JP2000012366A - Manufacture of soft magnetic film - Google Patents

Manufacture of soft magnetic film

Info

Publication number
JP2000012366A
JP2000012366A JP17622998A JP17622998A JP2000012366A JP 2000012366 A JP2000012366 A JP 2000012366A JP 17622998 A JP17622998 A JP 17622998A JP 17622998 A JP17622998 A JP 17622998A JP 2000012366 A JP2000012366 A JP 2000012366A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic film
sputtering
substrate
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17622998A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamanishi
斉 山西
Isamu Aokura
勇 青倉
Shunsaku Muraoka
俊作 村岡
Hiroshi Seki
博司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17622998A priority Critical patent/JP2000012366A/en
Publication of JP2000012366A publication Critical patent/JP2000012366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • H01F10/147Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel with lattice under strain, e.g. expanded by interstitial nitrogen

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing with a high mass-productivity a soft magnetic film exhibiting a high permeability having desired magnetic anisotropy required by different types of magnetic head and a high saturation magnetic flux density. SOLUTION: For manufacturing a soft magnetic film containing Fe as major constituent, 5-20 atom % of N and 5-15 atom % of M (at least one element out of Ta, Zr, Hf, Nb and Ti), a cylindrical substrate holder 9 round the perimeter of which substrates 8 are placed and which rotates around a central axis 14, and is placed through an insulating material 13 between itself and a vacuum chamber 2; and a substrate holder rotation reaction type bias sputtering device, having at least one sputtering electrode 4 on which sputtering targets 3 are placed on positions opposed to the substrate placing surface of the substrate holder 9, and having also at least two systems of sputtering gas introducing systems 11 and 18; are used. A soft magnetic film exhibiting a high magnetic permeability having desired magnetic anisotropy is manufactured with a high mass-productivity by controlling the sputtering conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気録画再生装置
(VTR)や、磁気録音再生装置などの磁気記録再生装
置において、主として磁気ヘッドのコア材に用いられる
軟磁性膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a soft magnetic film mainly used as a core material of a magnetic head in a magnetic recording and reproducing apparatus such as a magnetic recording and reproducing apparatus (VTR) and a magnetic recording and reproducing apparatus. is there.

【0002】[0002]

【従来の技術】近年のデジタル技術の進歩に伴う磁気記
録分野の高密度化には、磁気記録媒体の高保磁力化とと
もに、磁気へッドの高性能化が不可欠となってきてい
る。磁気ヘッドにおける高密度記録達成には、磁気ヘッ
ドのトラック幅やギャップ長の微細化とともに、高飽和
磁束密度(主に記録特性に影響する)と高透磁率(主に
再生特性に影響する)を有する軟磁性膜をコア材に用い
たものが必要とされており、種々の開発が進められてい
る。
2. Description of the Related Art In order to increase the density of the magnetic recording field in accordance with recent advances in digital technology, it is essential to increase the coercive force of a magnetic recording medium and to improve the performance of a magnetic head. To achieve high-density recording in a magnetic head, along with the miniaturization of the track width and gap length of the magnetic head, high saturation magnetic flux density (mainly affecting recording characteristics) and high magnetic permeability (mainly affecting reproduction characteristics) are required. There is a need for a material using a soft magnetic film having the same as a core material, and various developments are underway.

【0003】高性能磁気ヘッドの代表的な種類として
は、軟磁性膜と絶縁膜をトラック幅方向に交互に積層し
たコア材が、セラミック等の非磁性基板で挟持され、前
記コア材のみで磁気回路が構成されるリング型の積層へ
ッドや、磁気回路の大部分がフェライトで構成され、磁
気的に飽和しやすい磁気ギャップ近傍のみに軟磁性膜を
設けたMIGヘッド(Metal-In-Gapの略)があげられ
る。このため、積層へッドのコア材としては、等方的な
高透磁率特性を有する軟磁性膜が、一方、MIGへッド
には、面内一軸異方性を誘導させた高透磁率特性を有す
る軟磁性膜が、それぞれ要求される。
As a typical type of high performance magnetic head, a core material in which a soft magnetic film and an insulating film are alternately stacked in the track width direction is sandwiched between non-magnetic substrates such as ceramics. A MIG head (Metal-In-Gap) with a ring-type laminated head that constitutes a circuit, or a MIG head in which the magnetic circuit is mostly made of ferrite and a soft magnetic film is provided only in the vicinity of a magnetic gap that is easily magnetically saturated Abbreviation). For this reason, a soft magnetic film having isotropic high permeability characteristics is used as the core material of the laminated head, while a high magnetic permeability which induces in-plane uniaxial anisotropy is used for the MIG head. Soft magnetic films having characteristics are required respectively.

【0004】一方、軟磁性膜の代表的な種類としては現
在、センダスト(Fe−Al−Si)系合金膜やCo系
非晶質合金膜等が、実用化されているが、飽和磁束密度
が約1T(テスラ)前後と低く、今後更に高保磁力化す
る媒体を用いての高密度記録を実現するためには、これ
らの従来材料では限界がある。そこで近年、高飽和磁束
密度と高透磁率とを有する軟磁性膜の研究開発が盛んに
行われている。その一つとして、Feを主成分とするF
e−M−N系膜(ただし、Mは、Ta、Zr、Hf、N
b、Tiの少なくとも1種の元素)があげられる。
On the other hand, as typical types of soft magnetic films, sendust (Fe-Al-Si) alloy films, Co-based amorphous alloy films and the like have been put to practical use, but the saturation magnetic flux density is low. These conventional materials have limitations in realizing high-density recording using a medium having a low coercive force, which is as low as about 1 T (tesla). Therefore, in recent years, research and development of a soft magnetic film having a high saturation magnetic flux density and a high magnetic permeability have been actively performed. As one of them, F mainly composed of Fe
e-MN-based film (where M is Ta, Zr, Hf, N
b, at least one element of Ti).

【0005】他方、これら軟磁性膜の作成方法として
は、真空技術を用いた蒸着やスパッタリングが主流であ
り、なかでもスパッタリングは、形成される薄膜の原材
料であるターゲットの組成を調整することで、比較的容
易に所望の組成を有する薄膜が、広範囲にわたって得ら
れるため、現在最も一般的に用いられている薄膜形成技
術である。以下、従来の一般的なスパッタリング装置に
ついて、図10を参照して説明する。図10は一般的な
スパッタリング装置の正面断面図である。図10におい
て、真空排気系101が接続された真空チャンバー10
2の内壁にはスパッタリングターゲット103を有する
スパッタリング電極104が絶縁材105を介して配設
され、マッチング回路106(高周波スパッタリングの
場合)を介して、スパッタリング用電源107が接続さ
れる。真空チャンバー内には薄膜が形成される基板10
8を設置する基板ホルダー109が配設される。さら
に、真空チャンバー101にはスパッタリング用ガス1
10(通常はArガス)がガス導入系111を介して接
続される。
[0005] On the other hand, as a method for producing these soft magnetic films, vapor deposition and sputtering using a vacuum technique are mainly used. In particular, sputtering is performed by adjusting the composition of a target which is a raw material of a thin film to be formed. This is the most commonly used thin film forming technique at present, because a thin film having a desired composition can be obtained relatively easily over a wide range. Hereinafter, a conventional general sputtering apparatus will be described with reference to FIG. FIG. 10 is a front sectional view of a general sputtering apparatus. In FIG. 10, a vacuum chamber 10 to which an evacuation system 101 is connected is shown.
A sputtering electrode 104 having a sputtering target 103 is disposed on the inner wall of the second electrode 2 via an insulating material 105, and a sputtering power supply 107 is connected via a matching circuit 106 (for high-frequency sputtering). Substrate 10 on which a thin film is formed in a vacuum chamber
8 is provided. Further, a sputtering gas 1 is placed in the vacuum chamber 101.
10 (usually Ar gas) is connected via a gas introduction system 111.

【0006】以上の装置でスパッタリング(薄膜形成)
を行うには、まず真空チャンバー内を真空ポンプ等の真
空排気系101により高真空(10-5Pa程度)まで排気
し、Ar等の放電ガス110をガス流量調整器111を
調整して真空チャンバー内に導入し、圧力調整バルブ1
12を調整して真空チャンバー内の圧力を0.1〜10
Pa程度に保つ。ここで、ターゲット103を取り付けた
スパッタリング電極104に、直流あるいは交流のスパ
ッタリング用電源107により負の電圧を印加すること
でプラズマが発生し、ターゲットがスパッタされ、飛び
出したスパッタ粒子が基板ホルダー109に設置された
基板108に堆積され薄膜が形成される。
[0006] Sputtering (thin film formation) with the above apparatus
First, the inside of the vacuum chamber is evacuated to a high vacuum (about 10 −5 Pa) by a vacuum evacuation system 101 such as a vacuum pump, and a discharge gas 110 such as Ar is adjusted by a gas flow controller 111 to form a vacuum chamber. Into the pressure control valve 1
12 to adjust the pressure in the vacuum chamber to 0.1 to 10
Keep to about Pa. Here, a plasma is generated by applying a negative voltage from a DC or AC sputtering power supply 107 to the sputtering electrode 104 to which the target 103 is attached, and the target is sputtered, and the sputtered particles protruding are set on the substrate holder 109. A thin film is formed on the substrate 108 thus formed.

【0007】[0007]

【発明が解決しようとする課題】しかし、図10のよう
な構成のスパッタ装置(静止対向型)では、膜厚均一性
を確保するため、基板ホルダー内の基板を設置できる領
域が、ターゲットサイズにより限定されてしまい量産装
置としては不向きである。このため現在は、外周面上に
複数の基板を設置した円筒形の基板ホルダーを回転させ
ながらスパッタリングを行う基板ホルダー回転型(カル
ーセル型ともいう)や、複数の基板を取り付けたトレー
をスパッタリングターゲットの前面を通過させながらス
パッタリングを行う基板トレー通過型等の、一度に大量
の基板に膜厚や特性の均一な薄膜を形成できるスパッタ
リング装置が、量産設備としてよく使用されている。
However, in a sputtering apparatus (stationary opposed type) having a configuration as shown in FIG. 10, in order to ensure uniformity of the film thickness, the area where the substrate in the substrate holder can be set depends on the target size. It is limited and is not suitable for mass production. For this reason, at present, a substrate holder rotating type (also called a carousel type) that performs sputtering while rotating a cylindrical substrate holder on which a plurality of substrates are placed on the outer peripheral surface, or a tray on which a plurality of substrates are mounted is used as a sputtering target. 2. Description of the Related Art A sputtering apparatus that can form a thin film having a uniform thickness and characteristics on a large amount of substrates at a time, such as a substrate tray passing type that performs sputtering while passing the front surface, is often used as mass production equipment.

【0008】ところが、基板回転型や通過型スパッタリ
ング装置は、一度に大量の基板に薄膜を形成できるとい
う特徴を有する反面、基板を回転や通過等、移動させな
がらスパッタリングを行なうため、基板に到達するスパ
ッタリング粒子の大部分が、斜め入射成分により構成さ
れる。このため、軟磁性膜の作成を行なった場合、基板
移動方向には強い一軸磁気異方性が誘導されやすくな
り、等方的な透磁率を有する軟磁性膜を形成することが
困難である。また、基板移動方向に対する垂直方向で
は、マグネトロンスパッタリング用の磁石(通常、成膜
速度を向上させるため、ターゲット裏面や近傍に配設さ
れる)の磁場の影響により、不均一な透磁率を有する磁
性膜が形成されてしまう。
[0008] However, the rotary-type or pass-through type sputtering apparatus has a feature that a thin film can be formed on a large number of substrates at once, but the sputtering reaches the substrate because the sputtering is performed while moving or rotating the substrate. Most of the sputtered particles are constituted by oblique incident components. For this reason, when a soft magnetic film is formed, strong uniaxial magnetic anisotropy is likely to be induced in the substrate movement direction, and it is difficult to form a soft magnetic film having isotropic magnetic permeability. In addition, in the direction perpendicular to the substrate movement direction, a magnet having a non-uniform magnetic permeability due to the magnetic field of a magnet for magnetron sputtering (usually disposed on or near the rear surface of the target in order to increase the deposition rate). A film is formed.

【0009】軟磁性薄膜の作成においては前述したよう
に、積層型ヘッドのコア材としては、膜面内の等方的な
高透磁率特性が、また、MIGヘッドや薄膜へッド等の
コア材としては、面内一軸磁気異方性を誘導させた高透
磁率特性を有する軟磁性膜がそれぞれ要求される、とい
うように磁気異方性の制御が非常に重要である。したが
って本発明の目的は上記の問題点を解決し、各種磁気へ
ッドに要求される所望の磁気異方性を有する高透磁率な
らびに高飽和磁束密度を示す軟磁性膜を量産性よく製造
する方法を提供するものである。
As described above, in the production of a soft magnetic thin film, the core material of the laminated type head has an isotropic high permeability property in the film plane, and a core material such as a MIG head or a thin film head. It is very important to control the magnetic anisotropy, for example, as a material, a soft magnetic film having high magnetic permeability characteristics that induces in-plane uniaxial magnetic anisotropy is required. Therefore, an object of the present invention is to solve the above-mentioned problems and to produce a soft magnetic film having desired magnetic anisotropy required for various magnetic heads and having high magnetic permeability and high saturation magnetic flux density with good mass productivity. It provides a method.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、以下に示すように構成している。本発明の第
1態様によれば、Feを主成分とし、N(窒素)を5〜
20原子%含むとともにM(ただし、Mは、Ta、Z
r、Hf、Nb、Tiの少なくとも1種の元素)を5〜
15原子%含む組成を有する軟磁性膜の製造方法におい
て、外周面上に基板を設置するとともに、中心軸を中心
に回転し、更には真空チャンバーとの間に絶縁材を介し
て配設された円筒形の基板ホルダーと、該基板ホルダー
の基板設置面に対向した位置に、スパッタリングターゲ
ットを設置したスパッタリング電極を少なくとも1個有
し、かつスパッタリング用ガスの導入系を少なくとも2
系統有する基板ホルダー回転型反応性バイアススパッタ
リング装置を用い、ガス雰囲気中の窒素ガス流量比(N
2ガス流量/Arガス流量)を4〜8%としてスパッタ
リングを行うことを特徴とする軟磁性膜の製造方法を提
供する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has the following arrangement. According to the first embodiment of the present invention, Fe is a main component and N (nitrogen) is 5 to 5.
20 atomic% and M (where M is Ta, Z
r, Hf, Nb, at least one element of Ti)
In a method of manufacturing a soft magnetic film having a composition containing 15 atomic%, a substrate is placed on an outer peripheral surface, rotated around a central axis, and further provided with an insulating material between the substrate and a vacuum chamber. A cylindrical substrate holder, at least one sputtering electrode provided with a sputtering target at a position facing the substrate mounting surface of the substrate holder, and at least two sputtering gas introduction systems.
Using a substrate holder rotating type reactive bias sputtering apparatus having a system, the nitrogen gas flow ratio (N
The present invention provides a method for producing a soft magnetic film, characterized in that sputtering is performed with the ratio of ( 2 gas flow rate / Ar gas flow rate) being 4 to 8%.

【0011】本発明の第2態様によれば、スパッタリン
グ中において、真空チャンバー内のガス圧力が0.1〜
1Paであることを特徴とする第1態様に記載の軟磁性膜
の製造方法を提供する。
According to the second aspect of the present invention, during sputtering, the gas pressure in the vacuum chamber is 0.1 to
The method for producing a soft magnetic film according to the first aspect, wherein the pressure is 1 Pa.

【0012】本発明の第3態様によれば、軟磁性膜を形
成する基板を設置した基板ホルダーの回転速度を任意に
設定してスパッタリングを行うことを特徴とする第1態
様に記載の軟磁性膜の製造方法を提供する。
According to a third aspect of the present invention, the sputtering is performed by arbitrarily setting a rotation speed of a substrate holder on which a substrate on which a soft magnetic film is to be formed is set, and performing sputtering. A method for manufacturing a membrane is provided.

【0013】本発明の第4態様によれば、軟磁性膜を形
成する基板を設置した基板ホルダーの回転速度3〜10
rpmにてスパッタリングを行うことを特徴とする第3態
様に記載の軟磁性膜の製造方法を提供する。
According to a fourth aspect of the present invention, the rotation speed of the substrate holder on which the substrate on which the soft magnetic film is to be formed is set is 3 to 10
A method for producing a soft magnetic film according to the third aspect, wherein sputtering is performed at rpm.

【0014】本発明の第5態様によれば、軟磁性膜を形
成する基板に、負のバイアス電圧を印加しながら前記軟
磁性膜を形成することを特徴とする第1態様に記載の軟
磁性膜の製造方法を提供する。
According to a fifth aspect of the present invention, the soft magnetic film is formed while applying a negative bias voltage to the substrate on which the soft magnetic film is to be formed. A method for manufacturing a membrane is provided.

【0015】本発明の第6態様によれば、軟磁性膜を形
成する基板に印加する負のバイアス電圧が0.05〜
0.25W/cm2であることを特徴とする第5態様に記載
の軟磁性膜の製造方法を提供する。
According to the sixth aspect of the present invention, the negative bias voltage applied to the substrate on which the soft magnetic film is formed is 0.05 to
A method for producing a soft magnetic film according to the fifth aspect, wherein the method is 0.25 W / cm 2 .

【0016】本発明の第7態様によれば、第1態様に記
載の基板ホルダー回転型反応性バイアススパッタリング
装置を用いて、少なくとも2層の軟磁性膜を有し、かつ
軟磁性膜と絶縁膜とを交互に積層した多層軟磁性膜を形
成することを特徴とする軟磁性膜の製造方法を提供す
る。
According to a seventh aspect of the present invention, at least two soft magnetic films are provided using the substrate holder rotary reactive bias sputtering apparatus according to the first aspect, and the soft magnetic film and the insulating film are provided. Are formed alternately to form a multilayer soft magnetic film.

【0017】本発明の第8態様によれば、少なくとも2
層の軟磁性膜を有し、かつ軟磁性膜と絶縁膜とを交互に
積層した多層軟磁性膜の各軟磁性膜を、窒素ガス流量
比、スパッタガス圧力、負のバイアス電圧、基板ホルダ
ーの回転速度から選ばれる少なくとも1つのスパッタ条
件を2種類以上に変えて形成することを特徴とする請求
項7に記載の軟磁性膜の製造方法を提供する。
According to an eighth aspect of the present invention, at least two
Each of the soft magnetic films of the multilayer soft magnetic film having a soft magnetic film of a layer and alternately laminating a soft magnetic film and an insulating film is provided with a nitrogen gas flow ratio, a sputtering gas pressure, a negative bias voltage, 8. The method according to claim 7, wherein the at least one sputtering condition selected from the rotation speed is changed to two or more types.

【0018】上記本発明によれば、各種磁気ヘッドに要
求される所望の磁気異方性を有する高透磁率ならびに高
飽和磁束密度を示す軟磁性膜を量産性よく製造すること
ができる。
According to the present invention, a soft magnetic film having desired magnetic anisotropy required for various magnetic heads and having high magnetic permeability and high saturation magnetic flux density can be manufactured with high mass productivity.

【0019】[0019]

【発明の実施の形態】以下に、本発明にかかる実施の形
態を図1〜9に基づいて詳細に説明する。まず、本発明
の5つの実施の形態の概略について説明する。本発明の
実施の形態1にかかる軟磁性膜の製造方法は、Feを主
成分とし、N(窒素)を5〜20原子%含むとともにM
(ただし、Mは、Ta、Zr、Hf、Nb、Tiの少な
くとも1種以上の元素)を5〜15原子%含む組成を有
する軟磁性膜の製造方法において、外周面上に基板を設
置するとともに、中心軸を中心に回転し、更には真空チ
ャンバーとの間に絶縁材を介して設置された円筒形の基
板ホルダーと、該基板ホルダーの基板設置面に対向した
位置に、スパッタリングターゲットを設置したスパッタ
リング電極を少なくとも1個有し、かつスパッタリング
用ガスの導入系を少なくとも2系統有する基板ホルダー
回転型反応性バイアススパッタリング装置を用いて、ス
パッタリング中におけるガス雰囲気中の窒素ガス流量比
(N2ガス流量/Arガス流量)を4〜8%に制御する
ことを特徴としたものであり、各種磁気ヘッドに要求さ
れる高透磁率ならびに高飽和磁束密度を示す軟磁性膜を
量産性よく製造することができるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described below in detail with reference to FIGS. First, an outline of five embodiments of the present invention will be described. The method for manufacturing a soft magnetic film according to the first embodiment of the present invention includes Fe as a main component, N (nitrogen) in an amount of 5 to 20 atomic%, and M
(Where M is at least one element of Ta, Zr, Hf, Nb, and Ti). In a method for manufacturing a soft magnetic film having a composition containing 5 to 15 atomic%, a substrate is placed on an outer peripheral surface. A cylindrical substrate holder which was rotated about a central axis and further provided with an insulating material between the vacuum chamber and a vacuum chamber, and a sputtering target was installed at a position facing the substrate installation surface of the substrate holder. Using a substrate holder rotating type reactive bias sputtering apparatus having at least one sputtering electrode and at least two systems for introducing a gas for sputtering, a nitrogen gas flow ratio (N 2 gas flow rate) in a gas atmosphere during sputtering. / Ar gas flow rate) is controlled to 4 to 8%. If the high magnetic permeability required for various magnetic heads is high, Has an effect of high saturation magnetic flux density can be manufactured with good mass productivity of the soft magnetic film exhibiting the.

【0020】本発明の実施の形態2にかかる軟磁性膜の
製造方法は、実施の形態1の軟磁性膜の製造方法におい
て、スパッタリング中のガス圧力を0.1〜1Paに制御
することを特徴としたものであり、各種磁気ヘッドに要
求される所望の磁気異方性を有する高透磁率ならびに高
飽和磁束密度を示す軟磁性膜を量産性よく製造すること
ができるという作用を有する。
The method of manufacturing a soft magnetic film according to the second embodiment of the present invention is characterized in that, in the method of manufacturing a soft magnetic film of the first embodiment, the gas pressure during sputtering is controlled to 0.1 to 1 Pa. This has the effect that a soft magnetic film having desired magnetic anisotropy required for various magnetic heads and having a high magnetic permeability and a high saturation magnetic flux density can be manufactured with good mass productivity.

【0021】本発明の実施の形態3にかかる軟磁性膜の
製造方法は、実施の形態1の軟磁性膜の製造方法におい
て、軟磁性膜を形成する基板を設置した基板ホルダーの
回転速度を3〜10rpmに制御することを特徴としたも
のであり、実施の形態2と同様、各種磁気ヘッドに要求
される所望の磁気異方性を有する高透磁率ならびに高飽
和磁束密度を示す軟磁性膜を量産性よく製造することが
できるという作用を有する。
The method of manufacturing a soft magnetic film according to the third embodiment of the present invention is the same as the method of manufacturing a soft magnetic film of the first embodiment, except that the rotation speed of the substrate holder on which the substrate on which the soft magnetic film is formed is set to 3 In the same manner as in the second embodiment, a soft magnetic film having high magnetic permeability and high saturation magnetic flux density having desired magnetic anisotropy required for various magnetic heads is provided. It has the effect that it can be manufactured with good mass productivity.

【0022】本発明の実施の形態4にかかる軟磁性膜の
製造方法は、実施の形態1の軟磁性膜の製造方法におい
て、軟磁性膜を形成する基板に印加する負のバイアス電
圧を0.05〜0.25W/cm2に制御することを特徴と
したものであり、膜面内の磁気異方性の向きが反転した
高透磁率ならびに高飽和磁束密度を示す軟磁性膜を量産
性よく製造することができるという作用を有する。
The method of manufacturing a soft magnetic film according to the fourth embodiment of the present invention is the same as the method of manufacturing a soft magnetic film of the first embodiment, except that the negative bias voltage applied to the substrate on which the soft magnetic film is formed is set to 0.1. 0.5 to 0.25 W / cm 2 , and a soft magnetic film having a high magnetic permeability and a high saturation magnetic flux density in which the direction of the magnetic anisotropy in the film surface is reversed is excellent in mass productivity. It has the effect that it can be manufactured.

【0023】本発明の実施の形態5にかかる軟磁性膜の
製造方法は、軟磁性膜と絶緑膜を交互に積層した多層軟
磁性膜において、絶縁膜を介して形成された各軟磁性膜
の磁気異方性の向きが、少なくとも1層は他の層と異な
るように、スパッタ条件を変えて(実施の形態1〜4の
うちの少なくとも2種類の実施の形態の条件で)該軟磁
性膜を形成することを特徴としたものであり、積層型ヘ
ッドのコア材に要求される膜面内に等方的な高透磁率な
らびに高飽和磁束密度を示す軟磁性膜を量産性よく製造
することができるという作用を有する。
The method for manufacturing a soft magnetic film according to the fifth embodiment of the present invention is directed to a method for manufacturing a soft magnetic film in which a soft magnetic film and an absolutely green film are alternately laminated, and each soft magnetic film is formed via an insulating film. The sputtering conditions are changed (under the conditions of at least two of the first to fourth embodiments) so that the direction of the magnetic anisotropy of at least one layer is different from that of the other layers. It is characterized by forming a film, and produces a soft magnetic film exhibiting isotropic high magnetic permeability and high saturation magnetic flux density in the film plane required for the core material of the laminated type head with good mass productivity. It has the effect of being able to.

【0024】(実施の形態1)以下、本発明の実施の形
態1について図1〜3を参照して説明する。まず、基板
ホルダー回転型反応性バイアススパッタリング装置につ
いて、図1を参照して説明する。図1(a)は基板回転
型反応性バイアススパッタリング装置の正面断面図、図
1(b)はその平面断面図である。図1において、真空
排気系1が接続された真空チャンバー2の内壁にはスパ
ッタリングターゲット3を有するスパッタリング電極4
が絶縁材5を介して配設され、マッチング回路6(高周
波スパッタリングの場合)を介して、スパッタリング用
電源7が接続される。このスパッタリング電極4は、図
1(b)に示されるように、基板ホルダー9の外周面と
対向するにように、複数(図の例では4基)配置されて
いる。真空チャンバー内には外周に基板8を設置できる
円筒形の基板ホルダー9が、真空チャンバー2との間に
絶縁材13を介して配設され、その中心軸14を中心に
自転できるようにモーター等の回転機構(図示していな
い)が接続される。また、基板ホルダー9にはバイアス
電圧が印加できるようにマッチング回路15を介してバ
イアス用電源16が接続されている。さらに、スパッタ
リング用ガス10(通常はArガス)の導入系11に加
えて、反応性スパッタリング用のガス17および該導入
系18が接続されている。
(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. First, a substrate holder rotating reactive bias sputtering apparatus will be described with reference to FIG. FIG. 1A is a front sectional view of a substrate rotation type reactive bias sputtering apparatus, and FIG. 1B is a plan sectional view thereof. In FIG. 1, a sputtering electrode 4 having a sputtering target 3 is provided on an inner wall of a vacuum chamber 2 to which a vacuum exhaust system 1 is connected.
Are provided via an insulating material 5 and a sputtering power source 7 is connected via a matching circuit 6 (in the case of high-frequency sputtering). As shown in FIG. 1B, a plurality of (four in the example shown) the sputtering electrodes 4 are arranged so as to face the outer peripheral surface of the substrate holder 9. In the vacuum chamber, a cylindrical substrate holder 9 on which the substrate 8 can be placed is provided between the vacuum chamber 2 and the vacuum chamber 2 via an insulating material 13, and a motor or the like is provided so as to be able to rotate around its central axis 14. (Not shown) are connected. Further, a bias power supply 16 is connected to the substrate holder 9 via a matching circuit 15 so that a bias voltage can be applied. Further, a reactive sputtering gas 17 and an introduction system 18 are connected to the introduction system 11 for the sputtering gas 10 (usually Ar gas).

【0025】以上の装置でスパッタリング(薄膜形成)
を行うには、まず真空チャンバー内を真空ポンプ等の真
空排気系1により高真空(10-5Pa程度)まで排気し、
Ar等の放電ガス10をガス流量調整器11を調整して
真空チャンバー内に導入し、圧力調整バルブ12を調整
して真空チヤンバー内の圧力を0.1〜1Pa程度に保
つ。なお、作成する薄膜が反応ガス17との化合物の場
合には、放電ガス10と同時に反応性スパッタリング用
ガス17を導入し、放電ガス10と同様にガス流量調整
器18により両ガスの割合を調整する(反応性スパッタ
リング)。ここで、基板8を取り付けた基板ホルダー9
を、基板回転機構(図示していない)により基板ホルダ
ー中心軸14を中心に自転させるとともに、ターゲット
3を取り付けたスパッタリング電極4に直流あるいは交
流のスパッタリング用電源7により負の電圧を印加する
ことでプラズマが発生し、ターゲット3がスパッタさ
れ、飛び出したスパッタ粒子が、回転している基板ホル
ダー外周面に設置された基板8に堆積され薄膜が形成さ
れる。
Sputtering (thin film formation) with the above apparatus
First, the inside of the vacuum chamber is evacuated to a high vacuum (about 10 −5 Pa) by a vacuum exhaust system 1 such as a vacuum pump.
The discharge gas 10 such as Ar is introduced into the vacuum chamber by adjusting the gas flow controller 11, and the pressure in the vacuum chamber is maintained at about 0.1 to 1 Pa by adjusting the pressure adjusting valve 12. When the thin film to be formed is a compound with the reactive gas 17, the reactive sputtering gas 17 is introduced simultaneously with the discharge gas 10, and the ratio of the two gases is adjusted by the gas flow controller 18 in the same manner as the discharge gas 10. (Reactive sputtering). Here, the substrate holder 9 on which the substrate 8 is mounted
Is rotated about a substrate holder central axis 14 by a substrate rotating mechanism (not shown), and a DC or AC sputtering power supply 7 applies a negative voltage to the sputtering electrode 4 to which the target 3 is attached. Plasma is generated, the target 3 is sputtered, and the sputtered particles sputtered out are deposited on the substrate 8 placed on the rotating outer surface of the substrate holder to form a thin film.

【0026】次に具体例として、以上のような基板ホル
ダー回転型反応性バイアススパッタリング装置による、
Fe−Ta−N膜とSiO2膜の多層軟磁性膜の作成方
法および該軟磁性膜の特性(透磁率特性)について図2
〜3を参照して説明する。図2は本実施の形態の、基板
ホルダー回転型反応性バイアススパッタリング装置の概
略平面図である。スパッタリングターゲットには、矩形
のFe−Taターゲット3枚とSiO2ターゲット1枚
(いずれも、381mm×127mm)を使用し、Fe−T
a−N膜は、ArとN2の混合ガス雰囲気中での反応性
スパッタリングにより作成した。軟磁性膜を形成する基
板には、非磁性のセラミックス基板を使用し、該基板を
基板冷却機構を有する基板ホルダーに設置し、該基板ホ
ルダーを回転させながら薄膜形成を行なった。
Next, as a specific example, the above-described reactive bias sputtering apparatus with a substrate holder rotating type is used.
FIG. 2 shows a method of forming a multilayer soft magnetic film of an Fe—Ta—N film and a SiO 2 film and characteristics (permeability characteristics) of the soft magnetic film.
This will be described with reference to FIGS. FIG. 2 is a schematic plan view of the reactive bias sputtering apparatus for rotating a substrate holder according to the present embodiment. As the sputtering targets, three rectangular Fe—Ta targets and one SiO 2 target (all 381 mm × 127 mm) were used.
a-N film was prepared by reactive sputtering in a mixed gas atmosphere of Ar and N 2. A non-magnetic ceramic substrate was used as a substrate for forming the soft magnetic film, and the substrate was set on a substrate holder having a substrate cooling mechanism, and a thin film was formed while rotating the substrate holder.

【0027】まず、Fe−Taターゲットを設置したス
パッタリング電極を3基用い、Arガス流量:100sc
cmとN2ガス流量:5sccmの混合ガス中(N2流量比:5
%)でFe−Ta−N膜をセラミックス基板上に0.4
μm形成した。他の条件としては、スパッタリング圧
力:0.53Pa、スパッタリング電力:2kW、基板ホ
ルダー回転速度:3rpmである。次に、SiO2膜をAr
ガス流量:100sccm、スパッタ圧力:0.93Pa、ス
パッタ電力:2kW、基板ホルダー回転速度:10rpm
で5nmを形成した。以上の工程を繰り返し、Fe−Ta
−N膜6層をSiO2膜5層で積層した構成の多層軟磁
性膜(全体膜厚:約2.4μm)を作成し、550℃、
1時間、無磁界真空中での熱処埋を行ない透磁率を測定
した。
First, three sputtering electrodes provided with Fe—Ta targets were used, and Ar gas flow rate: 100 sc
cm and N 2 gas flow rate: 5 sccm in a mixed gas (N 2 flow ratio: 5
%) To form a Fe—Ta—N film on a ceramic substrate by 0.4%.
μm was formed. Other conditions include a sputtering pressure of 0.53 Pa, a sputtering power of 2 kW, and a substrate holder rotation speed of 3 rpm. Next, the SiO 2 film is
Gas flow rate: 100 sccm, sputtering pressure: 0.93 Pa, sputtering power: 2 kW, substrate holder rotation speed: 10 rpm
To form 5 nm. By repeating the above steps, Fe-Ta
A multilayer soft magnetic film (total thickness: about 2.4 μm) having a structure in which six layers of —N films are laminated with five layers of SiO 2 films is formed at 550 ° C.
Heat treatment was performed for 1 hour in a magnetic field-free vacuum, and the magnetic permeability was measured.

【0028】10kHzにおける膜面内の初透磁率μ'の基
板位置依存性の結果を図3に示す。図3における基板位
置は、基板ホルダー垂直方向(基板ホルダー回転方向に
対し90゜の方向)を示し、符号のマイナスが基板中心
より上側、プラスが下側である。また、μ'xは基板ホ
ルダー回転方向の、μ'yは基板ホルダー回転方向に対
して90゜方向の、それぞれのμ'の値である。図3よ
り、μ'xはいずれの基板位置においても6000以
上、μ'yは1500以上の値を示していることがわか
る。なおかつ磁気異方性の向きが一方向に揃っているこ
とから、本実施の形態の多層軟磁性膜は、前記MIGヘ
ッドのコア材等、一軸磁気異方性を必要とするデバイス
として最適である。また、一度に多数の基板を処理でき
るため量産性良く製造することができる。
FIG. 3 shows the result of the dependence of the initial permeability μ 'in the film plane at 10 kHz on the substrate position. The substrate position in FIG. 3 indicates the vertical direction of the substrate holder (a direction at 90 ° to the rotation direction of the substrate holder), where the minus sign is above the center of the board and the plus sign is below. Μ′x is the value of μ ′ in the substrate holder rotation direction, and μ′y is the value of μ ′ in the direction of 90 ° with respect to the substrate holder rotation direction. FIG. 3 shows that μ′x shows a value of 6000 or more and μ′y shows a value of 1500 or more at any substrate position. In addition, since the directions of magnetic anisotropy are aligned in one direction, the multilayer soft magnetic film of the present embodiment is most suitable as a device requiring uniaxial magnetic anisotropy such as the core material of the MIG head. . Further, since a large number of substrates can be processed at one time, it can be manufactured with high mass productivity.

【0029】(実施の形態2)実施の形態1と同様の方
法で、スパッタ圧力を0.27Paに制御してFe−Ta
−N膜を作成した時の多層軟磁性膜の10kHzにおける
膜面内の初透磁率μ'の基板位置依存性の結果を図4に
示す。なお、他のスパッタ条件や熱処理条件等は実施の
形態1と同じである。図4より、μ'x及びμ'yは、両
方のいずれの基板位置においても3500〜6500と
いう高透磁率を示しているとともに、磁気異方性に関し
ては、ほぼ等方的であることがわかる。このため、本実
施の形態の多層軟磁性膜は、前記積層ヘッドのコア材
等、等方的な高透磁率を必要とするデバイスとして最適
である。また、一度に多数の基板を処理できるため量産
性良く製造することができる。
(Embodiment 2) In the same manner as in Embodiment 1, the sputtering pressure is controlled to 0.27 Pa and Fe--Ta
FIG. 4 shows the results of the substrate position dependence of the initial magnetic permeability μ ′ of the multilayer soft magnetic film at 10 kHz when the −N film was formed. Other sputtering conditions and heat treatment conditions are the same as those in the first embodiment. From FIG. 4, it can be seen that μ′x and μ′y show high magnetic permeability of 3500 to 6500 at both substrate positions, and that the magnetic anisotropy is almost isotropic. . For this reason, the multilayer soft magnetic film of the present embodiment is most suitable as a device requiring an isotropic high magnetic permeability, such as the core material of the laminated head. Further, since a large number of substrates can be processed at one time, it can be manufactured with high mass productivity.

【0030】(実施の形態3)実施の形態1と同様の方
法で、基板ホルダー回転速度を10rpmに制御してFe
−Ta−N膜を作成した時の多層軟磁性膜の10kHzに
おける膜面内の初透磁率μ'の基板位置依存性の結果を
図5に示す。なお、他のスパッタ条件や熱処理条件等は
実施の形態1と同じである。図5より、基板中心から端
(−90mm)にかけてμ'xとμ'yの値がほぼ線形的に
反転しており、基板中心付近ではμ'xが高透磁率を、
逆に端ではμ'yが高透磁率(いずれも8000以上)
を示している。つまり、本実施の形態の多層軟磁性膜は
基板面内で磁気異方性の向きに傾斜が必要なデバイスに
最適である。また、一度に多数の基板を処理できるため
量産性良く製造することができる。
(Embodiment 3) In the same manner as in Embodiment 1, the substrate holder rotation speed is controlled to 10 rpm, and
FIG. 5 shows the results of the substrate position dependence of the initial magnetic permeability μ ′ in the film surface at 10 kHz of the multilayer soft magnetic film when the −Ta—N film was formed. Other sputtering conditions and heat treatment conditions are the same as those in the first embodiment. 5, the values of μ′x and μ′y are almost linearly inverted from the center of the substrate to the end (−90 mm), and μ′x has high magnetic permeability near the center of the substrate.
Conversely, at the end, μ'y has high magnetic permeability (both 8000 or more)
Is shown. In other words, the multilayer soft magnetic film of the present embodiment is most suitable for a device that needs to be inclined in the direction of magnetic anisotropy in the plane of the substrate. Further, since a large number of substrates can be processed at one time, it can be manufactured with high mass productivity.

【0031】(実施の形態4)実施の形態1と同様の方
法で、かつFe−Ta−N膜作成中に基板ホルダーに負
のバイアス電圧(13.56MHzのRF電源によるR
F電力:1200W、電力密度:0.2W/cm2)を印加
しながら作成した多層軟磁性膜の10kHzにおける膜面
内の初透磁率μ'の基板位置依存性の結果を図6に示
す。尚、他のスパッタ条件や熱処理条件等は実施の形態
1と同じである。図6より、μ'xはいずれの基板位置
においても1000以上、μ'yは5500以上の値を
示しており、かつ磁気異方性の向きが一方向に揃ってい
るため、実施の形態1と同様に前記MIGへッド等のコ
ア材として最適であるとともに、一度に多数の基板を処
理できるため量産性良く製造することができる。また、
本実施の形態では、基板ホルダー垂直方向(基板ホルダ
ー回転方向に対して90゜の方向)に高透磁率が揃って
おり、実施の形態1と比較すると磁気異方性の向きが反
転している。このため、基板ホルダーヘの基板取り付け
等の関係で基板ホルダー垂直方向に高透磁率を有する軟
磁性膜が必要な時に有効である。
(Embodiment 4) A negative bias voltage (13.56 MHz RF power supply) is applied to the substrate holder during the Fe-Ta-N film formation in the same manner as in Embodiment 1.
FIG. 6 shows the results of the substrate position dependence of the initial magnetic permeability μ ′ in the film plane at 10 kHz of a multilayer soft magnetic film formed while applying an F power of 1200 W and a power density of 0.2 W / cm 2 ). The other sputtering conditions and heat treatment conditions are the same as in the first embodiment. From FIG. 6, μ′x shows a value of 1000 or more and μ′y shows a value of 5500 or more at any substrate position, and the directions of magnetic anisotropy are aligned in one direction. Similarly to the above, it is optimal as a core material such as the MIG head, and can process a large number of substrates at once, so that it can be manufactured with high mass productivity. Also,
In the present embodiment, the high magnetic permeability is uniform in the direction perpendicular to the substrate holder (in the direction of 90 ° with respect to the rotation direction of the substrate holder), and the direction of the magnetic anisotropy is inverted as compared with the first embodiment. . Therefore, it is effective when a soft magnetic film having a high magnetic permeability in the vertical direction of the substrate holder is required for mounting the substrate on the substrate holder.

【0032】(実施の形態5)実施の形態1〜4と同様
の多層軟磁性膜構成で、1、2、4、5層目のFe−T
a−N膜のスパッタ条件を、N2ガス流量:5sccm、R
Fバイアス電力:1200W(電力密度:0.2W/c
m2)とし、3、6層目のスパッタ条件を、N2ガス流
量:6sccm、RFバイアス電力:960W(電力密度:
0.16W/cm2)と制御して作成した時の多層軟磁性膜
の10kHzにおける膜面内の初透磁率μ'の基板位置依存
性の結果を図8に示す。尚、他のスパッタ条件や熱処理
条件等は実施の形態1と同じである。図8より、μ'x
およびμ'yは、両方のいずれの基板位置においても3
500〜6500の値という高透磁率を示しており、ま
た磁気異方性に関してはほぼ等方的であるため、実施の
形態2と同様に前記積層ヘッド等のコア材として最適で
あるとともに、一度に多数の基板を処理できるため量産
性良く製造することができる。
(Embodiment 5) In the same multilayer soft magnetic film structure as in Embodiments 1-4, the first, second, fourth and fifth layers of Fe-T
The sputtering conditions for the a-N film were as follows: N 2 gas flow rate: 5 sccm, R
F bias power: 1200 W (power density: 0.2 W / c
m 2 ), and the sputtering conditions for the third and sixth layers were as follows: N 2 gas flow rate: 6 sccm, RF bias power: 960 W (power density:
FIG. 8 shows the results of the substrate position dependence of the initial magnetic permeability μ ′ in the film surface at 10 kHz of the multilayer soft magnetic film when the film was formed at a control of 0.16 W / cm 2 ). The other sputtering conditions and heat treatment conditions are the same as in the first embodiment. From FIG. 8, μ′x
And μ′y are 3 at both substrate positions.
Since it has a high magnetic permeability of 500 to 6500 and is almost isotropic with respect to magnetic anisotropy, it is most suitable as a core material for the laminated head and the like as in the second embodiment. Since a large number of substrates can be processed at a time, it can be manufactured with good mass productivity.

【0033】本実施の形態の多層軟磁性膜の構成は、実
施の形態4で示した基板ホルダー垂直方向にμ'が高い
Fe−Ta−N膜(図6参照)と、図7に示すように基
板ホルダー回転方向にμ'が高いFe−Ta−N膜(N2
ガス流量:6sccm、RFバイアス電力:960W、他の
スパッタ条件や熱処理条件等は実施の形態1と同様)と
を2:1の割合に配分した構成を採っている。つまり、
磁気異方性の向きの異なる軟磁性膜を、層間絶縁膜を介
して積層することにより等方的な多層軟磁性膜を作成し
ている。
The structure of the multilayer soft magnetic film of the present embodiment is the same as that of the Fe—Ta—N film (see FIG. 6) having a high μ ′ in the vertical direction of the substrate holder shown in the fourth embodiment, as shown in FIG. high Fe-Ta-N film mu 'to the substrate holder rotational direction (N 2
Gas flow rate: 6 sccm, RF bias power: 960 W, and other sputtering conditions and heat treatment conditions are the same as in the first embodiment) in a ratio of 2: 1. That is,
An isotropic multilayer soft magnetic film is formed by laminating soft magnetic films having different directions of magnetic anisotropy via an interlayer insulating film.

【0034】また、図9に本実施の形態において作成し
た多層軟磁性膜の任意の試料(基板位置:−70mm)の
実効透磁率μの周波数特性を示す。ここで、μx及びμ
yの定義は前記と同様、μxが基板ホルダー回転方向
の、μyが基板ホルダー回転方向に対して90゜方向
の、それぞれのμの値である。μxおよびμyとも、低
周波帯域(1MHz)において5000以上、高周波帯
域(例えば50MHz)においても2000以上と、周
波数特性のすぐれた等方的でかつ高透磁率を有する多層
軟磁性膜が得られていることがわかる。
FIG. 9 shows the frequency characteristics of the effective magnetic permeability μ of an arbitrary sample (substrate position: −70 mm) of the multilayer soft magnetic film formed in the present embodiment. Here, μx and μ
In the same manner as described above, y is a value of μ in which μx is in the direction of rotation of the substrate holder, and μy is a value of 90 ° in the direction of rotation of the substrate holder. Both μx and μy are 5,000 or more in the low frequency band (1 MHz) and 2,000 or more in the high frequency band (for example, 50 MHz), and a multilayer soft magnetic film having excellent frequency characteristics and isotropic and having high magnetic permeability is obtained. You can see that there is.

【0035】以上、実施の形態1〜5では、Fe−Ta
−N膜について詳細に説明したが、Feを主成分とし、
N(窒素)を5〜20原子%含むとともにM(ただし、
Mは、Ta、Zr、Hf、Nb、Tiの少なくとも1種
の元素)を5〜15原子%含む組成を有する軟磁性膜に
おいても同様の効果を有する。また、実施の形態1〜5
では、Fe−Ta−N膜6層をSiO2膜5層で積層し
た構成の多層軟磁性膜(全体膜厚:約2.4μm)とし
たが、Fe−Ta−N膜およびSiO2膜の、膜厚や積
層数(Fe−Ta−N単層を含む)を変化させても構わ
ない。
As described above, in the first to fifth embodiments, Fe-Ta
Although the -N film has been described in detail, the main component is Fe,
Contains 5 to 20 atomic% of N (nitrogen) and M (however,
M has the same effect also in a soft magnetic film having a composition containing 5 to 15 atomic% of at least one element of Ta, Zr, Hf, Nb, and Ti). Embodiments 1 to 5
In the above, a multilayer soft magnetic film (total thickness: about 2.4 μm) having a configuration in which six Fe—Ta—N films are stacked with five SiO 2 films is used. However, the Fe—Ta—N film and the SiO 2 film Alternatively, the thickness and the number of layers (including a single Fe—Ta—N layer) may be changed.

【0036】[0036]

【発明の効果】本発明の軟磁性膜の製造方法によれば、
以上の説明から明らかなように、Feを主成分とし、N
(窒素)を5〜20原子%含むとともにM(ただし、M
は、Ta、Zr、Hf、Nb、Tiの少なくとも1種の
元素)を5〜15原子%含む組成を有する軟磁性膜の製
造方法において、外周面上に基板を設置するとともに、
中心軸を中心に回転し、更には真空チャンバーとの間に
絶縁材を介して設置された円筒形の基板ホルダーと、該
基板ホルダーの基板設置面に対向した位置に、スパッタ
リングターゲットを設置したスパッタリング電極を少な
くとも1個有し、かつスパッタリング用ガスの導入系を
少なくとも2系統有する基板ホルダー回転型反応性バイ
アススパッタリング装置を用いて、スパッタリング中に
おけるガス雰囲気中の窒素ガス流量比(N2ガス流量/
Arガス流量)を4〜8%に制御することで、各種磁気
ヘッドに要求される高透磁率ならびに高飽和磁束密度を
示す軟磁性膜を量産性よく製造することができる。
According to the method for producing a soft magnetic film of the present invention,
As is clear from the above description, Fe is the main component and N
(Nitrogen) and M (where M
Is a method of manufacturing a soft magnetic film having a composition containing 5 to 15 atomic% of at least one element of Ta, Zr, Hf, Nb, and Ti).
A cylindrical substrate holder that is rotated around a central axis and further placed between a vacuum chamber and an insulating material, and a sputtering target is placed at a position facing the substrate placement surface of the substrate holder. Using a substrate holder rotating reactive bias sputtering apparatus having at least one electrode and at least two systems for introducing a sputtering gas, a nitrogen gas flow ratio (N 2 gas flow /
By controlling the Ar gas flow rate to 4 to 8%, a soft magnetic film exhibiting high magnetic permeability and high saturation magnetic flux density required for various magnetic heads can be manufactured with good mass productivity.

【0037】さらに、スパッタリング中のガス圧力を
0.1〜1Paに制御することで、各種磁気へッドに要求
される所望の磁気異方性を有する高透磁率ならびに高飽
和磁束密度を示す軟磁性膜を量産性よく製造することが
できる。また、軟磁性膜を形成する基板を設置した基板
ホルダーの回転速度を3〜10rpmに制御することで
も、各種磁気へッドに要求される所望の磁気異方性を有
する高透磁率ならびに高飽和磁束密度を示す軟磁性膜を
量産性よく製造することができる。さらに、軟磁性膜を
形成する基板に、負のバイアス電圧を0.05〜0.2
5W/cm2に制御して印加することで、膜面内の磁気異方
性の向きが反転した高透磁率ならびに高飽和磁束密度を
示す軟磁性膜を量産性よく製造することができる。ま
た、軟磁性膜と絶縁膜を交互に積層した多層軟磁性膜に
おいて、絶縁膜を介して形成された各軟磁性膜の磁気異
方性の向きが、少なくとも1層は他の層と異なるよう
に、スパッタ条件を変えて該軟磁性膜を形成すること
で、積層型ヘッドのコア材に要求される膜面内に等方的
な高透磁率ならびに高飽和磁束密度を示す軟磁性膜を量
産性よく製造することができる。
Further, by controlling the gas pressure during sputtering to 0.1 to 1 Pa, a soft magnetic material having desired magnetic anisotropy required for various magnetic heads and having high magnetic permeability and high saturation magnetic flux density can be obtained. The magnetic film can be manufactured with good mass productivity. Also, by controlling the rotation speed of the substrate holder on which the substrate on which the soft magnetic film is formed is set to 3 to 10 rpm, high magnetic permeability and high saturation having desired magnetic anisotropy required for various magnetic heads can be obtained. A soft magnetic film exhibiting a magnetic flux density can be manufactured with good mass productivity. Further, a negative bias voltage of 0.05 to 0.2 is applied to the substrate on which the soft magnetic film is formed.
By controlling and applying 5 W / cm 2 , a soft magnetic film having high magnetic permeability and high saturation magnetic flux density in which the direction of magnetic anisotropy in the film surface is reversed can be manufactured with good mass productivity. In a multilayer soft magnetic film in which soft magnetic films and insulating films are alternately laminated, the direction of magnetic anisotropy of each soft magnetic film formed via the insulating film is different from at least one other layer. Then, by forming the soft magnetic film under different sputtering conditions, a soft magnetic film exhibiting isotropic high magnetic permeability and high saturation magnetic flux density in the film surface required for the core material of the multilayer head is mass-produced. It can be manufactured with good quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の実施の形態1における基板ホ
ルダー回転型反応性バイアススパッタリング装置の正面
断面図 (b)はその平面断面図
FIG. 1A is a front sectional view of a substrate holder rotating reactive bias sputtering apparatus according to a first embodiment of the present invention, and FIG.

【図2】本発明の実施の形態1における基板ホルダー回
転型反応性バイアススパッタリング装置の概略平面図
FIG. 2 is a schematic plan view of a substrate holder rotating reactive bias sputtering apparatus according to Embodiment 1 of the present invention.

【図3】本発明の実施の形態1における多層軟磁性膜の
面内の初透磁率μ'の基板位置依存性の図
FIG. 3 is a diagram showing the substrate position dependence of the in-plane initial magnetic permeability μ ′ of the multilayer soft magnetic film according to the first embodiment of the present invention.

【図4】本発明の実施の形態2における多層軟磁性膜の
面内の初透磁率μ'の基板位置依存性の図
FIG. 4 is a diagram showing the dependence of the in-plane initial magnetic permeability μ ′ on the substrate position of the multilayer soft magnetic film according to the second embodiment of the present invention.

【図5】本発明の実施の形態3における多層軟磁性膜の
面内の初透磁率μ'の基板位置依存性の図
FIG. 5 is a diagram showing the substrate position dependence of the in-plane initial magnetic permeability μ ′ of the multilayer soft magnetic film according to the third embodiment of the present invention.

【図6】本発明の実施の形態4における多層軟磁性膜の
面内の初透磁率μ'の基板位置依存性の図
FIG. 6 is a diagram showing the substrate position dependence of the in-plane initial magnetic permeability μ ′ of the multilayer soft magnetic film according to the fourth embodiment of the present invention.

【図7】本発明の実施の形態5における多層軟磁性膜の
3,6層目に用いたFe−Ta−N膜の面内の初透磁率
μ'の基板位置依存性の図
FIG. 7 is a diagram showing the substrate position dependence of the initial magnetic permeability μ ′ in the plane of the Fe—Ta—N film used as the third and sixth layers of the multilayer soft magnetic film according to the fifth embodiment of the present invention.

【図8】本発明の実施の形態5における多層軟磁性膜の
面内の初透磁率μ'の基板位置依存性の図
FIG. 8 is a diagram showing the substrate position dependence of the in-plane initial magnetic permeability μ ′ of the multilayer soft magnetic film according to the fifth embodiment of the present invention.

【図9】本発明の実施の形態5における多層軟磁性膜の
実効透磁率μの周波数特性の図
FIG. 9 is a diagram showing a frequency characteristic of an effective magnetic permeability μ of the multilayer soft magnetic film according to the fifth embodiment of the present invention.

【図10】従来の一般的なスパッタリング装置の正面断
面図
FIG. 10 is a front sectional view of a conventional general sputtering apparatus.

【符号の説明】[Explanation of symbols]

3 ターゲット 4 スパッタ電極 8 基板 9 基板ホルダー 14 基板ホルダー中心軸 17 反応性スパッタリング用ガス 3 Target 4 Sputtering electrode 8 Substrate 9 Substrate holder 14 Center axis of substrate holder 17 Reactive sputtering gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村岡 俊作 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 関 博司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5D033 BA03 DA03 5D093 AA01 BB18 BC18 BD01 BD08 FA12 FA16 HA17 JA01 5E049 AA01 AA09 AC05 BA12 GC02 GC04  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shunsaku Muraoka 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Hiroshi Seki 1006 Kadoma Kadoma Kadoma City, Osaka Matsushita Electric Industrial F Terms (reference) 5D033 BA03 DA03 5D093 AA01 BB18 BC18 BD01 BD08 FA12 FA16 HA17 JA01 5E049 AA01 AA09 AC05 BA12 GC02 GC04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Feを主成分とし、N(窒素)を5〜2
0原子%含むとともにM(ただし、Mは、Ta、Zr、
Hf、Nb、Tiの少なくとも1種の元素)を5〜15
原子%含む組成を有する軟磁性膜の製造方法において、
外周面上に基板を設置するとともに、中心軸を中心に回
転し、更には真空チャンバーとの間に絶縁材を介して配
設された円筒形の基板ホルダーと、該基板ホルダーの基
板設置面に対向した位置に、スパッタリングターゲット
を設置したスパッタリング電極を少なくとも1個有し、
かつスパッタリング用ガスの導入系を少なくとも2系統
有する基板ホルダー回転型反応性バイアススパッタリン
グ装置を用い、ガス雰囲気中の窒素ガス流量比(N2
ス流量/Arガス流量)を4〜8%としてスパッタリン
グを行うことを特徴とする軟磁性膜の製造方法。
1. An alloy containing Fe as a main component and N (nitrogen) in an amount of 5-2.
0 atomic% and M (where M is Ta, Zr,
At least one element of Hf, Nb and Ti) from 5 to 15
A method for producing a soft magnetic film having a composition containing at.
Along with placing the substrate on the outer peripheral surface, rotating around the central axis, and furthermore, a cylindrical substrate holder disposed via an insulating material between the vacuum chamber and a substrate mounting surface of the substrate holder. At least one sputtering electrode provided with a sputtering target is provided at the facing position,
And the introduction system of the sputtering gas used at least two systems the substrate holder rotating type reactive bias sputtering device having, a sputtering nitrogen gas flow ratio in the gas atmosphere (N 2 gas flow rate / Ar flow rate) as 4% to 8% A method for producing a soft magnetic film.
【請求項2】 スパッタリング中において、真空チャン
バー内のガス圧力が0.1〜1Paであることを特徴とす
る請求項1に記載の軟磁性膜の製造方法。
2. The method according to claim 1, wherein the gas pressure in the vacuum chamber during sputtering is 0.1 to 1 Pa.
【請求項3】 軟磁性膜を形成する基板を設置した基板
ホルダーの回転速度を任意に設定してスパッタリングを
行うことを特徴とする請求項1に記載の軟磁性膜の製造
方法。
3. The method of manufacturing a soft magnetic film according to claim 1, wherein the sputtering is performed by arbitrarily setting the rotation speed of a substrate holder on which the substrate on which the soft magnetic film is to be formed is installed.
【請求項4】 軟磁性膜を形成する基板を設置した基板
ホルダーの回転速度3〜10rpmにてスパッタリングを
行うことを特徴とする請求項3に記載の軟磁性膜の製造
方法。
4. The method for producing a soft magnetic film according to claim 3, wherein sputtering is performed at a rotation speed of a substrate holder on which the substrate on which the soft magnetic film is formed is set at 3 to 10 rpm.
【請求項5】 軟磁性膜を形成する基板に、負のバイア
ス電圧を印加しながら前記軟磁性膜を形成することを特
徴とする請求項1に記載の軟磁性膜の製造方法。
5. The method of manufacturing a soft magnetic film according to claim 1, wherein the soft magnetic film is formed while applying a negative bias voltage to a substrate on which the soft magnetic film is formed.
【請求項6】 軟磁性膜を形成する基板に印加する負の
バイアス電圧が0.05〜0.25W/cm2であることを
特徴とする請求項5に記載の軟磁性膜の製造方法。
6. The method according to claim 5, wherein the negative bias voltage applied to the substrate on which the soft magnetic film is formed is 0.05 to 0.25 W / cm 2 .
【請求項7】 請求項1に記載の基板ホルダー回転型反
応性バイアススパッタリング装置を用いて、少なくとも
2層の軟磁性膜を有し、かつ軟磁性膜と絶縁膜とを交互
に積層した多層軟磁性膜を形成することを特徴とする軟
磁性膜の製造方法。
7. A multi-layer soft magnetic film having at least two soft magnetic films and alternately laminating a soft magnetic film and an insulating film by using the substrate holder rotating reactive bias sputtering apparatus according to claim 1. A method for manufacturing a soft magnetic film, comprising forming a magnetic film.
【請求項8】 少なくとも2層の軟磁性膜を有し、かつ
軟磁性膜と絶縁膜とを交互に積層した多層軟磁性膜の各
軟磁性膜を、窒素ガス流量比、スパッタガス圧力、負の
バイアス電圧、基板ホルダーの回転速度から選ばれる少
なくとも1つのスパッタ条件を2種類以上に変えて形成
することを特徴とする請求項7に記載の軟磁性膜の製造
方法。
8. A multi-layered soft magnetic film having at least two soft magnetic films and alternately laminating a soft magnetic film and an insulating film, the soft magnetic film having a nitrogen gas flow ratio, a sputtering gas pressure, a negative 8. The method according to claim 7, wherein at least one sputtering condition selected from the bias voltage and the rotation speed of the substrate holder is changed to two or more.
JP17622998A 1998-06-23 1998-06-23 Manufacture of soft magnetic film Pending JP2000012366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17622998A JP2000012366A (en) 1998-06-23 1998-06-23 Manufacture of soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17622998A JP2000012366A (en) 1998-06-23 1998-06-23 Manufacture of soft magnetic film

Publications (1)

Publication Number Publication Date
JP2000012366A true JP2000012366A (en) 2000-01-14

Family

ID=16009901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17622998A Pending JP2000012366A (en) 1998-06-23 1998-06-23 Manufacture of soft magnetic film

Country Status (1)

Country Link
JP (1) JP2000012366A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304038A (en) * 2003-03-31 2004-10-28 Japan Science & Technology Agency Micro high-performance rare-earth magnet for micro product and its manufacturing method
JP2006156854A (en) * 2004-11-30 2006-06-15 Tdk Corp Magnetic thin film and its forming method
CN103839641A (en) * 2014-03-22 2014-06-04 沈阳中北真空设备有限公司 Mixed film coating equipment for neodymium iron boron rare-earth permanent magnet components and manufacturing method thereof
JP2018141195A (en) * 2017-02-27 2018-09-13 Tdk株式会社 Apparatus and method for manufacturing laminated film and method for manufacturing thin film inductor
CN110785825A (en) * 2017-04-27 2020-02-11 瑞士艾发科技 Soft magnetic multilayer deposition apparatus, method of manufacturing magnetic multilayer, and magnetic multilayer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304038A (en) * 2003-03-31 2004-10-28 Japan Science & Technology Agency Micro high-performance rare-earth magnet for micro product and its manufacturing method
US7402226B2 (en) 2003-03-31 2008-07-22 Japan Science And Technology Agency Minute high-performance rare earth magnet for micromini product and process for producing the same
JP2006156854A (en) * 2004-11-30 2006-06-15 Tdk Corp Magnetic thin film and its forming method
JP4529081B2 (en) * 2004-11-30 2010-08-25 Tdk株式会社 Magnetic thin film
CN103839641A (en) * 2014-03-22 2014-06-04 沈阳中北真空设备有限公司 Mixed film coating equipment for neodymium iron boron rare-earth permanent magnet components and manufacturing method thereof
CN103839641B (en) * 2014-03-22 2016-10-05 沈阳中北真空设备有限公司 The admixture plates the film equipment of a kind of neodymium iron boron rare earth permanent magnet device and manufacture method
JP2018141195A (en) * 2017-02-27 2018-09-13 Tdk株式会社 Apparatus and method for manufacturing laminated film and method for manufacturing thin film inductor
CN110785825A (en) * 2017-04-27 2020-02-11 瑞士艾发科技 Soft magnetic multilayer deposition apparatus, method of manufacturing magnetic multilayer, and magnetic multilayer
CN110785825B (en) * 2017-04-27 2023-06-23 瑞士艾发科技 Soft magnetic multilayer piece deposition apparatus, method of manufacturing magnetic multilayer piece, and magnetic multilayer piece

Similar Documents

Publication Publication Date Title
US6410170B1 (en) High resistivity FeXN sputtered films for magnetic storage devices and method of fabrication
JPS62188206A (en) Fe-si-al alloy magnetic film, manufacture thereof and thin film laminated magnetic head
US5403457A (en) Method for making soft magnetic film
JPH04214205A (en) Thin-film magnetic head and its production
JP2957421B2 (en) Thin film magnet, method of manufacturing the same, and cylindrical ferromagnetic thin film
US4013534A (en) Method of making a magnetic oxide film
JP2000012366A (en) Manufacture of soft magnetic film
JPS6130017A (en) Manufacture of vertical magnetization thin oxide film
CN1096090C (en) Method for mfg. soft magnetic film
Naoe et al. A reactive sputtering method for preparation of berthollide type of iron oxide films
JPS5917222A (en) Manufacture of multilayer magnetic thin-film
JP2003100543A (en) Method of forming magnetic film
JP2980266B2 (en) Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH03265105A (en) Soft magnetic laminate film
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JPH097874A (en) Manufacture of soft magnetic film and magnetic head formed thereof
JPH08162355A (en) Manufacture of soft magnetic film and magnetic head
JPH03112114A (en) Manufacture of magnetic film and alloy target used therefor
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPS6015819A (en) Magnetic recording medium
JP2657727B2 (en) Method for manufacturing soft magnetic thin film
JPH0645146A (en) Manufacture of soft magnetic film
JPH05335169A (en) Forming method of magnetic thin film
JPH0897067A (en) Deposition of soft magnetic thin film for magnetic head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041020