JP2000017480A - Plating method - Google Patents

Plating method

Info

Publication number
JP2000017480A
JP2000017480A JP10188963A JP18896398A JP2000017480A JP 2000017480 A JP2000017480 A JP 2000017480A JP 10188963 A JP10188963 A JP 10188963A JP 18896398 A JP18896398 A JP 18896398A JP 2000017480 A JP2000017480 A JP 2000017480A
Authority
JP
Japan
Prior art keywords
plating
tank
plating solution
plated
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10188963A
Other languages
Japanese (ja)
Inventor
Kaoru Hashimoto
Noriyoshi Shimizu
薫 橋本
紀嘉 清水
Original Assignee
Fujitsu Ltd
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, 富士通株式会社 filed Critical Fujitsu Ltd
Priority to JP10188963A priority Critical patent/JP2000017480A/en
Publication of JP2000017480A publication Critical patent/JP2000017480A/en
Application status is Withdrawn legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide the plating method by which precision plating is attained by the use of a jet plater. SOLUTION: A plating soln. 3 is jetted downward through an anode, and a material 6 to be plated arranged at the lower part of a plating tank 1 is electroplated. The plating tank 1 is composed of two tanks, and the plating soln. is supplied from the upper part of the inner first tank and discharged from the bottom to plate the material. A fixed amt. of the plating soln. is kept in the first tank at all times, the excess plating soln. overflows the first tank and flows into the outer second tank, and the charge and discharge of the plating soln. is controlled.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、めっき方法に関する。 The present invention relates to relates to a plating method. 特に、本発明は、半導体素子を形成したウエハ上に金やはんだなどからなるバンプを形成したり、半導体素子の配線を形成するのに用いるめっき方法に関する。 In particular, the present invention is, or forming bumps made of gold or solder on a wafer formed with semiconductor devices, to the plating process used to form the wiring of a semiconductor device.

【0002】 [0002]

【従来の技術】近年のエレクトロニクス機器の高性能化、高機能化は、半導体素子の高集積化や高速化に負うところが大であるが、この半導体素子を高密度に実装する技術の進歩にも支えられていると言える。 The performance of the Prior Art In recent years of electronics equipment, high performance is owed to the high integration and high speed of a semiconductor device is large, the advances of technology to implement this semiconductor device with a high density it can be said that is supported. 高密度実装の要素技術の一つとして、素子をセラミック回路基板、 As one of the key technologies for high-density mounting, a ceramic circuit board element,
プリント配線板、MCM(マルチチップモジュール)などに搭載する接合技術がある。 Printed circuit board, there is a bonding technique which mounted on a MCM (multi-chip module). 種々の接合技術のなかで、裸の素子を直接これらの基板の上に搭載するベアチップ実装は、実装の高密度化や信号の高速伝播の点で有利であり、その適用が拡大しつつある。 Among various bonding techniques, bare chip mounting for mounting on these substrates directly bare element is advantageous in terms of high-speed propagation of density and signal implementation, its application is expanding. かかるベアチップ実装に対応する接合技術であるTAB(テープオートメイテッドボンディング)やフリップチップ接合では、 In such a bare-chip mounting the corresponding bonding technique TAB (tape automated bonding) or flip chip bonding,
素子の電極上にバンプを形成して接合が行われる。 Bonding is performed by forming a bump on the electrode of the device. 一方、めっきによるバンプ形成法は、量産性にすぐれ、比較的低コストであることなどから、広く用いられている。 On the other hand, the bump forming method by plating, excellent in mass productivity, and the like that is relatively low cost, widely used. かかるめっきによるバンプ形成法としては、噴流式めっき装置を用いる方法がある。 The bump forming method by such plating, a method using a nozzle-type plating apparatus.

【0003】さらに、最近LSI素子の配線材料としてCuが注目を集めている。 [0003] In addition, Cu has attracted attention as a wiring material of recent LSI element. これは、Cuが、これまでの配線材料であるAlよりも抵抗が低いこと、ならびに素子の故障原因であるエレクトロマイグレーションに対する耐性が高いことによる。 This, Cu is due to the previous is lower resistance than a wiring material Al, and that high resistance to electromigration is a cause of failure element. 通常のCu配線形成プロセスは、絶縁層にドライエッチングで形成したトレンチ(配線やビア)へCuを埋め込んだ後、CMP法で研磨を行うダマシン法が用いられる。 Normal Cu wiring formation process, after embedding Cu into trenches formed by dry etching (wiring and vias) in the insulating layer, a damascene method of polishing by the CMP method is used. Cuの埋め込み方法として、CVD、スパッタリフロ、めっきなどがあるが、これらのなかで、めっき法によるCuの埋め込みは低コストや高スループットが期待でき、さらにトレンチへの埋め込み性が良いことなどから注目されている。 As a method of embedding the Cu, CVD, sputtering reflow, but the plating and the like, among these, the embedding of Cu by plating method can be expected low cost and high throughput, attention, etc. Even better embedding of the trench It is.

【0004】このCuめっきにおいては、サブミクロンの径の孔のなかにめっき析出させることから、精密なめっきが要求され、半導体ウエハ処理に適した噴流式めっき装置を用いる方法の開発が進められている。 [0004] In the Cu plating, since it is plating deposition Some diameter of the hole of the sub-micron precision plating is required and development of a method is advanced using a nozzle-type plating apparatus suitable for semiconductor wafer processing there. 従来の噴流式めっき装置は、めっき槽の底部からめっき液を流入させ、アノード、流束制御板(アノードと被めっき物の中間に置かれる)を通過して、下向きにセットされた被めっき物の表面に達し、ここでめっき膜を析出させつつ、被めっき物の表面を中央部から周辺部に流れ、めっき槽からあふれ出してめっきタンクに還流する。 Conventional jet type plating apparatus, allowed to flow into the plating liquid from the bottom of the plating tank, an anode, and passes through the flux control plate (placed in the middle of the anode and the object to be plated), object to be plated which is set down reach of the surface, wherein while precipitating the plated film, flows to the peripheral portion of the surface of the object to be plated from the center, it flows back to the plating tank overflowing from the plating bath.

【0005】ところが、めっき液の種類によっては、めっき析出時に水素ガスが発生し易いものがあり、まためっき液の循環時などに気泡ができることもある。 [0005] However, depending on the kind of the plating solution are those hydrogen gas tends to occur at the time of plating deposition, also sometimes can bubbles such as when the circulation of the plating solution. これらのガスが被めっき物の表面に滞留するとめっき析出が阻害されて、めっき膜の厚さ、組成などが不均一になったり、めっき膜の表面粗さなどの表面性状が所期どおりにならないという問題が生ずる。 These gases is inhibited and the plating deposition accumulates on the surface of the object to be plated, the thickness of the plated film, may become like composition uneven, the surface properties such as surface roughness of the plating layer does not become the intended exactly the problem that arises. 従来の噴流式めっき装置においては、被めっき物表面に発生もしくは付着したガスは、めっき液の流れ、すなわち表面を中央部から周辺部への流れによって排除され、滞留は生じないとされている。 In conventional jet-type plating apparatus, gas generated or adhered to the object to be plated surface, plating solution flow, that is, eliminated by the flow to the peripheral portion of the surface from the central portion, the residence is not occur. しかしながら、実際にはこのようなことはなく、 However, it is not actually such a thing is to,
被めっき物表面におけるガスの滞留が問題となっている。 The residence of the gas is a problem in the object to be plated surface.

【0006】 [0006]

【発明が解決しようとする課題】本発明は、上記の問題点を解決し、噴流式めっき装置を用いて精密なめっきを行うことのできるめっき方法を提供しようとするするものである。 SUMMARY OF THE INVENTION It is an object of the present invention is to attempt to provide a plating method which can solve the above problems, performing a precise plating using a jet-type plating apparatus.

【0007】 [0007]

【課題を解決するための手段】特開昭64−49244 In order to solve the problems] JP-A-64-49244
号公報には、アノードを被めっき物の被めっき面に対して上方に位置させるとともに、めっき液導入口をアノードの上方に設けて噴流が下向きに作用するように構成した装置が開示されている。 No. In Japanese, the anode together is positioned upwardly with respect to the plated surface of the object to be plated, jets provided a plating liquid introduction port over the anode is disclosed a configuration the apparatus to act downwardly . めっき液の流れが下向きに作用するように構成しためっき装置を用いる電解めっき方法においては、めっきの間槽内のめっき液の量が常に一定に保持されること、および下向きのめっき液の流れが維持され、被めっき物の表面に常に新鮮なめっき液が補給されることが、所望のめっきを行うための必須の要件になる。 In the electrolytic plating method flow of the plating solution used plating device configured to act downwardly, the amount of the plating solution between the tank of the plating is always kept constant, and the flow downward of the plating solution is maintained, to always fresh plating solution to the surface of the object to be plated is supplied becomes the essential requirement for carrying out the desired plating.

【0008】本発明は、かかる要件を充足する手段として、アノードを介してめっき液の噴流を下向きに作用させ、めっき槽下部に配置した被めっき物を電解めっきする方法であって、めっき槽を2槽構造とし、内側の第1 The present invention, as a means to satisfy such requirements, downward by the action of jets of plating solution through the anode, the object to be plated was placed in the plating tank bottom to a method of electrolytic plating, the plating tank a double cell construction, the first inner
の槽において、めっき液を槽の上部から供給し、槽の底部から流出させてめっきを行い、第1の槽内のめっき液の量が常に所定量に保持され、過剰のめっき液が第1の槽の上部から溢れ出て、外側の第2の槽内に流入するようにめっき液の流入量と流出量を調整することを含むめっき方法を提供する。 In the bath, the plating solution is supplied from the upper part of the vessel, subjected to plating by flowing out from the bottom of the tank, the amount of the plating solution in the first tank is always maintained at a predetermined amount, an excess of the plating solution is first It overflows from the top of the vessel, provides a plating method comprising adjusting the inflow and outflow of the plating solution to flow into the second tank of the outer.

【0009】 [0009]

【発明の実施の形態】本発明のめっき方法においては、 In the plating method of the embodiment of the present invention,
図1に示す如き2槽構造のめっき槽1を用いる。 Using the plating bath 1 of such double cell structure shown in FIG. 内側の第1の槽2において、めっき液3を槽の上部から供給し、槽の底部から流出させてめっきを行い、第1の槽内のめっき液の量が常に所定量に保持され、過剰のめっき液が第1の槽の上部から溢れ出て、外側の第2の槽4内に流入するようにめっき液の流入量と流出量を調整する。 In the first tank 2 inside, the plating solution 3 is supplied from the top of the vessel, subjected to plating by flowing out from the bottom of the tank, the amount of the plating solution in the first tank is always maintained at a predetermined amount, excess It overflows the plating solution from the top of the first tank, adjusting the inflow and outflow of the plating solution to flow into the second tank 4 of the outer.

【0010】本発明の好ましい実施態様においては、図1に示す如く、第1の槽2内において、アノード5と被めっき物6との間に流束制御板7を配置し、初期のめっき液の量をこれらのすべてを浸すのに十分な所定の量とし、めっきの間めっき液を循環させて、第1の槽内にめっき液を流入させ、流入しためっき液が所定量を超えると第1の槽から溢れ出すようにめっき液流量を調整する。 In a preferred embodiment of the present invention, as shown in FIG. 1, in the first tank 2, arranged flux control plate 7 between the anode 5 and the object to be plated 6, initial plating solution the amount of a sufficient predetermined amount of soak all these, by circulating the plating solution during plating, allowed to flow into the plating solution in the first tank, the inflow plating solution exceeds a predetermined amount the adjusting the plating solution flow as overflow from the first tank.

【0011】第1の槽2内において、第1の槽の底部に設けためっき液循環用の複数の孔8に第1のポンプ(図示せず)を接続してめっき液をめっき液タンク(図示せず)に導くとともに、前記めっき液タンクに第2のポンプ(図示せず)を接続してめっき液を第1のめっき槽の上部からこの槽内に流入させるのがよい。 [0011] In the first tank 2, a first plurality of holes 8 first pump by connecting (not shown) plating solution plating solution tank for plating solution circulation provided in the bottom of the tank ( guides not shown), it is preferable to flow into the plating solution tank to the second pump (the tank to connect the not shown) the plating solution from the upper part of the first plating tank. かくして、めっきの間に、第1のポンプの吸引力によってアノードから被めっき物に向かう下向きの流れが維持され、かつ、 Thus, during the plating, downward flow toward the object to be plated from the anode by the suction force of the first pump is maintained, and,
第1の槽内のめっき液の量が常に所定量以上に保たれるように第1のポンプおよび第2のポンプの流量を相互に調整することができる。 It is possible to adjust the flow rate of the first pump and the second pump to one another so that the amount of the plating solution in the first tank is always kept above a predetermined amount.

【0012】さらに第3のポンプ(図示せず)を設け、 [0012] further provided third pump (not shown),
これにより第1の槽から溢れ出て第2の槽内に流出しためっき液を上記めっき液タンクに導くようにしてもよい。 Thus the first plating solution flowing out in the second tank overflows from the tank may be guided into the plating solution tank. この場合には、めっきの間に、第1のポンプの吸引力によってアノードから被めっき物に向かう下向きの流れが維持され、かつ、第1の槽内のめっき液の量が常に所定量以上に保たれるように第1のポンプ、第2のポンプおよび第3のポンプの流量を相互に調整することができる。 In this case, during the plating, downward flow toward the object to be plated from the anode by the suction force of the first pump is maintained, and the amount of the plating solution in the first tank is always above a predetermined amount the first pump so as to maintain, it is possible to adjust the flow rate of the second pump and the third pump to each other.

【0013】流束制御板7には所定の個所に複数の貫通孔を形成し、中央部の孔径を周辺部の孔径よりも大きくするかまたは中央部のみに貫通孔を形成し、かつ、被めっき物6の周囲の外側の第1の槽2の底部の適正な箇所に複数のめっき液の流出孔8を設けて、めっき液が被めっき物の表面に到達したときに被めっき物の中央部から周辺部に向かってめっき液が流れるようにする。 [0013] The flux control plate 7 forming a plurality of through-holes in predetermined positions, or form a central portion only the through hole of the hole diameter of the central portion is larger than the hole diameter of the peripheral portion, and the and the outlet hole 8 of a plurality of plating solution in a proper position of the first bottom portion of the tank 2 of the outer periphery of the plated 6 provided, the center of the plated material when the plating solution reaches the surface of the object to be plated so that the plating liquid flows toward the peripheral portion from the part. この場合、流束制御板に設けた貫通孔の少なくとも一部がこれらの孔を通過した液が流束制御板の中央部に向かって流れ出るように傾斜をもって形成されていてもよい。 In this case, at least a part of the through hole formed in the flux control plate may be formed with a slope so that the liquid that has passed through these holes flows out toward the center of the flux control plate.

【0014】本発明のめっき方法においては、さらに、 [0014] In the plating method of the present invention, furthermore,
図2に示すように、第1の槽2内において、流束制御板7と被めっき物6との間に攪拌装置を設け、これによって被めっき物に作用するめっき液の流れに対して所定の攪拌作用を与えるようにしてもよい。 As shown in FIG. 2, predetermined in the first tank 2, the flow of the plating solution which acts on the object to be plated with a stirring device is provided, whereby between the flux control plate 7 and the object to be plated 6 it may be given a stirring action of. この攪拌装置は、 This stirring device,
第1の槽の外側に保持されているリング状の回転体9に所定の系の絶縁体の細線10を所定本数張り渡した構成であってよく、図示の態様においてはこの絶縁体の細線は第1の槽の壁面に設けたゴム弾性体からなる漏れ防止手段11を介してこの第1の槽の内側と外側にまたがって配置されている。 Well first thin wire 10 of the insulator given system in a ring-shaped rotary member 9 which is held on the outside of the tank have a configuration in which pass predetermined number upholstery, in the illustrated embodiment fine lines of the insulator through the leak preventing means 11 made of a rubber elastic body provided on the wall surface of the first tank is disposed over the inside and outside of the first tank. なお、図2においては、簡略化のため、2層構造のめっき槽における外側の第2の層は省略されている。 In FIG. 2, for simplicity, the second layer of the outer side in the plating tank of the two-layer structure is omitted.

【0015】 [0015]

【実施例】以下、LSI配線用のCuめっきの場合を例にとって、本発明の方法を具体的に説明する。 EXAMPLES The following as an example the case of Cu plating for LSI wiring, a method of the present invention in detail. 実施例1 被めっき試料を、次のようにして作製した。 Example 1 to be plated samples were produced as follows.

【0016】Si基板(ウエハ)上に1μmの厚さの酸化膜をプラズマCVD法によって形成した。 [0016] an oxide film having a thickness of 1μm on a Si substrate (wafer) is formed by a plasma CVD method. 次いで、フォトリソグラフィによってビア開口パターを形成した。 Then, to form the via opening pattern by photolithography.
このときのビア径は250nmであった。 Via diameter at this time was 250 nm. 次に、酸素アッシャによりレジストを剥離した後、CVD法によってTiNバリアメタルを30nmの厚さで形成した。 Next, after removing the resist by oxygen asher, a TiN barrier metal was formed in a thickness of 30nm by CVD. さらに、その上に、CVD法によってCuシード層を30n Furthermore, 30n thereon, the Cu seed layer by CVD
mの厚さで形成した。 It was formed to a thickness of m. この試料上に、下記のようにして、めっき法によりCuを成膜した。 On this sample, as described below, it was deposited Cu by plating.

【0017】図1に示した構成に基づいて、電解めっき装置を試作した。 [0017] Based on the configuration shown in FIG. 1 were prototyped electroplating apparatus. めっき槽(第1の槽2)の内容積を1 The internal volume of the plating tank (first tank 2) 1
0リットルとした。 It is set to 0 liters. アノード5を通常の含リン(P)銅製とした。 The anode 5 was a normal phosphorus-containing (P) made of copper. 流束制御板7としては、用いるめっき液組成およびめっき条件に合致するような適正な配列および孔径をもって、格子状(マトリックス状)に複数の貫通孔を設けた。 The flux control plate 7, with the proper sequence and pore size such as to meet the plating solution composition and plating conditions used, provided with a plurality of through holes in a grid pattern (matrix).

【0018】めっき液として、米国オキシメタルインダストリーズ社のキューバス(CuBath)を用いた。 [0018] as a plating solution, using the US oxy-metal Industries queue bus (CuBath).
このめっき液を上記装置のめっき槽に満たして、めっき実験を行った。 The plating solution filled in the plating bath of the apparatus were plated experiment. なお、めっきの間、めっき液の温度を室温に保持した。 Incidentally, during the plating, the temperature of the plating solution was maintained at room temperature. まず、直流めっきにより40nm厚のC First, the 40nm thick by DC plating C
uめっき膜を成膜した。 It was formed u plating film. このときの電流密度は10mA The current density at this time is 10mA
/cm 2であった。 It was / cm 2. 次に、引き続きパルス繰り返し(P Then, continue to pulse repetition (P
R:Pulse Repetition)法によって残りの部分を埋めた。 R: fill the rest of the Pulse Repetition) method. このときの電流密度をマイナス電流(カソード電流であるのでマイナスと記す)で10mA 10mA current density at this time is the negative current (referred to as negative because the cathode current)
/cm 2とし、プラス電流で5mA/cm 2とした。 / Cm 2 and then, was a plus current and 5mA / cm 2. また、パルス波形をマイナス電流時に100ms、プラス電流時に50msとした。 Further, 100 ms pulse waveform during the negative current, and a 50ms when positive current. また、このときの最終的なC The final C at this time
u膜厚は平面部で500nmであった。 u film thickness was 500nm with flat portion.

【0019】めっき時に気泡が発生したが、試料表面に滞留することはないことが確認された。 [0019] The air bubbles at the time of plating has occurred, but that it is not possible to dwell on the surface of the sample has been confirmed. めっき後の膜の断面をSEM観察した結果、ビアプラグ部には気泡により発生するボイドは認められなかった。 Result of membrane cross-section after plating was observed by SEM, voids generated by air bubbles in the via plug portion was observed. また、めっき後に、膜の密着力を測定したところ、めっき膜の密着力はスパッタCuのそれと同様に強く、めっきによる密着力の低下は見られなかった。 Also, after plating, the measured adhesion of the film, adhesion of the plating film therewith similarly strong sputtering Cu, lowering of adhesion by the plating was observed. 気泡により発生するボイドによって密着力が低下することが予測されるが、今回の結果において密着力低下が観察されなかったことは、本発明のめっき方法によって、めっき時の気泡の悪影響が解消できたことを意味する。 Although adhesion by voids generated by bubbles is expected to be reduced, is that adhesion decreases were observed in the current result, the plating method of the present invention, the adverse effects of air bubbles at the time of plating was eliminated it means that.

【0020】実施例2 図1の装置の代わりに図2に示す構成の電解めっき装置を用いたことを除いて、実施例1の操作を繰り返した。 [0020] Except for using the electrolytic plating apparatus shown in FIG. 2 instead of the apparatus of Embodiment 2 FIG. 1, The procedure of Example 1 was repeated.
攪拌装置を、リング状の回転体に絶縁細線としてナイロン線1本を張った構成とし、所定の速度で回転させて攪拌を行った。 A stirrer, a configuration in which stretched nylon line one as an insulating thin lines in a ring-shaped rotary member, the mixture was stirred by rotating at a predetermined speed. 結果は実施例1の場合と同様であったが、 Results were similar as in Example 1,
この例では実施例1の場合よりもより均一なめっきが得られた。 In this example a more uniform plating can be obtained than in Example 1.

【0021】 [0021]

【発明の効果】以上に説明したように、本発明によれば、たとえめっき時に水素ガスが発生したり、めっき液の循環時に生じた気泡が被めっき物の表面に付着してもこれらはめっき面から容易に離脱し、めっき析出に悪影響を及ぼすことがなく、精密なめっきを得ることができる。 As described above, according to the present invention, according to the present invention, these even if the hydrogen gas may be generated during plating, the bubble generated during the circulation of the plating solution adhered to the surface of the object to be plated plated easily detached from the surface, without adversely affecting the plating deposition, it is possible to obtain a precise plating.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の方法の実施に有用な装置の一態様を示す模式図。 Schematic diagram showing one embodiment of apparatus useful in the practice of the method of the present invention; FIG.

【図2】本発明の方法の実施に有用な装置の他の態様を示す模式図。 Schematic view showing another embodiment of apparatus useful in the practice of the method of the invention; FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…めっき槽 2…第1の槽 3…めっき液 4…第2の槽 5…アノード 6…被めっき物 7…流束制御板 8…孔 9…リング状回転体 10…絶縁体細線 11…ゴム状弾性体 1 ... plating tank 2 ... first tank 3 ... plating solution 4 ... second tank 5 ... anode 6 ... object to be plated 7 ... flux control plate 8 ... hole 9 ... ring-shaped rotating member 10 ... insulator thin line 11 ... rubber-like elastic material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H01L 21/92 604Z Fターム(参考) 4K024 BB11 CA10 CA15 CB01 CB13 CB15 CB16 CB18 CB24 CB26 GA16 4M104 AA01 BB30 DD52 5F033 AA05 BA17 BA25 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) H01L 21/92 604Z F-term (reference) 4K024 BB11 CA10 CA15 CB01 CB13 CB15 CB16 CB18 CB24 CB26 GA16 4M104 AA01 BB30 DD52 5F033 AA05 BA17 BA25

Claims (11)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 アノードを介してめっき液の噴流を下向きに作用させ、めっき槽下部に配置した被めっき物を電解めっきする方法であって、めっき槽を2槽構造とし、 1. A reacted with jet of plating solution through the anode downwardly, the object to be plated was placed in the plating tank bottom to a method of electrolytic plating, the plating tank and 2 tank structure,
    内側の第1の槽において、めっき液を槽の上部から供給し、槽の底部から流出させてめっきを行い、第1の槽内のめっき液の量が常に所定量に保持され、過剰のめっき液が第1の槽の上部から溢れ出て、外側の第2の槽内に流入するようにめっき液の流入量と流出量を調整することを含むめっき方法。 In the first tank of the inner, the plating solution is supplied from the upper part of the vessel, subjected to plating by flowing out from the bottom of the tank, the amount of the plating solution in the first tank is always maintained at a predetermined amount, excess plating liquid is overflowing from the top of the first tank, the plating method comprising adjusting the inflow and outflow of the plating solution to flow into the outer side of the second tank.
  2. 【請求項2】 第1の槽内において、アノードと被めっき物との間に流束制御板を配置し、初期のめっき液の量をこれらのすべてを浸すのに十分な所定の量とし、めっきの間めっき液を循環させて、第1の槽内にめっき液を流入させ、流入しためっき液が所定量を超えると第1の槽から溢れ出すようにめっき液流量を調整する、請求項1記載のめっき方法。 2. A first tank, placing the flux control plate between the anode and the object to be plated, the initial amount of the plating solution and sufficient predetermined amount of soak all of these, by circulating the plating solution during plating, allowed to flow into the plating solution in the first tank, the inflow plating solution to adjust the plating solution flow as overflow from the first tank exceeds a predetermined amount, claim the plating method of 1, wherein the.
  3. 【請求項3】 第1の槽内において、第1の槽の底部に設けためっき液循環用の複数の孔に第1のポンプを接続してめっき液をめっき液タンクに導くとともに、前記めっき液タンクに第2のポンプを接続してめっき液を第1 3. A first tank, and it guides the first plating solution tank first pump connected to the plating solution to a plurality of holes for plating solution circulation provided in the bottom of the vessel, the plating the plating solution by connecting the second pump to the liquid tank first
    のめっき槽の上部からこの槽内に流入させる、請求項1 To flow from the top of the plating tank to the tank, according to claim 1
    または2記載の方法。 Or the method described.
  4. 【請求項4】 めっきの間に、第1のポンプの吸引力によってアノードから被めっき物に向かう下向きの流れが維持され、かつ、第1の槽内に流入するめっき液の量が常に所定量以上に保たれるように第1のポンプおよび第2のポンプの流量を相互に調整する、請求項3記載のめっき方法。 Between 4. A plating, downward flow toward the object to be plated from the anode by the suction force of the first pump is maintained, and, at all times a predetermined amount the amount of the plating solution flowing into the first tank first adjusting the flow rate of the pump and the second pump to each other, claim 3 plating method according as maintained above.
  5. 【請求項5】 さらに第3のポンプを設け、これにより第1の槽から溢れ出て第2の槽内に流出しためっき液を前記めっき液タンクに導く、請求項3または4記載のめっき方法。 5. further provided a third pump, thereby directing the first second overflows from the tank outlet to the plating solution in the tank to the plating solution tank, a method of plating according to claim 3 or 4, wherein .
  6. 【請求項6】 めっきの間に、第1のポンプの吸引力によってアノードから被めっき物に向かう下向きの流れが維持され、かつ、第1の槽内に流入するめっき液の量が常に所定量以上に保たれるように第1のポンプ、第2のポンプおよび第3のポンプの流量を相互に調整する、請求項5記載のめっき方法。 Between 6. plating, downward flow toward the object to be plated from the anode by the suction force of the first pump is maintained, and, at all times a predetermined amount the amount of the plating solution flowing into the first tank the first pump so as to maintain the above one another to adjust the flow rate of the second pump and the third pump, the plating method of claim 5, wherein.
  7. 【請求項7】 流束制御板には所定の個所に複数の貫通孔を形成し、中央部の孔径を周辺部の孔径よりも大きくするかまたは中央部のみに貫通孔を形成し、かつ、被めっき物の周囲の外側の第1の槽の底部の適正な箇所に複数のめっき液の流出孔を設けて、めっき液が被めっき物の表面に到達したときにめっき液が被めっき物の中央部から周辺部に向かって流れるようにする、請求項2記載のめっき方法。 7. The flux control plate to form a plurality of through-holes in predetermined positions, or form a central portion only the through hole of the hole diameter of the central portion is larger than the hole diameter of the peripheral portion, and, provided outlet holes of a plurality of plating solution in a proper position of the bottom of the first tank of the outer periphery of the object to be plated, the plating solution to be plated when the plating solution reaches the surface of the object to be plated to flow toward the peripheral portion from the central portion, the plating method of claim 2 wherein.
  8. 【請求項8】 流束制御板に設けた貫通孔の少なくとも一部がこれらの孔を通過した液が流束制御板の中央部に向かって流れ出るように傾斜をもって形成されている、 8. A liquid in which at least part of the through hole formed in the flux control plate is passed through these holes are formed with inclined flow out toward the center of the flux control plate,
    請求項7記載のめっき方法。 The plating method of claim 7 wherein.
  9. 【請求項9】 流束制御板と被めっき物との間に攪拌装置が設けられる、請求項2記載のめっき方法。 9. stirrer between the flux control plate and the plating body is provided, the plating method of claim 2 wherein.
  10. 【請求項10】 攪拌装置が絶縁体の細線を含む、請求項9記載のめっき方法。 10. A stirring device comprises a fine wire insulator, plating method according to claim 9, wherein.
  11. 【請求項11】 2槽構造のめっき槽を用い、めっき液を内側の第1の槽の上部から供給し、この槽の底部から流出させ、一方で第1の槽内のめっき液の量が常に所定量に保持され、過剰のめっき液が第1の槽の上部から溢れ出て、外側の第2の槽内に流入するようにめっき液の流入量と流出量を調整しながら、第1の槽においてアノードを介してめっき液の噴流を下向きに作用させ、この槽の下部に配置した被めっき物に電解めっきを行って得られるめっき物。 11. Using the plating bath 2 tank structure, the plating solution is supplied from the top of the first tank inside, drained from the bottom of the tank, whereas the amount of the plating solution in the first tank in the is always maintained at a predetermined amount, an excess of the plating solution overflows from the top of the first tank, while adjusting the inflow and outflow of the plating solution so as to flow outside the second tank, the first downward is reacted with jet of plating solution through the anode in the bath, the plating obtained by performing electrolytic plating on the plated disposed at the bottom of this vessel.
JP10188963A 1998-07-03 1998-07-03 Plating method Withdrawn JP2000017480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188963A JP2000017480A (en) 1998-07-03 1998-07-03 Plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188963A JP2000017480A (en) 1998-07-03 1998-07-03 Plating method

Publications (1)

Publication Number Publication Date
JP2000017480A true JP2000017480A (en) 2000-01-18

Family

ID=16233004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188963A Withdrawn JP2000017480A (en) 1998-07-03 1998-07-03 Plating method

Country Status (1)

Country Link
JP (1) JP2000017480A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050505A3 (en) * 2000-01-03 2002-01-31 Semitool Inc A microelectronic workpiece processing tool including a processing reactor having a paddle assembly for agitation of a processing fluid proximate to the workpiece
US7313462B2 (en) 2003-06-06 2007-12-25 Semitool, Inc. Integrated tool with automated calibration system and interchangeable wet processing components for processing microfeature workpieces
US7390383B2 (en) 2003-07-01 2008-06-24 Semitool, Inc. Paddles and enclosures for enhancing mass transfer during processing of microfeature workpieces
US7393439B2 (en) 2003-06-06 2008-07-01 Semitool, Inc. Integrated microfeature workpiece processing tools with registration systems for paddle reactors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050505A3 (en) * 2000-01-03 2002-01-31 Semitool Inc A microelectronic workpiece processing tool including a processing reactor having a paddle assembly for agitation of a processing fluid proximate to the workpiece
US6547937B1 (en) 2000-01-03 2003-04-15 Semitool, Inc. Microelectronic workpiece processing tool including a processing reactor having a paddle assembly for agitation of a processing fluid proximate to the workpiece
US6773559B2 (en) 2000-01-03 2004-08-10 Semitool, Inc. Processing apparatus including a reactor for electrochemically etching a microelectronic workpiece
US7294244B2 (en) 2000-01-03 2007-11-13 Semitool, Inc. Microelectronic workpiece processing tool including a processing reactor having a paddle assembly for agitation of a processing fluid proximate to the workpiece
US7524406B2 (en) 2000-01-03 2009-04-28 Semitool, Inc. Processing apparatus including a reactor for electrochemically etching microelectronic workpiece
US7313462B2 (en) 2003-06-06 2007-12-25 Semitool, Inc. Integrated tool with automated calibration system and interchangeable wet processing components for processing microfeature workpieces
US7371306B2 (en) 2003-06-06 2008-05-13 Semitool, Inc. Integrated tool with interchangeable wet processing components for processing microfeature workpieces
US7393439B2 (en) 2003-06-06 2008-07-01 Semitool, Inc. Integrated microfeature workpiece processing tools with registration systems for paddle reactors
US7390383B2 (en) 2003-07-01 2008-06-24 Semitool, Inc. Paddles and enclosures for enhancing mass transfer during processing of microfeature workpieces
US7390382B2 (en) 2003-07-01 2008-06-24 Semitool, Inc. Reactors having multiple electrodes and/or enclosed reciprocating paddles, and associated methods

Similar Documents

Publication Publication Date Title
US6261433B1 (en) Electro-chemical deposition system and method of electroplating on substrates
EP1019954B1 (en) Method and apparatus for low-temperature annealing of electroplated copper micro-structures in the production of a microelectronic device
US6773571B1 (en) Method and apparatus for uniform electroplating of thin metal seeded wafers using multiple segmented virtual anode sources
US6806186B2 (en) Submicron metallization using electrochemical deposition
US5833820A (en) Electroplating apparatus
CN1182939C (en) Method and apparatus for deposition on and polishing of semiconductor surface
US6800188B2 (en) Copper plating bath and plating method for substrate using the copper plating bath
KR100659544B1 (en) Via-filling process
US6210554B1 (en) Method of plating semiconductor wafer and plated semiconductor wafer
US6287968B1 (en) Method of defining copper seed layer for selective electroless plating processing
TWI523976B (en) The electrolytic solution is filled using through-silicon via has a two-state inhibitors
US6518184B1 (en) Enhancement of an interconnect
US6551483B1 (en) Method for potential controlled electroplating of fine patterns on semiconductor wafers
KR101105485B1 (en) Process for through silicon via filling
US6121152A (en) Method and apparatus for planarization of metallized semiconductor wafers using a bipolar electrode assembly
US6660137B2 (en) System for electrochemically processing a workpiece
US6024856A (en) Copper metallization of silicon wafers using insoluble anodes
US6596624B1 (en) Process for making low dielectric constant hollow chip structures by removing sacrificial dielectric material after the chip is joined to a chip carrier
US20030209429A1 (en) Method and apparatus for processing a substrate with minimal edge exclusion
US6824612B2 (en) Electroless plating system
JP2734269B2 (en) Semiconductor manufacturing equipment
US5214000A (en) Thermal transfer posts for high density multichip substrates and formation method
US20070266886A1 (en) Printed wiring board and its manufacturing method
JP5285833B2 (en) System for refurbishing microstructures
EP2399281B1 (en) Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906