HUE024567T2 - Szálelõforma, szálerõsített kompozit és eljárás annak elõállítására - Google Patents

Szálelõforma, szálerõsített kompozit és eljárás annak elõállítására Download PDF

Info

Publication number
HUE024567T2
HUE024567T2 HUE10777153A HUE10777153A HUE024567T2 HU E024567 T2 HUE024567 T2 HU E024567T2 HU E10777153 A HUE10777153 A HU E10777153A HU E10777153 A HUE10777153 A HU E10777153A HU E024567 T2 HUE024567 T2 HU E024567T2
Authority
HU
Hungary
Prior art keywords
spiral
fabric
preform
fiber
fabrics
Prior art date
Application number
HUE10777153A
Other languages
English (en)
Inventor
Jonathan Goering
Original Assignee
Albany Eng Composites Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albany Eng Composites Inc filed Critical Albany Eng Composites Inc
Publication of HUE024567T2 publication Critical patent/HUE024567T2/hu

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/222Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being shaped to form a three dimensional configuration
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/08Arched, corrugated, or like fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

(19;
(11) EP 2 493 677 B1
(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: D03D 3108 <200601> B29C 70122 <200601> 17.12.2014 Bulletin 2014/51 B29B 11I16<200601> D03D 3100<200601> (21) Application number: 10777153.7 (86) International application number: PCT/US2010/054117 (22) Date of filing: 26.10.2010 (87) International publication number: WO 2011/056586 (12.05.2011 Gazette 2011/19)
(54) FIBER PREFORM, FIBER REINFORCED COMPOSITE, AND METHOD OF MAKING THEREOF
FASERVORFORM, FASERVERSTÄRKTER VERBUNDSTOFF UND HERSTELLUNGSVERFAHREN DAFÜR
ÉBAUCHE DE FIBRE, COMPOSITE RENFORCÉ PAR DES FIBRES ET LEUR PROCÉDÉ DE RÉALISATION (84) Designated Contracting States: (74) Representative: Novaimo AL AT BE BG CH CY CZ DE DK EE ES Fl FR GB Bâtiment Europa 2 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 310 avenue Marie Curie PL PT RO RS SE SI SK SM TR Archamps Technopole 74166 Saint Julien en Genevois Cedex (FR) (30) Priority: 28.10.2009 US 607715 (56) References cited: (43) Date of publication of application: CA-C-2 238 835 FR-A1-2 633 213 05.09.2012 Bulletin 2012/36 GB-A-1 356 651 GB-A-2 177 062 JP-A- 6 170 958 US-A- 3 870 478 (73) Proprietor: Albany Engineered Composites, Inc. US-A- 5 876 322
Rochester, NH 03867 (US) (72) Inventor: GOERING, Jonathan York ME 03909 (US) ω
N
N «Ο
CO σ> -- ^ Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been Uj paid. (Art. 99(1) European Patent Convention). 1 EP 2 4
Description BACKGROUND OF THE INVENTION Field of the Invention [0001] This invention generally relates to a conical fiber preform according to claim 1 and a method of forming a conical fiber preform according to claim 17.
Description of the Prior Art [0002] The use of reinforced composite materials to produce structural components is now widespread, particularly in applications where their desirable characteristics are sought of being light in weight, strong, tough, thermally resistant, self-supporting and adaptable to being formed and shaped. Such components are used, for example, in aeronautical, aerospace, satellite, recreational (as in racing boats and automobiles), and other applications.
[0003] Typicallysuch components consist of reinforcement materials embedded in matrix materials. The reinforcement com ponent may be made from materials such as glass, carbon, ceramic, aramid, polyethylene, and/or other materials which exhibit desired physical, thermal, chemical and/or other properties, chief among which is great strength against stress failure. Through the use of such reinforcement materials, which ultimately become a constituent element of the completed component, the desired characteristics of the reinforcement materials, such as very high strength, are imparted to the completed composite component. The constituent reinforcement materials typically, may be woven, knitted or braided. Usually particular attention is paid to ensure the optimum utilization of the properties for which the constituent reinforcing materials have been selected. Usually such reinforcement preforms are combined with matrix material to form desired finished components or to produce working stock for the ultimate production of finished components.
[0004] After the desired reinforcement preform has been constructed, matrix material may be introduced to and into the preform, so that typically the reinforcement preform becomes encased in the matrix material and matrix material fills the interstitial areas between the constituent elements of the reinforcement preform. The matrix material may be any of a wide variety of materials, such as epoxy, polyester, vinylester, ceramic, carbon and/or other materials, which also exhibit desired physical, thermal, chemical, and/or other properties. The materials chosen for use as the matrix may or may not be the same as that of the reinforcement preform and may or may not have comparable physical, chemical, thermal or other properties. Typically, however, they will not be of the same materials or have comparable physical, chemical, thermal or other properties, since a usual objective sought in using composites in the first place is to achieve a combination of characteristics in the finished product that is not attainable through the use of one constituent material alone. So combined, the reinforcement preform and the matrix material may then be cured and stabilized in the same operation by thermosetting or other known methods, and then subjected to other operations toward producing the desired component. It is significant to note at this point that after being so cured, the then solidified masses of the matrix material normally are very strongly adhered to the reinforcing material (e.g., the reinforcement preform). As a result, stress on the finished component, particularly via its matrix material acting as an adhesive between fibers, may be effectively transferred to and borne by the constituent material of the reinforcement preform.
[0005] Frequently, it is desired to produce components in configurations that are other than such simple geomet-ricshapes as plates, sheets, rectangularor square solids, etc. A way to do this is to combine such basic geometric shapes into the desired more complex forms. In any such shapes, a related consideration is to make each juncture between the constituent components as strong as possible. Given the desired very high strength of the reinforcement preform constituents per se, weakness of the juncture becomes, effectively, a "weak link" in a structural "chain".
[0006] While the prior art has sought to improve upon the structural integrity of the reinforced composite and has partly achieved success, there exists a desire to improve thereon or address the problem through an approach differentfrom the use of adhesives or mechanical coupling. In this regard, one approach might be by creating a woven three dimensional ("3D") structure by specialized machines. However, the expense involved is considerable and rarely is it desirable to have a weaving machine directed to creating a single structure. Another approach would be to weave a two dimensional ("2D") structure and fold it into 3D shape so that the panel is integrally woven, i.e. yarns are continuously interwoven between the planar base or panel portion and other constituent portions.
[0007] The increased use of composite materials having such fiber preform reinforcements in aircrafts and jet engines has led to the need for composite conical shells. The traditional approach for forming a conical shell has been to generate a flat pattern 10 that is in the shape of a sector of an annulus, as shown in FIG. 1 A. This shape is predisposed to take on the shape of a frustum of a cone 20 when it is folded so that the two straight edges 15 are aligned with one another, as shown in FIG. 1B. The flat pattern 10 can be cutfrom conventional 2D fabric, or can be woven directly into the annular shape using polar weaving equipment, for example.
[0008] Both methods, however, have certain limitations. Using 2D fabric results in a uniform thickness shell, with uniform distribution of fiber in two directions, but the fiber directions will not be aligned with the principle directions of the cone, i.e. the circumferential and axial 3 EP 2 directions. Polar weaving, on the other hand, will orier fiber in the principal directions, but the fiber distributioi will vary in the axial direction. In either case, there will b< a discontinuous seam where the two straight edges com' together. Additionally, although the cone can have prac tically any dimensions, the maximum size that can b< fabricated from a single flat pattern is limited by the siz of the loom, and there can be substantial waste materis if conventional 2D fabrics are used to produce the cone Using a single piece of fabric is, however, desirable be cause it minimizes the number of seams and reduce the touch labor required to cut and position the fabric.
[0009] Document US 5876322 A discloses a conici fiber preform according to the preamble of claim 1 and ; method of forming a fiber preform according to the pre amble of claim 17.
Summary of the Invention [0010] The present invention overcomes the size re striction and some of the fiber distribution problems c conventional methods.
[0011] One object of the present invention is to produo a conical shell in which the constituent fiber direction are aligned with the principle directions of the cone, i.e the circumferential and axial directions. This results in ; preform with uniform strength and stiffness with respec to the principal coordinate system, and maximize strength and stiffness in the principal directions of ttv resultant structure.
[0012] Anotherobjectofthe present invention is to pro duce a conical shell with uniform fiber distribution in th< circumferential as well as axial directions.
[0013] Yet anotherobjectofthe present invention is ti produce a conical shell with continuous hoop fiber acres the entire surface area of the composite so there is m discontinuous seam formed in the structure in the Z d rection.
[0014] Yet anotherobjectofthe present invention is ti produce a conical shell of practically any size.
[0015] Yet anotherobjectofthe present invention is ti produce a conical shell with the least amount of wastagi of fabric material.
[0016] Yet anotherobjectofthe present invention is ti produce a conical shell using a single piece of fabric ti minimize the number of pieces and reduce touch labor [0017] Accordingly, one exemplary embodiment of thi present invention is a conical fiber preform including ; plurality of warp and weft yarns or fibers interwoven ti form a continuous flat spiral fabric. The flat spiral fabri may take the shape of an Archimedes spiral. The wel yarns in the preform may have a uniform or variable pic spacing, ora uniform orvariable angular separation. Thi fabric shaped in the Archimedes spiral may be assem bled or wrapped to form a conical shell structure, whicl could be a portion of a spinner or an exit cone. Thi Archimedes spiral fabric may be woven on a loon equipped with a differential take-up mechanism. The pre form can also include a second layer of Archimedes spiral fabric woven with a plurality of warp and weft yarns or fibers, and the second Archimedes spiral fabric can be wrapped over the first Archimedes spiral fabric to provide extra strength or to produce a balanced preform.
[0018] The invention, according to another exemplary embodiment, is a fiber reinforced composite including the fiber preform.
[0019] The invention, according to a further embodiment, is a method of forming a conical fiber preform, the method including the steps of: interweaving a plurality of warp and weft yarns or fibers to form a continuous spiral fabric in the shape of a flat Archimedes spiral, assembling or wrapping the flat spiral fabric of the Archimedes spiral onto a shaped mandrel to form a conical shell structure, and trimming top and bottom edges of the conical shell along corresponding trim lines. The method can also include weaving a second continuous Archimedes spiral fabric with a plurality of warp and weft yarns or fibers, and wrapping the second Archimedes spiral fabric over the first Archimedes spiral fabric to provide extra strength or to produce a balanced preform. The weft yarns may be inserted with a uniform or variable pick spacing, or a uniform or variable angular separation. The Archimedes spiral fabric may be woven on a loom equipped with a differential take-up mechanism.
[0020] The invention, according to a further embodiment, is a method of forming a fiber reinforced composite including the fiber preform.
[0021] The preforms of the invention can be a single layer weave or a multilayer weave fabric woven using any convenient pattern for the warp fiber, i.e., ply-to-ply, through thickness angle interlock, orthogonal, etc. While a plain weave is preferred for the structure, the preform can be woven using practically any conventional weave pattern, such as plain, twill, satin etc. Similarly, while carbon fiber is preferred, the invention is applicable to practically any other fiber type.
[0022] Potential applications for the fiber preform of the invention include spinners or exit cones for jet engines.
[0023] The various features of novelty which characterize the invention are pointed out in particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying descriptive matter in which preferred, but non-limiting, embodiments of the invention are illustrated and the accompanying drawings in which corresponding components are identified by the same reference numerals.
Brief Description of the Drawings [0024] The accompanying drawings, which are included to provide a further understanding of the invention, are incorporated in and constitute a part of this specification. The drawings presented herein illustrate different 5 EP 2 t embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings: FIG. 1A is a schematic of a sector of an annulus of a flat pattern; FIG. 1B isaschematicofaconeformed bywrapping the flat pattern shown in FIG. 1 A; FIG. 2 is a schematic of an Archimedes spiral fabric formed according to one aspect of the invention; FIGS. 3A and 3B are different views of a conical shell preform formed according to one aspect of the present invention; FIG. 4 is a trimmed conical shell preform formed according to one aspect of the invention; and FIG. 5 is a schematic of an Archimedes spiral fabric formed according to one aspect of the invention; and FIG. 6 shows trimmed conical shell preforms formed according to different aspects of the invention.
Detailed Description of the Preferred Embodiments [0025] The instant invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown.
[0026] In the following description, like reference characters designate like or corresponding parts throughout the figures. Additionally, in the following description, it is understood that such terms as "upper," "lower," "top," "bottom," "first," "second," and the like are words of convenience and are not to be construed as limiting terms.
[0027] The invention, according to one exemplary embodiment, is a method for producing a conical fiber preform, by using a relatively narrow fabric that is woven in the shape of an Archimedes spiral. An example of a preform 100 that may be produced using this method is shown in its unwrapped form in FIG. 2.
[0028] Spiral fabric 50 is woven using warp and weft fibers or yarns, which may be made of any material suitable for the purpose, or any material which exhibits the desired physical, thermal, and/or chemical properties. Carbon, nylon, rayon, glass fiber, ceramic, aramid, polyester, and metal yarns or fibers are but a few examples. While flat multifilament yarns are preferred, yarns or fibers of any form may be used, e.g. monofilaments, flat monofilaments, multifilament yarns, textured multifilament yarns, twisted multifilament yarns, braided structures, or combinations thereof. Each of the yarn components or fibers may be coated with one or more layers of a coating, for example, a finish or any other coating that may enhance the performance of the component fibers, if required.
[0029] Spiral fabric 50 may be woven on a shuttle loom, or any other loom that can be equipped with a differential take up system, for exam pie. Adifferential take up system allows the edges of the fabric to be advanced at different rates so that the fabric can be provided with a desired and natural in-plane curvature. The system can be programmable so that different take up amounts can be specified for each pick. Spirals 30 and 40 in FIG. 2, for example, represent the edges of spiral fabric 50 and are parallel to the warp fibers, and lines 32 represent paths of weft fibers of the preform. Semicircles 22, 24 are trim lines indicating the top and bottom edges of the cone 100, which may be trimmed in order to make the edges flat and parallel to one another. Semicircle 22 is, for example, a cut line for the top or upper edge of cone 100, and semicircle 24 is, for example, a cut line for the bottom or lower edge of cone 100.
[0030] As illustrated in FIG. 3A, the take up system of the weaving machine may be selected to produce a spiral fabric so that the angle between successive weft fibers is constant and all weft fibers are of the same length. This produces a uniform width fabric 50 that has axial fibers that are aligned in the r-z planes when the fabric is wound onto a shaped mandrel into a cone, as shown in FIG. 3B. The warp fibers are oriented along a shallow helix 26 that winds continuously around the cone.
[0031] According to one embodiment, a complementary fabric (not shown) with warp fibers oriented along a helix in the opposite direction may be wrapped over the first fabric 50 to produce a balanced preform. The complementary fabric may or may not be the same as the first spiral fabric. Additional layers of spiral fabric may be used for enhanced physical properties, such as, for example, extra strength. As mentioned earlier, this preform can also be trimmed along the semicircular paths shown in FIG. 2, resulting in a frustum of the conical shell 100. Alternatively, both fabrics may first be wrapped around a shaped mandrel, one over the other, and then the top and bottom edges of the cone 100 may be trimmed. It should, however, be noted that trimming of the top and bottom edges is the only cutting required in the instant method since the fabric 50 is inherently predisposed to wind onto the shaped mandrel or cone with no gaps or overlaps between adjacent windings. An example of a trimmed conical shell preform 100 formed according to the method of the invention is shown in FIG. 4, for example.
[0032] In the above embodiment, the weft fibers may tend to accumulate at the narrow end of the cone, much like they would in a polar woven fabric. This can, however, be eliminated by weaving a spiral fabric 150 with a uniform arc length or uniform pick spacing between adjacent weft fibers rather than having a uniform angle, according to one exemplary embodiment of the invention. This results in a spiral fabric 150 that maintains uniform balance between warp and weft fiber over the entire surface of the cone 200, as shown in FIG. 5, for example. FIG. 5 is an example of a flat pattern for a fabric 150 with uniform pick spacing, and FIG. 6, for example, illustrates both the uniform pick spacing design 200 and the uniform angular separation design 100 of the present invention. It should be noted, however, that although designs with wefts having uniform pick spacing and uniform angular separation are described herein, the present invention is not limited as such. For example, both pick spacing and/or angular separation of the weft yarns or fibers may be variable, in that the fabric may have uniform pick spacing in the main body of the cone, but may vary as it gets close to the tip of the cone where it is difficult to pack the same amount of fiber.
[0033] As described above, the methods and preforms of the present invention overcome the size restriction and some of the fiber distribution problems of conventional methods. The constituent fiber directions of the instant conical shell are very nearly aligned with the principle directions of the cone, i.e. the circumferential and axial directions. This results in a preform with uniform strength and stiffness with respect to the principal coordinate system, and maximizes strength and stiffness in the principal directions of the resultant structure. Additionally, the conical shell can have uniform fiber distribution in the circumferential as well as axial directions, and also has continuous hoop fiber across the entire surface area of the composite so there is no discontinuous seam formed in the circumferential direction of the structure.
[0034] Yet another advantage of the present invention is that the conical shell can be of practically any size, and can be produced with the least amount of wastage of fabric material. Additionally, the conical shell can be produced using a single piece of fabric to minimize the number of pieces and reduce touch labor.
[0035] The preforms of the invention can be a single layer weave or a multilayer weave fabric woven using any convenient pattern for the warp fiber, i.e., ply-to-ply, through thickness angle interlock, orthogonal, etc. While a plain weave is preferred for the structure, the preform can be woven using practically any conventional weave pattern, such as plain, twill, satin etc. Similarly, while carbon fiber is preferred, the invention is applicable to practically any other fiber type.
[0036] After the preform 100, 200 is assembled or wrapped into the desired conical shell shape, preform 100,200 may be formed into a composite for use in conical structures such as spinners or exit cones for jet engines. Preform 100, 200 can be, for example, processed into a reinforced composite by impregnating it with a matrix material, such as for example, epoxy, bismaleimide, polyester, vinyl-ester, ceramic, and carbon, using any conventional resin infusion method, such as, for example, resin transfer molding, chemical vapor filtration, wet layup or resin film infusion, thereby forming a three dimensional composite structure.
[0037] Potential applications for the woven preform of the invention include any structural application that utilizes an Archimedes spiral structure or conical shell structure, although only spinners or exit cones for jet engines are mentioned as examples herein. 1. A conical fiber preform (100, 200) comprising: a plurality of warp and weft yarns or fibers, wherein the warp and weft yarns or fibers are interwoven to form a continuous spiral fabric (50, 150), characterised in that the spiral fabric (50, 150) is a flat spiral fabric in the shape of an Archimedes spiral, and wherein the flat spiral fabric (50, 150) of the Archimedes spiral is assembled or wrapped in a conical shell structure. 2. The preform of claim 1, wherein the weft yarns have a uniform or variable pick spacing. 3. The preform of claim 1, wherein the weft yarns have a uniform or variable angular separation. 4. The preform of claim 1, wherein the conical shell structure is a portion of a spinner or exit cone. 5. The preform of claim 1, wherein the flat spiral fabric is woven on a loom equipped with a differential take-up mechanism. 6. The preform of claim 1, further comprising: a second continuous spiral fabric woven with a plurality of warp and weft yarns or fibers. 7. The preform of claim 6, wherein the second spiral fabric is in the shape of an Archimedes spiral. 8. The preform of claim 6, wherein the second spiral fabric is same as or different from the first spiral fabric. 9. The preform of claim 6, wherein the second spiral fabric is wrapped in the opposite direction over the spiral fabric of claim 1. 10. The preform of claim 1 or 6, wherein the warp and weft yarns or fibers are selected from the group consisting of carbon, nylon, rayon, glass fiber, ceramic, aramid, polyester, and metal yarns or fibers. 11. The preform of claim 1 or 6, wherein the warp and weft yarns or fibers are selected from the group consisting of monofilaments, flat monofilaments, multi-filamentyarns, flat multifilamentyarns, textured multifilament yarns, twisted multifilament yarns, and braided structures. 12. The preform of claim 1 or 6, wherein the warp and weft yarns or fibers are coated with one or more layers of a coating, a finish or any other coating that enhances the performance of the component fibers. 13. A fiber reinforced composite comprising the fiber preform according to one of previous claims. 5 14. The composite of claim 13, further comprising a matrix material. 15. The composite of claim 14, wherein the matrix material is selected from the group consisting of epoxy, 10 bismaleimide, polyester, vinyl-ester, ceramic, and carbon. 16. The composite of claim 13, wherein the composite is a spinner or exit cone. 15 17. A method of forming a conical fiber preform (100, 200), the method comprising the step of interweaving a plurality of warp and weft yarns or fibers to form a continuous spiral fabric (50, 150), characterised in 20 that the spiral fabric (50, 150) is woven in the shape of a flat Archimedes spiral; and the method further comprises the step of assembling or wrapping the flat spiral fabric (50, 150) of the Archimedes spiral to form a conical shell structure. 25 18. The method of claim 17, wherein it comprises at least one of the following steps : - the weft yarns are inserted with a uniform or 30 variable pick spacing ; - the weft yarns are inserted with a uniform or variable angular separation ; - the flat spiral fabric is woven on a loom equipped with a differential take-up mechanism. 35 19. The method of claim 17, further comprising the step of: trimming top and bottom edges of the conical 40 shell along corresponding trim lines. 20. The method of claim 17, further comprising the step of: 45 coating the warp and weft yarns or fibers with one or more layers of a coating, a finish or any other coating that enhances the performance of the component fibers. 50 21. The method of claim 19, further comprising the step of: weaving a second continuous spiral fabric with a plurality of warp and weft yarns or fibers. 55 22. The method of claim 21, further comprising at least one of the following steps of: - wrapping the second spiral fabric over the spiral fabric of claim 20; - the second spiral fabric is in the shape of an Archimedes spiral; - the second spiral fabric is same as or different from the first spiral fabric. 23. A method of forming a fiber reinforced composite, the method comprising the steps of: forming a conical fiber preform according to one of claims 17 to 22. 24. The method of claim 23, further comprising the step of: impregnating the preform in a matrix material. 25. The method of claim 23, wherein the matrix material is a resin, and the composite is formed from a process selected from the group consisting of resin transfer molding, chemical vapor filtration, wet layup and resin film infusion.
Patentansprüche 1. Konischer Faservorformling (100, 200) mit einem kontinuierlichen Spiralgewebe (50,150) aus mehreren Kett- und Schussfäden oder -fasern, dadurch gekennzeichnet, dass es sich bei dem Spiralgewebe (50, 150) um ein flaches Spiralgewebe in Form einer archimedischen Spirale handelt, wobei das flache Spiralgewebe (50, 150) der archimedischen Spirale in einer konischen Mantelkonstruktion montiert oder umwickelt vorliegt. 2. Faservorformling nach Anspruch 1, bei dem die Schussfäden über eine einheitliche oder unterschiedliche Fadendichte verfügen. 3. Faservorformling nach Anspruch 1, bei dem die Schussfäden über einen einheitlichen oder unterschiedlichen Winkelabstand verfügen. 4. Vorformling nach Anspruch 1, bei dem die konische Mantelkonstruktion Teil einer Spinnerkappe oder eines Austrittskonus ist. 5. Vorformling nach Anspruch 1, bei dem das flache Spiralgewebe auf einer mit einem Differentialregler ausgerüsteten Webmaschine hergestellt ist. 6. Faservorformling nach Anspruch 1, ferner umfassend: ein zweites kontinuierliches Spiralgewebe aus mehreren Kett- und Schussfäden oder-fasern. 11 EP 2
Faservorformling nach Anspruch 6, bei dem das zweite Spiralgewebe in Form einer archimedischen Spirale vorliegt.
Faservorformling nach Anspruch 6, bei dem das zweite Spiralgewebe dem ersten gleicht oder sich davon unterscheidet.
Faservorformling nach Anspruch 6, bei dem das zweite Spiralgewebe gegenüber dem Spiralgewebe gemäß Anspruch 1 in entgegengesetzter Richtung darauf umwickelt vorliegt. . Faservorformling nach Anspruch 1 oder 6, bei dem die Kett- und Schussfäden oder-fasern ausgewählt sind ausderGruppe bestehend aus Kohlenstoff, Polyamid, Reyon, Glasfaser, Keramik, Aramid, Polyester und Metallfäden oder -fasern. . Faservorformling nach Anspruch 1 oder 6, bei dem die Kett- und Schussfäden oder-fasern ausgewählt sind aus der Gruppe bestehend aus Monofilamenten, glatten Monofilamenten, Multifilamentgarnen, glatten Multifilamentgarnen, texturierten Multifilamentgarnen, gedrehten Multifilamentgarnen und Geflechten. . Faservorformling nach Anspruch 1 oder 6, bei dem die Kett- und Schussfäden oder-fasern mit mindestens einer Schicht eines Beschichtungsmittels, eines Ausrüstungsmittels oder eines sonstigen, das Leistungsvermögen der anteiligen Fasern verbessernden Beschichtungsmittels versehen sind. . Faserverbundkörper, umfassend den Faservorformling gemäß einem der vorhergehenden Ansprüche. . Faserverbundkörper nach Anspruch 13, ferner umfassend ein Matrixmaterial. . Faserverbundkörper nach Anspruch 14, bei dem das Matrixmaterial ausgewählt ist aus der Gruppe bestehend aus Epoxid, Bismaleinimid, Polyester, Vinylester, Keramik und Kohlenstoff. . Faserverbundkörper nach Anspruch 13, bei dem es sich um eine Spinnerkappe oder einen Austrittskonus handelt. . Verfahren zur Herstellung eines konischen Faservorformlings (100, 200), bei dem man ein kontinuierliches Spiralgewebe (50,150) aus mehreren Kett-und Schussfäden oder -fasern herstellt, dadurch gekennzeichnet, dass man das Spiralgewebe (50, 150) in Form einer flachen archimedischen Spirale webt und ferner das flache Spiralgewebe (50, 150) der archimedischen Spiralezu einer konischen Mantelkonstruktion montiert oder umwickelt. 18. Verfahren nach Anspruch 17, umfassend mindestens einen der nachstehenden Schritte: - Einziehen der Schussgarne mit einer einheitlichen oder unterschiedlichen Fadendichte, - Einziehen der Schussgarne mit einem einheitlichen oder unterschiedlichen Winkelabstand, - Weben des flachen Spiralgewebes auf einer mit einem Differentialregler ausgerüsteten Webmaschine. 19. Verfahren nach Anspruch 17, ferner umfassend den Schritt:
Zuschneiden der Ober- und Unterkanten des konischen Mantels entlang entsprechender Zuschneidelinien. 20. Verfahren nach Anspruch 17, ferner umfassend den Schritt:
Beschichten der Kett- und Schussfäden oder -fasern mit mindestens einer Schicht eines Beschichtungsmittels, eines Ausrüstungsmittels oder eines sonstigen, das Leistungsvermögen der anteiligen Fasern verbessernden Beschichtungsmittels. 21. Verfahren nach Anspruch 19, ferner umfassend den Schritt:
Weben eines zweiten kontinuierlichen Spiralgewebes aus mehreren Kett- und Schussfäden oder -fasern. 22. Verfahren nach Anspruch 21, ferner umfassend mindestens einen der nachstehenden Schritte: - Wickeln des zweiten Spiralgewebes über das Spiralgewebe gemäß Anspruch 20, - das zweite Spiralgewebe liegt in Form einer archimedischen Spirale vor, - das zweite Spiralgewebe gleicht dem ersten oder unterscheidet sich davon. 23. Verfahren zur Herstellung eines Faserverbundkörpers, bei dem man einen konischen Faservorformling nach einem der Ansprüche 17 bis 22 herstellt. 24. Verfahren nach Anspruch 23, ferner umfassend den Schritt:
Imprägnierung des Faservorformlings in einem Matrixmaterial. 25. Verfahren nach Anspruch 23, bei dem man als Matrixmaterial ein Harz einsetzt und den Faserverbundkörper nach einem Verfahren herstellt, das ausge- 13 EP 2 493 677 B1 14 wählt wird aus der Gruppe bestehend aus Resin- les fils ou fibres de chaîne et de trame sont choisis
Transfer-Molding, chemischer Gasphaseninfiltrati- dans le groupe constitué par les fils ou fibres de cár on (CVI), dem Nasslaminierverfahren und dem RFI-Verfahren (Resin Film Infusion). 5
10 15 20 25 30 35 40 45 50 55 15 EP 2 493 677 B1 16
5 10 15 20 25 30 35 40 45 50 55 EP 2 493 677 B1
FIG. 1A FIG. 1B (PRIOR ART) (PRIOR ART) EP 2 493 677 B1
F I G. 2 EP 2 493 677 B1
F I G. 3A F I G. 3B EP 2 493 677 B1
FIG. 4 EP 2 493 677 B1
F I G. 5 EP 2 493 677 B1
F! G. 6 EP 2 493 677 B1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 5876322 A [0009]

Claims (8)

  1. ? X1&amp;2ÍS-M6£7A SX';' SMWEUSföKMA, SZÁt.mObíTLJT KOWO/JT S N ELJÁRÁS ANNAK JaŰÁLllLSSÁRA Sz&amp;őad&amp;tm igéit^mfok
    1 , Kúpos szálelblorms ( kló, 2fk)):> amely tartalmaz léöv- és voté ték fonalak a; vagy -szálakat, aboi g lánc- és vetölékíőoalak vagy -szálak folytonos spirális 5 kelmét : SO. 150} képezőn vasntak egy be szó ···>?. sjzzal JeilmBezve, hogy a spirális keime (50, 150} egy Árenimédesz-spirá? alakít sikkek spirális: kelme. továbbá nun! az Áreimneőesz-spira: ai.akfs sikkéi: spurim kelme (50, 150) kúpos, ke(szerkesetié van összeállítva vagy iéiosemava
  2. 2, Az !. Igénypont szerioá elő tóimat, ηίκ,Ί a vetülékfonalak szalsüresege egyenletes vagy \ akozó 10 3. Az 1, igénypont szerinti e 1-5forrna, ahol a vetííiékíbnaizk szögtávolsága egyenletes vagy változó.
  3. 4. Az I. Igénypont sxermít plptbirna, ahol a kapós héjszerkezeí kúpos nőtársnak vagy központi kapnak kepe/; részét.
  4. 5. Az k igénypont szerinti efőtárrna, ahol a síkbeli spirális kelme dlflbreneiáfis felszedő szerkezettel felszerelt szövőgépen van szőve. IS ó, Az I. igénypont szétütni plptbftna, smelly tapaissazr térte- és veiüiékibtmSakból vagy -szálakból szőtt második folytonos spirális keltáét, 7, A 6. Igénypont szénné eföíbstea, ahol a második spirális kelme A.rehmsédesz-spfrái alaké, S. Λ 6. igénypont szerinti eiőtbtzoa, sütői a második spirális kelne; az első spirális kenőével megegyezik vagy attól kólónközi k. 20 9. A ο igénypont szerinti előtöröm, aboi a második spirális kelme az I. igénypont szerinti spirális kelmére ellen tétes irány ba:t vast rátekerve. iő. Az I. vagy a 6. Igénypont szerint:! akiiéosta tiltói a inna- és wtülcktnoalnk vagy -szálak a s/eu-. nej km-. misse tyern-, Itvegszák kerátnia-, aramlek, poliészter- és fémfonalak vagy -szálak alkotta csoportból vtnntak választva,
  5. 11. Az L vagy a ő. Igénypont szerint; elő-brma, ahol a lám·- és vetülékfonalak vagy -szálak a monoíilek, lapított, tnintofilek:, melóíl; ümniak. lapított rpuhfnl kínakik:, textúrák oraibkl kínaiak, -.eUrei; innkllb fonalak és ionon szerkezetek alkotta csoportból vannak választva.
  6. 12. Az 1. vagy a é, igénypert; szerinti eiolormn. ahol a lánc- és vetni ék hatra lak vagy -szálak egy vagy több reteg-nyi bevonattak kikészitöanymggai vágy bármely inas, a konrponenaazsiafc jellemzőn kedvezően beíetyásoio Peek) vonattal vaunak ellátta. ! 3, SzálérösíteSí kontpozá, ttmeíy az előző igénypontok bármelyike· szerinti szálé le tormát iatiitiraaz, j4 ,\ tg. igénypont szerinti koinnozil, anteiy mátrisansngy; tartalmaz.
  7. 15. Alá. igénypont szenei; kompoz it aboi a mátrikaoyag; az epos), bisztnalelmmjd, poliészter, vlniiés/lcr. kerámia és szén alkotta csoportból van választva. $ •N IP. A ;2, Igényppm sxexmb krsnp-mbt. ahol a kompoad agy kápos borító kApitmer'} vagy agy ktvponsl kúp (..esd corte'j, 1/. Eljárás khpos SKálejlö forma ( Ibb. 200} késaáésére, amelynél lélyáams spirális kelmét (pb. ! 50í eredménye·-xnn íáne- és ve; aSeklonaiskal vagy -srákma- sAAálnk eg\be aaaal jellememre. long a spin; iis kelméi (SO. S50) S sikin-ll Arehirsédave-spirai a las Pra saolgki ;-svábba sa Archimédesa-spirái alaké síkbeli sp-ráhs sebnél sO, I SO) képes hejsae rácáért é aáánik basas vagy cwarjnk Ibi. IS. A 17. ígénypotd vermei eljárás, amely a kévéiké.«) lépés;· 1: legalább egyAét tammna/.ea - s «'Ebé ki om · 1 aka; egs c n 1 ev r vagy válSsmb sááisiíráséggel sexnek: 10 - a vaOUikfc-mbaka- egyeeleles vagy válsmmsxegisvolsbgpl sebibk; - a síkbeli spirális seleae diftbceaeiall:, tblvedb samtezebsi lek serei: saövőaspen veink. 19. A. i A igénypont vernéi eljárás. arnclynA a kúpos hé) tbiée is alsó sáriiéi rneglblelb seabásvombak n Koráin lessabrek, 2b. A If. Igénypoï;·:sPerlnei eljárás, amelynél IS s lánc- és vebtlPlsfrsnaiskat vagy -seáiakai egy vagy Pább rétegayi bevonnám. klkésaböaayaggal vagy bármely eïâs, a kompmmnssaálak -elunván; kedvedben bebhyásxbé bev-mntr.;; tátják el. 21. A 19. Igénypont s/erino ebásás. amely nd lav- és V; -eleklenaiel;kai vagy «/.álakkal második lolye-mos spirális kelméi: vp·- enk 22. A 21. igénypont vcnm.1 A-árás. amely a keveíksxh lépések legalább egyikéi emabnw: 20 - a második spirális keiméi a 2b. igénypont venni; sokába kelmére rálekerjlik; - á második spirális kelméi Arclmnedev-sp-rai alaké kelméken- makinak ki; - a második spirális keiméi v else spied Is keimével megngyov-n vagy miéi kbléPhosda alakiljnk ki.
  8. 22, Eljárás véierobivU kompom; kevrtésco.·. amelynél a 17-22. ige-vpoomk bármeKike vérins kapor s/áleiblmanát késalblnk. 25 24. A 27. Igénypom saesirm ebét ás. amelynél ex elbtormáí map «anyaggal impregnáljnk. 2b. A 22 igénypont are nine eljárás, ahol a mátrixanyag gyomm továbbá a kompomról: egy a. gyaorabepréseléses: imprsgsáias t .ream -vorder molding".;. kérőim gskmegkbíés (...ebenxleal vapr;r klímát lóri"}, nedves Impregrtálást: aikadna.m; kéri lamraálás (,.wef iayep”) és gyanta bln:; in iïonos laminálás (..resia Elm Ininannéb alkotta tseport-20 bot odas/too eljárásról kessi-glk.
HUE10777153A 2009-10-28 2010-10-26 Szálelõforma, szálerõsített kompozit és eljárás annak elõállítására HUE024567T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/607,715 US9186850B2 (en) 2009-10-28 2009-10-28 Fiber preform, fiber reinforced composite, and method of making thereof

Publications (1)

Publication Number Publication Date
HUE024567T2 true HUE024567T2 (hu) 2016-02-29

Family

ID=43646444

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE10777153A HUE024567T2 (hu) 2009-10-28 2010-10-26 Szálelõforma, szálerõsített kompozit és eljárás annak elõállítására

Country Status (17)

Country Link
US (1) US9186850B2 (hu)
EP (1) EP2493677B1 (hu)
JP (1) JP5793502B2 (hu)
KR (1) KR101910417B1 (hu)
CN (1) CN102666075B (hu)
AU (1) AU2010315543B2 (hu)
BR (1) BR112012009798B1 (hu)
CA (1) CA2778982C (hu)
ES (1) ES2532475T3 (hu)
HU (1) HUE024567T2 (hu)
MX (1) MX2012004924A (hu)
PL (1) PL2493677T3 (hu)
PT (1) PT2493677E (hu)
RU (1) RU2542976C2 (hu)
TW (1) TWI535905B (hu)
WO (1) WO2011056586A1 (hu)
ZA (1) ZA201203044B (hu)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414593B2 (ja) * 2010-03-26 2014-02-12 株式会社島精機製作所 マルチレイヤ編地の編成方法とその編地及び構造体
EP2444535B1 (en) * 2010-10-19 2013-09-04 Tape Weaving Sweden AB Method and means for measured control of tape-like warps for shedding and taking-up operations
US10648106B2 (en) * 2012-03-05 2020-05-12 Goodrich Corporation Systems and methods for reduced crimp carbon fiber helical fabric
FR3048435B1 (fr) * 2016-03-02 2018-04-06 Safran Aircraft Engines Installation et procede pour la fabrication d'une texture fibreuse en forme de bande presentant en section transversale un profil evolutif
CN106747533B (zh) * 2016-06-13 2017-12-19 北京航空航天大学 一种提高发动机热端构件用陶瓷基复合材料力学性能的纤维排布方式
CN106435956B (zh) * 2016-10-12 2018-04-20 中材科技股份有限公司 一种锥形中空夹芯回转体织物及其应用
FR3062659B1 (fr) * 2017-02-03 2019-03-22 Safran Aircraft Engines Appel de preforme dans un metier a tisser du type jacquard
EP3428061B1 (en) * 2017-07-13 2020-09-09 Ratier-Figeac SAS Protection of propeller components
FR3070402B1 (fr) * 2017-08-30 2020-08-28 Safran Aircraft Engines Texture fibreuse tissee pour la formation d'une preforme de carter
CN108656690B (zh) * 2018-07-23 2024-05-28 沈阳丰禾包装有限公司 一种高强纤维复合板结构
KR20210035884A (ko) * 2018-08-01 2021-04-01 알바니 엔지니어드 콤포짓스, 인크. 곡선형 예비성형체 및 이의 제조 방법
CN109518340A (zh) * 2019-01-11 2019-03-26 深圳市奔雷材料制品有限公司 一种纤维多角度编织复合毡及其制造方法以及制造装置
GB2585036B (en) 2019-06-25 2021-08-11 North Thin Ply Tech Sarl Fibre-reinforced composite tubular shafts and manufacture thereof
CN111890701A (zh) * 2020-07-31 2020-11-06 杭州紫麟科技有限公司 一种2.5d纤维机织增强树脂基复合材料及其制备方法
CN114086294B (zh) * 2021-11-19 2023-11-21 北京方硕复合材料技术有限公司 一种变形易于调控的纤维织物及模具组件
CN115369542B (zh) * 2022-08-29 2023-05-23 华南理工大学 一种带螺纹的机织纤维增强筋及织造方法
TWI821018B (zh) * 2022-11-14 2023-11-01 天下長榮科技有限公司 交織纖維複合材料

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067079A (en) * 1958-07-17 1962-12-04 Union Carbide Corp Thermoplastic seam
US3870478A (en) * 1970-07-17 1975-03-11 Gates Rubber Co Method of preparing a bias fabric
GB1356651A (en) 1971-04-17 1974-06-12 Knitmesh Ltd Packing elements
US4467838A (en) * 1983-02-15 1984-08-28 Textile Products, Incorporated Apparatus and process for producing woven, non-linear shapes from graphite fabric, and the like, and products produced therefrom
GB2177062B (en) 1985-06-29 1988-08-10 Rolls Royce Manufacture of composite material components
US5368076A (en) * 1985-08-30 1994-11-29 Textile Products, Inc. Process and apparatus for manufacturing rocket exit cones, and the like
FR2633213B1 (fr) 1988-06-27 1990-12-28 Europ Propulsion Procede de realisation d'une preforme fibreuse pour la fabrication de pieces en materiau composite ayant une forme complexe
FR2643656B1 (fr) * 1989-02-27 1992-02-14 Brochier Sa Structure textile en forme de spirale, procede d'obtention et machine a tisser correspondante
JPH0783782B2 (ja) * 1989-02-28 1995-09-13 株式会社シントミゴルフ シートローリング法によるゴルフクラブ用シャフト
JPH0823095B2 (ja) * 1989-06-06 1996-03-06 東レ株式会社 補強繊維織物
US5266021A (en) * 1991-10-10 1993-11-30 Jacobson Theodore L Apparatus for continuous forming of complex molded shapes
JPH05212798A (ja) * 1991-11-15 1993-08-24 Janome Sewing Mach Co Ltd 繊維強化合成樹脂成形体の製造方法
JPH06170958A (ja) 1992-12-11 1994-06-21 Ichinomiya Orimono:Kk 円錐形回転体の製造方法
US5394906A (en) * 1993-02-10 1995-03-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for weaving curved material preforms
US6007319A (en) * 1993-11-30 1999-12-28 Continuous Molding, Inc. Continuous forming of complex molded shapes
FR2741634B1 (fr) * 1995-11-27 1998-04-17 Europ Propulsion Procede pour la realisation de preformes fibreuses destinees a la fabrication de pieces annulaires en materiau composite
JP3319563B2 (ja) * 1996-02-21 2002-09-03 新日本石油株式会社 螺旋状織物およびこれを用いたプリプレグと回転体
US5876322A (en) * 1997-02-03 1999-03-02 Piramoon; Alireza Helically woven composite rotor
FR2761379B1 (fr) * 1997-03-28 1999-07-09 Europ Propulsion Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite
EP0928260B1 (en) * 1997-05-11 2003-02-26 Goodrich Corporation Seatbelt system having seamless inflatable member
JPH11216740A (ja) * 1998-01-30 1999-08-10 Ishikawajima Harima Heavy Ind Co Ltd 積層した強化繊維材による凸形状製品の製作方法
US6358014B1 (en) * 2000-03-24 2002-03-19 General Electric Company Composite spinner and method of making the same
JP2002212854A (ja) * 2001-01-12 2002-07-31 Chubu Electric Power Co Inc 螺旋状織物
RU2187743C1 (ru) * 2001-12-20 2002-08-20 Общество с ограниченной ответственностью "Фолеон" Лента бандажная для армирования дефектных участков трубопровода
AU2002354340A1 (en) * 2002-04-10 2003-10-20 Rongde Ge A method for weaving curved warp yarns and a woven fabric
AUPS275302A0 (en) * 2002-05-31 2002-06-27 Khouri, Anthony Vehicle mounted concrete mixing drum and method of manufacture thereof
US7338684B1 (en) * 2004-02-12 2008-03-04 Performance Polymer Solutions, Inc. Vapor grown carbon fiber reinforced composite materials and methods of making and using same
FR2869330B1 (fr) * 2004-04-23 2006-07-21 Messier Bugatti Sa Procede de fabrication de nappe fibreuse bidimensionnelle helicoidale
US7077167B2 (en) * 2004-06-14 2006-07-18 Massachusetts Institute Of Technology Bias weaving machine
JP5186854B2 (ja) * 2007-09-20 2013-04-24 株式会社豊田自動織機 プリフォームの製造方法
JP4969425B2 (ja) * 2007-12-04 2012-07-04 旭化成イーマテリアルズ株式会社 アラミド繊維織物、並びに該織物を用いたプリプレグ及び積層板
DE102008051121B4 (de) 2008-10-09 2013-03-28 Airbus Operations Gmbh Vorrichtung und Verfahren zum Drapieren und Vorformen gekrümmter Profilstrukturteile aus Fasergewirken

Also Published As

Publication number Publication date
KR20120112431A (ko) 2012-10-11
PT2493677E (pt) 2015-03-24
CA2778982C (en) 2017-10-24
CN102666075B (zh) 2014-11-26
US20110097526A1 (en) 2011-04-28
WO2011056586A1 (en) 2011-05-12
KR101910417B1 (ko) 2018-12-28
CN102666075A (zh) 2012-09-12
TW201120264A (en) 2011-06-16
RU2012118069A (ru) 2013-12-10
CA2778982A1 (en) 2011-05-12
RU2542976C2 (ru) 2015-02-27
ZA201203044B (en) 2013-06-26
PL2493677T3 (pl) 2015-06-30
ES2532475T3 (es) 2015-03-27
EP2493677B1 (en) 2014-12-17
AU2010315543B2 (en) 2016-10-27
EP2493677A1 (en) 2012-09-05
TWI535905B (zh) 2016-06-01
JP5793502B2 (ja) 2015-10-14
MX2012004924A (es) 2012-08-15
JP2013509505A (ja) 2013-03-14
BR112012009798B1 (pt) 2020-03-10
BR112012009798A2 (pt) 2016-10-18
US9186850B2 (en) 2015-11-17
AU2010315543A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
HUE024567T2 (hu) Szálelõforma, szálerõsített kompozit és eljárás annak elõállítására
CA2815074C (en) Woven preforms, fiber reinforced composites, and methods of making thereof
US5014755A (en) Textile structure with binding weave for multiple layers of non-interlaced fit filaments
HUE031749T2 (hu) Többirányban erõsített, alakra szõtt elõformák kompozit-szerkezetekhez
JP6164591B2 (ja) 連続繊維強化熱可塑性樹脂複合材料製造用の強化繊維/樹脂繊維複合体、およびその製造方法
EP0737763B1 (de) Hybridgarn und daraus hergestelltes permanent verformbares Textilmaterial, seine Herstellung und Verwendung
US20140227474A1 (en) Multi-layer fabric, use thereof and method for producing composites
HUE029504T2 (hu) Szövött elõforma, kompozit anyag és eljárás azok elõállítására
US5366797A (en) Bonded yarn bundle, and textile sheet materials obtainable therefrom
US20190016015A1 (en) Thermoplastic prepreg production method
WO2019194761A2 (en) Thermoplastic prepreg production method
Omar et al. Hybrid textiles: A review
TWM316894U (en) Composite material woven fabric