても、端部鋼板22
に大きな曲げモーメントを生じないようになっている。
なお、上記発泡ウレタンの円板29に代えて、他の材料
からなる部材を用いることもでき、硬化した膨張性モル
タルより柔軟に変形が生じるゴムや発泡樹脂等を用いる
ことができる。The above-mentioned urethane foam disk 29 closes the gap between the PC steel bar 23 and the end steel plate 22 at the time of filling the expandable mortar, thereby preventing leakage of the expandable mortar. Even if the expandable mortar 26 is deformed so as to expand outward by the tensile force of the PC steel rod 23, the end
No large bending moment is generated.
Note that, instead of the urethane foam disk 29, a member made of another material can be used, and a rubber, a foamed resin, or the like, which deforms more flexibly than the cured expandable mortar, can be used.
【0032】上記鋼管からなる斜材は、図1に示すよう
なワレントラスでは、傾斜方向が逆となるものが隣接し
て設けられ、一般に、一方が主に引張力が作用する斜材
13a、他方は主に圧縮力が作用する斜材13bとな
る。引張力が主に作用する斜材13aでは、端部鋼板2
2に設けられた開孔から外側に突き出し、上床版11を
形成するコンクリートの内部に埋込まれたPC鋼棒23
に大きな引張力が作用することになり、PC鋼棒23と
コンクリートとの付着力を補うために、PC鋼材の端部
にナット27が螺合され、このナット27によりPC鋼
棒の端部にアンカープレート28が係止されている。な
お、主に圧縮力が作用する斜材13bについても、鋼管
31に溶接された端部鋼板32、この端部鋼板32に設
けられた開孔から鋼管内に挿入されるPC鋼棒33、こ
のPC鋼棒33が係止される鋼板材34及びナット3
5、鋼管31内に充填される膨張性モルタル26は、同
じ構成を有するものであるが、前記引張力が主に作用す
る斜材13aと異なり、PC鋼棒33の端部に上記アン
カープレート及びナットは係止されていない。In the warren truss as shown in FIG. 1, the diagonal members made of the above-mentioned steel pipes are provided adjacent to each other in such a manner that the inclination direction is reversed. Is a diagonal member 13b to which a compressive force mainly acts. In the diagonal member 13a to which the tensile force mainly acts, the end steel plate 2
2, PC steel rods 23 projecting outward from the openings provided in 2 and embedded in the concrete forming upper floor slab 11.
In order to supplement the adhesive force between the PC steel bar 23 and the concrete, a nut 27 is screwed into the end of the PC steel material. An anchor plate 28 is locked. In addition, also about the diagonal member 13b to which a compressive force mainly acts, the end steel plate 32 welded to the steel pipe 31, the PC steel rod 33 inserted into the steel pipe from the opening provided in the end steel plate 32, Steel plate material 34 and nut 3 to which PC steel bar 33 is locked
5. The expandable mortar 26 filled in the steel pipe 31 has the same configuration, but is different from the diagonal member 13a on which the tensile force mainly acts, in which the anchor plate and the The nut is not locked.
【0033】一方、この鋼管からなる斜材と下床版との
接合部、つまり上記鋼管の下端部も、同様の構造となっ
ており、下床版のコンクリートに埋込まれるとともに一
部が鋼管内に挿通されたPC鋼棒と、これを埋込むよう
に鋼管内に充填された膨張性モルタルとによって、鋼管
からなる斜材13と下床版12を形成するコンクリート
との間で引張力及び圧縮力を伝達するように接合されて
いる。On the other hand, the joint between the diagonal member made of the steel pipe and the lower slab, that is, the lower end of the steel pipe has the same structure. The PC steel rod inserted in the inside and the expansive mortar filled in the steel pipe so as to embed the PC steel rod, the tensile force between the diagonal member 13 made of the steel pipe and the concrete forming the lower slab 12 and Joined to transmit compressive force.
【0034】このようなコンクリート・鋼複合トラス橋
では、上床版11と斜材13a,13bとの間、及び下
床版12と斜材13a,13bとの間で、斜材13a,
13bの軸方向の力が確実に伝達され、ワレントラスと
して自重及び載荷重を支持することができる。そして、
このような構造では、橋の上を通過する車輌等の変動荷
重(活荷重)によって、大きく変動する力が繰り返し作
用する斜材もあるが、これらの斜材13a,13bと上
床版11又は下床版12との接合部で応力集中が生じる
ことが少なく、疲労破壊の発生を防止することができ
る。In such a concrete / steel composite truss bridge, the diagonal members 13a, 13b are provided between the upper slab 11 and the diagonal members 13a, 13b and between the lower slab 12 and the diagonal members 13a, 13b.
The force in the axial direction of 13b is reliably transmitted, and the warren truss can support its own weight and the applied load. And
In such a structure, there is a diagonal member in which a greatly fluctuating force repeatedly acts due to a fluctuating load (live load) of a vehicle or the like passing over a bridge. Stress concentration is less likely to occur at the joint with the floor slab 12, and fatigue fracture can be prevented.
【0035】つまり、鋼管21からコンクリートの上床
版11、下床版12に伝達される引張力は、膨張性モル
タル26を介してPC鋼棒23の周面の広い範囲に分布
する付着力によって該PC鋼棒23に伝達され、PC鋼
棒に局部的に大きな応力は発生しない。したがって、P
C鋼棒23の耐疲労性に対する信頼性が著しく向上す
る。That is, the tensile force transmitted from the steel pipe 21 to the upper slab 11 and the lower slab 12 of the concrete is caused by the adhesive force distributed over a wide area of the peripheral surface of the PC steel bar 23 via the expandable mortar 26. The stress is transmitted to the PC steel bar 23 and a large stress is not locally generated in the PC steel bar. Therefore, P
The reliability with respect to the fatigue resistance of the C steel bar 23 is significantly improved.
【0036】また、膨張性モルタル26は、鋼管内面と
の付着力によって該鋼管21と一体化され、さらに鋼管
21の内面に設けられた突起21aにより、鋼管21と
膨張性モルタル26との付着性能を高められ、鋼管端部
の溶接接合部に大きな負荷を作用させることなく引張力
が伝達される。The expandable mortar 26 is integrated with the steel pipe 21 by the adhesive force to the inner surface of the steel pipe. Further, the protrusion 21a provided on the inner surface of the steel pipe 21 allows the expandability mortar 26 to adhere to the expandable mortar 26. And the tensile force is transmitted without applying a large load to the welded joint at the end of the steel pipe.
【0037】また、鋼管21に差し入れられたPC鋼棒
23の先端部が鋼板材24に係止されていることによっ
て、PC鋼棒23と膨張性モルタル26との付着力を補
うことができる。つまり、PC鋼棒23と膨張性モルタ
ル26との付着力が消失しても、PC鋼棒23に係止さ
れた鋼板材24及びナット25が膨張性モルタル26に
当接して、PC鋼棒23は抜け出すことがない。これに
より、接合部分の二重の安全性が維持されるとともに、
耐久性が高められる。Further, since the tip of the PC steel rod 23 inserted into the steel pipe 21 is locked to the steel plate material 24, the adhesive force between the PC steel rod 23 and the expandable mortar 26 can be supplemented. That is, even if the adhesive force between the PC steel bar 23 and the expandable mortar 26 is lost, the steel plate 24 and the nut 25 locked on the PC steel bar 23 abut on the expandable mortar 26 and the PC steel bar 23 Never escape. This maintains the double safety of the joints,
Durability is increased.
【0038】さらに、鋼管21の端部に軸線と直角に端
部鋼板22が接合されており、鋼管21と膨張性モルタ
ル26との付着性が損なわれた場合でも、膨張性モルタ
ル26の周辺部すなわち発泡ウレタンの円板29が介挿
された部分の外側が端部鋼板22に突き当たり、膨張性
モルタル26が鋼管21から抜け出すことがない。この
ため、鋼管21と膨張性モルタル26の固結体との間で
も、二重の安全性が確保され、接合部分の高い信頼性が
維持される。Furthermore, an end steel plate 22 is joined to the end of the steel pipe 21 at right angles to the axis, so that even if the adhesion between the steel pipe 21 and the expandable mortar 26 is impaired, the peripheral part of the expandable mortar 26 That is, the outside of the portion where the urethane foam disk 29 is inserted abuts against the end steel plate 22, and the expansible mortar 26 does not fall out of the steel pipe 21. For this reason, even between the steel pipe 21 and the consolidated body of the expandable mortar 26, double safety is secured, and high reliability of the joint is maintained.
【0039】次に、上記接合構造の施工方法の一例につ
いて説明する。まず、鋼管21の内部の所定位置に鋼板
材24を溶接により接合する。この溶接は、円板状の鋼
板材24を所定位置に保持し、溶接器を鋼管内に差し入
れて、鋼板材の周囲の数点を鋼管内面に接合する。ま
た、この鋼板材24には、あらかじめナット25を溶接
によって取り付けておく。上記鋼板材24を取り付けた
後、この鋼板材24の取付位置より端部側の鋼管内面に
所定のピッチ(例えば約30mmピッチ)で連続したら
せん状のビード溶接を施す。このビード溶接は、鋼管の
端部から溶接器を差し入れ、鋼管を回転しながら溶接ビ
ードを形成してゆくものである。このようにして溶接ビ
ードによる突起が設けられた後、鋼管の端部には端部鋼
板22を隅肉溶接により接合する。Next, an example of a method of applying the above-mentioned joint structure will be described. First, the steel plate material 24 is joined to a predetermined position inside the steel pipe 21 by welding. In this welding, the disk-shaped steel sheet material 24 is held at a predetermined position, a welder is inserted into the steel pipe, and several points around the steel sheet material are joined to the inner surface of the steel pipe. A nut 25 is previously attached to the steel plate member 24 by welding. After the steel plate material 24 is mounted, continuous spiral bead welding is performed at a predetermined pitch (for example, a pitch of approximately 30 mm) on the inner surface of the steel pipe on the end side from the mounting position of the steel plate material 24. In this bead welding, a welder is inserted from an end of a steel pipe, and a weld bead is formed while rotating the steel pipe. After the projection by the welding bead is thus provided, the end steel plate 22 is joined to the end of the steel pipe by fillet welding.
【0040】このようにして加工された鋼管21、31
に、端部鋼板22,32の開孔からPC鋼棒23,33
を挿入し、鋼板材24に溶接接合されたナット25に螺
合して固定する。このような状態で、この鋼管21,3
1内の鋼板材24,34と端部鋼板22,32との間に
膨張性モルタルを充填し、鋼管21,31内のPC鋼棒
23、33を埋込むようにして硬化させる。これによ
り、PC鋼棒23,33と鋼管21,31とが一体化さ
れる。The steel pipes 21, 31 thus processed
The PC steel rods 23, 33
And screwed and fixed to a nut 25 welded to the steel plate material 24. In such a state, the steel pipes 21, 3
An expandable mortar is filled between the steel plates 24, 34 and the end steel plates 22, 32 in 1 and hardened so that the PC steel bars 23, 33 in the steel pipes 21, 31 are embedded. Thereby, the PC steel rods 23 and 33 and the steel pipes 21 and 31 are integrated.
【0041】このように膨張性モルタルが充填された鋼
管21,31は、橋の架設位置に搬送され、所定位置に
支持される。そして、図8(a)に示すように、この鋼
管と接合される上床版及び下床版のコンクリートを打設
するための型枠41が組み立てられる。上記型枠41内
には床版の鉄筋42、接合部補強筋43等を配置し、未
硬化のコンクリートが端部鋼板22,32の外側に密接
するとともに、この端部鋼板から突き出したPC鋼棒2
3,33を埋込むようにコンクリートを打設し、コンク
リートの上床版11を形成する。The steel pipes 21 and 31 thus filled with the expansive mortar are transported to a bridge erection position and supported at a predetermined position. Then, as shown in FIG. 8A, a formwork 41 for casting concrete of the upper slab and the lower slab to be joined to the steel pipe is assembled. A reinforcing bar 42 of a floor slab, a joint reinforcing bar 43, and the like are arranged in the formwork 41, and unhardened concrete is in close contact with the outside of the end steel plates 22, 32, and PC steel protruding from the end steel plates. Stick 2
Concrete is poured so as to embed 3, 33, and the upper floor slab 11 of concrete is formed.
【0042】なお、本実施形態では、上記のようにPC
鋼材23,33と鋼管21,31とを一体化させるのに
膨張性モルタルを用いているが、鋼管の内径・PC鋼棒
の配置間隔等に応じて、セメント系グラウト材、無収縮
コンクリート、樹脂コンクリート等を用いることもでき
る。In this embodiment, as described above, the PC
Expansive mortar is used to integrate the steel materials 23, 33 and the steel pipes 21, 31. Cement-based grout material, non-shrink concrete, resin Concrete or the like can also be used.
【0043】また、膨張性モルタルの充填、上記鋼管の
所定位置への据え付け、PC鋼棒・鉄筋等の配置、コン
クリートの打設等の作業は、橋の架設位置付近の製作ヤ
ードで行ない、トラス桁を複数に分割したブロックとし
て製作して、これを橋脚上で接合して組み立てる工法を
採用することもできる。The work of filling the expandable mortar, installing the steel pipe in a predetermined position, arranging PC steel rods and reinforcing bars, and placing concrete is performed in a production yard near the bridge erection position. It is also possible to adopt a construction method in which a girder is manufactured as a plurality of divided blocks, which are joined on a pier and assembled.
【0044】このように、本実施形態のコンクリート部
材と鋼管部材との接合構造では、予め工場で鋼管の接合
部の加工を施しておくことにより、現場で鋼材を溶接す
る作業を省略でき、現場での工程を少なくすることがで
きる。また、鋼管はそれぞれ一本ずつ独立した状態で現
場に搬入され、現場で位置を合わせて立て込まれるた
め、工場での高い製作精度は不要となり、施工管理が容
易となる。As described above, in the joint structure of the concrete member and the steel pipe member according to the present embodiment, the work of welding the steel material on site can be omitted by processing the joint portion of the steel tube in advance at the factory, and the site can be omitted. Steps can be reduced. In addition, since the steel pipes are individually carried into the site one by one and are set up at the site so as to be set up at the site, high production accuracy at the factory is not required, and the construction management becomes easy.
【0045】[0045]
【発明の効果】以上説明したように、本願に係るコンク
リート部材と鋼管部材との接合構造では、鋼管部材から
コンクリート部材へ引張力を伝達する棒状鋼材が、鋼管
部材との間に介在する充填材によって鋼管部材と一体化
される。このため、充填材から棒状鋼材周面の広い範囲
に分布して作用する付着力によって力が伝達され、棒状
鋼材に応力の集中が生じることがなく、耐疲労性が向上
する。また、鋼管部材の内面に設けられた複数の突起に
より鋼管部材と充填材との間の付着性は強固なものとな
る。一方、充填材と棒状鋼材、充填材と鋼管部材との付
着性が損なわれた場合にも、棒状鋼材に係止された鋼板
材、鋼管部材に溶接接合された端部鋼板によって、充填
材の固結体と棒状鋼材、又は充填材の固結体と鋼管部材
との間の相対変位が拘束され、鋼管に作用する引張力は
確実に棒状鋼材に伝達される。このため、接合部分は二
重の安全性を有し、信頼性及び耐久性に優れた構造とな
る。As described above, in the joint structure of a concrete member and a steel pipe member according to the present invention, the rod-shaped steel material transmitting the tensile force from the steel pipe member to the concrete member is filled with filler material interposed between the steel pipe member and the steel pipe member. By this, it is integrated with the steel pipe member. For this reason, the force is transmitted by the adhesive force distributed and applied from the filler to a wide range of the peripheral surface of the bar-shaped steel material, and stress concentration does not occur in the bar-shaped steel material, and the fatigue resistance is improved. In addition, the plurality of protrusions provided on the inner surface of the steel pipe member enhance the adhesion between the steel pipe member and the filler. On the other hand, even if the adhesion between the filler and the rod-shaped steel material, or the adhesion between the filler and the steel pipe member is impaired, the steel plate locked to the rod-shaped steel material and the end steel plate welded to the steel pipe member are used to reduce the filling material. The relative displacement between the solidified body and the bar-shaped steel material or between the solidified body of the filler and the steel pipe member is restrained, and the tensile force acting on the steel pipe is reliably transmitted to the bar-shaped steel material. For this reason, the joining portion has a double safety, and has a structure excellent in reliability and durability.
【図1】本願発明の一実施形態であるコンクリート部材
と鋼管部材との接合構造が適用されるコンクリート・鋼
複合トラス橋の概略側面図及び断面図である。FIG. 1 is a schematic side view and a sectional view of a concrete / steel composite truss bridge to which a joint structure between a concrete member and a steel pipe member according to an embodiment of the present invention is applied.
【図2】図1に示すコンクリート・鋼複合トラス橋にお
ける斜材と上床版又は下床版との接合構造であって、本
願発明の一実施形態であるコンクリート部材と鋼管部材
との接合構造を示す断面図である。FIG. 2 shows a joint structure between a diagonal member and an upper slab or a lower slab in the concrete / steel composite truss bridge shown in FIG. 1, and shows a joint structure between a concrete member and a steel pipe member according to an embodiment of the present invention. FIG.
【図3】図2に示す接合構造で用いられる鋼管の端面図
である。FIG. 3 is an end view of a steel pipe used in the joining structure shown in FIG. 2;
【図4】図2に示す接合構造で用いられる鋼管の内部に
取り付けられた鋼板材を示す断面図である。FIG. 4 is a cross-sectional view showing a steel plate material attached inside a steel pipe used in the joining structure shown in FIG. 2;
【図5】図2に示す接合構造で用いられる鋼管の端部に
設けられた突起を示す断面図である。FIG. 5 is a sectional view showing a projection provided at an end of a steel pipe used in the joining structure shown in FIG. 2;
【図6】鋼管端部の内面に設けられる突起の他の例を示
す断面図である。FIG. 6 is a cross-sectional view showing another example of the projection provided on the inner surface of the end of the steel pipe.
【図7】鋼管端部の構造を示す断面図である。FIG. 7 is a sectional view showing a structure of an end portion of a steel pipe.
【図8】図2に示す接合構造の施工中の状態を示す概略
断面図である。8 is a schematic cross-sectional view showing a state during construction of the joining structure shown in FIG.
【図9】端部鋼板に生じる曲げモーメントを示す図であ
る。FIG. 9 is a diagram showing a bending moment generated in an end steel plate.
【図10】従来から知られているコンクリート部材と鋼
管部材との接合構造の一例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of a conventionally known joint structure between a concrete member and a steel pipe member.
【図11】従来から知られているコンクリート部材と鋼
管部材との接合構造の他の例を示す概略断面図である。FIG. 11 is a schematic sectional view showing another example of a conventionally known joining structure between a concrete member and a steel pipe member.
1 橋脚 2 トラス 11 上床版 12 下床版 13 斜材 21,31 鋼管 21a 突起 22,32 端部鋼板 23,33 PC鋼材 24,34 鋼板材 25,35 ナット 26,36 膨張性モルタル 27 ナット 28 アンカープレート 29 発泡ウレタンの円板(介挿部材) 41 型枠 42 鉄筋 43 接合部補強筋 DESCRIPTION OF SYMBOLS 1 Bridge pier 2 Truss 11 Upper floor slab 12 Lower floor slab 13 Diagonal material 21, 31 Steel pipe 21a Projection 22, 32 End steel plate 23, 33 PC steel material 24, 34 Steel plate material 25, 35 Nut 26, 36 Expansive mortar 27 Nut 28 Anchor Plate 29 Urethane foam disk (insertion member) 41 Formwork 42 Reinforcing bar 43 Joint reinforcement
フロントページの続き (72)発明者 永井 篤 東京都新宿区荒木町13番地の4 住友建設 株式会社内 (72)発明者 杉村 悟 東京都新宿区荒木町13番地の4 住友建設 株式会社内 (72)発明者 竹内 大輔 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 波多野 伸雄 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 2E163 FA02 FB06 FB43 FD43 FD48 FF17 Continuing from the front page (72) Inventor Atsushi Nagai 4-13 Arakicho, Shinjuku-ku, Tokyo Sumitomo Construction Co., Ltd. (72) Inventor Satoru Sugimura 13-4 Arakicho, Shinjuku-ku, Tokyo Sumitomo Construction Co., Ltd. (72 ) Inventor Daisuke Takeuchi 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (72) Inventor Nobuo Hatano 4-5-33, Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. F term (reference) 2E163 FA02 FB06 FB43 FD43 FD48 FF17
Claims (5)
に棒状鋼材の一部が差し入れられ、 この鋼管部材の前記棒状鋼材が差し入れられた部分の内
面に突起が形成されており、 この鋼管部材の端部付近の内側に、前記棒状鋼材を包み
込み、硬化して該棒状鋼材及び前記鋼管部材と付着する
充填材が充填され、 該鋼管部材の端部が、コンクリートに突き当てられるよ
うにコンクリート部材が形成され、 前記棒状鋼材の前記鋼管部材端から突き出した部分が前
記コンクリート部材内に埋込まれていることを特徴とす
るコンクリート部材と鋼管部材との接合構造。1. A part of a rod-shaped steel material is inserted into an end of a steel pipe member from the end of the steel pipe member, and a projection is formed on an inner surface of a portion of the steel pipe member into which the rod-shaped steel material is inserted. Inside the vicinity of the end of the member, the rod-shaped steel material is wrapped and filled with a filler material which is hardened and adheres to the rod-shaped steel material and the steel pipe member, and the concrete is placed so that the end of the steel pipe member is pressed against the concrete. A joint structure between a concrete member and a steel pipe member, wherein a member is formed, and a portion of the rod-shaped steel material protruding from an end of the steel pipe member is embedded in the concrete member.
いることを特徴とする請求項1に記載のコンクリート部
材と鋼管部材との接合構造。2. The joint structure between a concrete member and a steel pipe member according to claim 1, wherein the projection is formed by a weld bead.
に棒状鋼材の一部が差し入れられ、 前記棒状鋼材の前記鋼管部材内に差し入れられた先端部
が、該鋼管部材の軸線とほぼ垂直に配置され中空部を閉
塞するように該鋼管部材と接合された鋼板材に、相対変
位を拘束するように係止され、 この鋼管部材の端部付近の内側に、前記棒状鋼材を包み
込み、硬化して該棒状鋼材及び前記鋼管部材と付着する
充填材が充填され、 該鋼管部材の端部が、コンクリートに突き当てられるよ
うにコンクリート部材が形成され、 前記棒状鋼材の前記鋼管部材端から突き出した部分が前
記コンクリート部材内に埋込まれていることを特徴とす
るコンクリート部材と鋼管部材との接合構造。3. A part of a rod-shaped steel material is inserted from an end of the steel pipe member into the steel pipe member, and a tip of the rod-shaped steel material inserted into the steel pipe member is substantially perpendicular to an axis of the steel pipe member. Is fixed to a steel plate member joined to the steel pipe member so as to close the hollow portion so as to restrict the relative displacement, and the rod-shaped steel material is wrapped around the inside of the vicinity of the end of the steel pipe member and hardened. A filler is attached to the rod-shaped steel material and the steel pipe member, and a concrete member is formed such that an end of the steel pipe member is abutted against concrete, and protrudes from the steel pipe member end of the rod-shaped steel material. A joint structure between a concrete member and a steel pipe member, wherein a portion is embedded in the concrete member.
の軸線とほぼ直角に端部鋼板が接合され、 前記棒状鋼材は、前記端部鋼板に設けられた開孔に挿通
して、前記鋼管部材内に差し入れられていることを特徴
とする請求項1、請求項2又は請求項3に記載のコンク
リート部材と鋼管部材との接合構造。4. An end steel plate is joined to an end of the steel pipe member substantially at right angles to an axis of the steel pipe member, and the rod-shaped steel material is inserted into an opening provided in the end steel plate, The joint structure between a concrete member and a steel pipe member according to claim 1, wherein the concrete member is inserted into the steel pipe member.
れた面の鋼管部材内中央部に、硬化した前記充填材より
柔軟に変形する介挿部材が接着され、硬化した充填材と
該端部鋼板とが、鋼管内の中央部付近で隔離されている
ことを特徴とする請求項4に記載のコンクリート部材と
鋼管部材との接合構造。5. An interposed member which is more flexible than the hardened filler is adhered to a center portion of the steel plate member on a surface of the end steel plate joined to the steel pipe member, and the hardened filler and the end are bonded. The joint structure between a concrete member and a steel pipe member according to claim 4, wherein the steel plate part is isolated near a central portion in the steel pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10201273A JP2000017731A (en) | 1998-07-01 | 1998-07-01 | Joint structure of concrete member to steel pipe member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10201273A JP2000017731A (en) | 1998-07-01 | 1998-07-01 | Joint structure of concrete member to steel pipe member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000017731A true JP2000017731A (en) | 2000-01-18 |
Family
ID=16438234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10201273A Withdrawn JP2000017731A (en) | 1998-07-01 | 1998-07-01 | Joint structure of concrete member to steel pipe member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000017731A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002070157A (en) * | 2000-08-30 | 2002-03-08 | Vsl Japan Kk | Connecting structure for steel product and concrete in truss structure |
JP2003049487A (en) * | 2001-08-06 | 2003-02-21 | Sumitomo Constr Co Ltd | Connection structure between steel member and concrete member |
KR101631929B1 (en) * | 2015-01-20 | 2016-06-21 | 롯데건설 주식회사 | the pipe diagrid joint structure and the compression test structure using the same |
KR20160089924A (en) * | 2015-01-20 | 2016-07-29 | 롯데건설 주식회사 | the pipe diagrid joint structure and the compression test structure using the same |
-
1998
- 1998-07-01 JP JP10201273A patent/JP2000017731A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002070157A (en) * | 2000-08-30 | 2002-03-08 | Vsl Japan Kk | Connecting structure for steel product and concrete in truss structure |
JP4527861B2 (en) * | 2000-08-30 | 2010-08-18 | ブイ・エス・エル・ジャパン株式会社 | Joint structure of steel and concrete in truss structure |
JP2003049487A (en) * | 2001-08-06 | 2003-02-21 | Sumitomo Constr Co Ltd | Connection structure between steel member and concrete member |
KR101631929B1 (en) * | 2015-01-20 | 2016-06-21 | 롯데건설 주식회사 | the pipe diagrid joint structure and the compression test structure using the same |
KR20160089924A (en) * | 2015-01-20 | 2016-07-29 | 롯데건설 주식회사 | the pipe diagrid joint structure and the compression test structure using the same |
KR101678508B1 (en) * | 2015-01-20 | 2016-11-23 | 롯데건설 주식회사 | the pipe diagrid joint structure and the compression test structure using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI78760C (en) | Intermediate anchoring device for biasing structural parts manufactured in several building stages and a method for producing such an intermediate anchoring device. | |
JP5285305B2 (en) | Precast member joint structure | |
JP2010261246A (en) | Floor slab unit, structure for joining floor slab, and method for constructing the floor slab | |
JPH09151613A (en) | Reinforcement structure for existing concrete columnar body | |
JP3585444B2 (en) | Concrete member connection structure | |
JP5307682B2 (en) | Girder member and precast slab joint structure and slab erection method | |
JP3910976B2 (en) | Concrete member and method for reinforcing concrete member | |
JP2000017731A (en) | Joint structure of concrete member to steel pipe member | |
JPH1018226A (en) | Concrete pier and concrete pier reinforcing method and tendon anchoring method | |
JP6375079B1 (en) | Joint structure of precast composite floor slab perpendicular to the bridge axis and its construction method | |
JPH08291631A (en) | Reinforcing method of concrete structure with steel plate | |
JPH05340031A (en) | Prestressed concrete girder and its manufacture | |
JP4035075B2 (en) | Reinforcing structure and method for existing wall-like structure | |
JP4447632B2 (en) | Beam and beam-column joint structure and method of joining the same | |
JP3948809B2 (en) | Joining structure and joining method between concrete member and steel pipe member, and concrete / steel composite truss bridge | |
JP2001159193A (en) | Joining structure of steel pipe member and concrete member | |
JP3322637B2 (en) | Construction method of cast-in-place concrete slab of bridge | |
JP7144341B2 (en) | Concrete floor slab joint structure and concrete floor slab joint method | |
JP4154099B2 (en) | Joint structure of steel pipe member and concrete member | |
JP2011190608A (en) | Joint structure and joining method of steel member and concrete member | |
JPH1121816A (en) | Bridge structure | |
JP2843204B2 (en) | Earthquake-resistant wall | |
CN110747735A (en) | Anchoring connection device for precast concrete bridge deck of steel-concrete composite beam | |
JP2819103B2 (en) | How to attach steel plates to concrete structures | |
JP2000230273A (en) | Post-tension type column/beam compression joint method requiring no grout injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050906 |