HRP20120648A2 - Solar cells integrated into fiberglass boat hull - Google Patents

Solar cells integrated into fiberglass boat hull Download PDF

Info

Publication number
HRP20120648A2
HRP20120648A2 HRP20120648AA HRP20120648A HRP20120648A2 HR P20120648 A2 HRP20120648 A2 HR P20120648A2 HR P20120648A A HRP20120648A A HR P20120648AA HR P20120648 A HRP20120648 A HR P20120648A HR P20120648 A2 HRP20120648 A2 HR P20120648A2
Authority
HR
Croatia
Prior art keywords
solar cells
fiberglass
layers
laminate
vessel
Prior art date
Application number
HRP20120648AA
Other languages
Croatian (hr)
Inventor
Tomislav URODA
Nikša ČULIĆ
Klement Jadrešić
Original Assignee
Icat D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icat D.O.O. filed Critical Icat D.O.O.
Priority to HRP20120648AA priority Critical patent/HRPK20120648B3/en
Priority to PCT/HR2013/000024 priority patent/WO2014023985A1/en
Publication of HRP20120648A2 publication Critical patent/HRP20120648A2/en
Publication of HRPK20120648B3 publication Critical patent/HRPK20120648B3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Solarne ćelije integrirane u stakloplastičnu ljusku oplošja plovila postiže se u okviru postupka gradnje plovila u stakloplastici na način da se na vanjskim plohama plovila, prije svega na trupu, unutar laminata stakloplastike integriraju solarne ćelije u jedan od slojeva laminata prikazanih na slikama 4. i 5. Pojam stakloplastika označava tehnologiju gradnje u kojoj se koristi staklena tkanina kao armatura za povećanje čvrstoće te smola kao vezivni materijal. Staklena tkanina napravljena je od niti koje također mogu biti i od karbona, kevlara ili nekog drugog materijala predviđenog za gradnju u staklopalstici. Smola kao vezivni materijal ove tehnologije može biti različitog sastava a najpoznatiji su poliester, vinilester i epoksid. Međusobnim povezivanjem staklenih tkanina uz pomoć smole, dobivamo stakloplastični proizvod. Postupak integriranja solarnih ćelija odvija se u okviru klasično postupka gradnje koji podrazumijeva korištenje određenih materijala i provedbu odgovarajućih zahvata, pri čemu se podrazumijeva korištenje kalupa za gradnju (1.1) u koji se redom polažu: sloj gelcoata (2.1), sloj staklene tkanine pa sloj smole (2.2), i tako redom do željenih dimenzija laminata (1.2). Laminat prikazan na slici 2 je osnovna struktura stakloplastičnog proizvoda a definiran je brojem slojeva staklene tkanine (2.2) , debljine i načina tkanja staklene tkanine, tipova i debljine jezgrenih elemenata koji se mogu staviti, vrsti smole, gelcoata (vanjskog sloja) i ostalog. Solarne ćelije polažu se u jedan od prvih slojeva laminata stakloplastike (4.3, 5.2), prema tehnološkom postupku laminacije u skladu sa pravilima struke. Prvenstvena namjena ovog izuma je polaganje solarnih ćelija u jedan od slojeva prilikom izrade novog plovila, no ovaj izum podrazumijeva i oblaganje plovila izgrađenih od ostalih materijala u stakloplastiku gdje su u jednom od slojeva nalaze solarne ćelije.Solar cells integrated into the fiberglass shell of the vessel shell are achieved as part of the fiberglass vessel construction process by integrating solar cells within the fiberglass laminate into one of the laminate layers shown in Figures 4 and 5 on the outer surfaces of the vessel, primarily on the hull. The term fiberglass refers to a construction technology that uses glass fabric as a reinforcement to increase strength and resin as a bonding material. The glass fabric is made of threads that can also be made of carbon, kevlar or other material intended for construction in fiberglass. Resin as a bonding material of this technology can be of different composition, the most famous being polyester, vinyl ester and epoxide. By interconnecting glass fabrics with the help of a resin, we get a fiberglass product. The process of integrating solar cells takes place within the classical construction process, which involves the use of certain materials and the implementation of appropriate operations, which involves the use of molds for construction (1.1) in which are placed: gelcoat layer (2.1), glass cloth layer and resin layer (2.2), and thus to the desired dimensions of the laminate (1.2). The laminate shown in Figure 2 is the basic structure of a fiberglass product and is defined by the number of layers of glass fabric (2.2), the thickness and method of weaving of glass fabric, the types and thickness of the core elements that can be placed, the type of resin, gelcoat (outer layer) and more. Place the solar cells in one of the first layers of fiberglass laminate (4.3, 5.2) according to the technological process of lamination in accordance with the rules of the profession. The primary purpose of the present invention is to lay solar cells in one of the layers when designing a new vessel, but the present invention also includes the coating of vessels made of other fiberglass materials where solar cells are contained in one of the layers.

Description

Područje tehnike na koje se izum odnosi Technical field to which the invention relates

Ovaj se izum odnosi na plovilo u čije su oplošje integrirane solarne ćelije kojima se energija sunca pretvara u električnu energiju korištenu za potrebe energetskog sustava plovila uključujući pogon plovila. This invention relates to a vessel in whose hull solar cells are integrated, which convert the sun's energy into electrical energy used for the needs of the vessel's energy system, including the vessel's propulsion.

Područje tehnike na koje se predmetni izum odnosi, označeno je po Međunarodnoj klasifikaciji patenata sa B63H i H01L. The field of technology to which the present invention relates is designated by the International Classification of Patents with B63H and H01L.

Tehnički problem Technical problem

Tehnički problem koji se rješava predmetnim izumom predstavlja osiguravanje električne energije za potrebe plovila, pretvaranjem energije sunca u električnu energiju, a korištenjem solarnih ćelija na oplošju plovila postavljenih na takav način da se za plovilo određenih dimenzija i oblika vanjskih ploha osigura što veći iznos električne energije pretvorene solarnim ćelijama iz energije sunca. The technical problem that is solved by the subject invention is the provision of electricity for the needs of the vessel, by converting the sun's energy into electricity, and by using solar cells on the surface of the vessel placed in such a way that for the vessel of certain dimensions and the shape of the external surfaces, the greatest possible amount of converted electricity is provided solar cells from the energy of the sun.

Stanje tehnike State of the art

Putovanje vodom jedan je od najstarijih načina prijevoza kada su prva plovila bile jednostavne splavi, čamci izdubljeni u deblu, kanui izgrađeni od granja i obloženi životinjskim kožama ili međusobno povezani trupci kojima se putovalo rijekama uzvodno i nizvodno. Water travel is one of the oldest forms of transportation when the first vessels were simple rafts, boats hollowed out of trunks, canoes built of branches and covered with animal skins, or interconnected logs used to travel up and down rivers.

Prije pojave strojeva plovila su pokretana veslima a koristila se energija mišića (biološka). Dodatno kao pogon plovila korišteni su jedrenjaci a prvi su izgrađeni oko 3500 godina prije nove ere kada su najavili eru svjetskih istraživanja i trgovine. Jedrenjaci su prikladni za jedrenje niz i bočno na vjetar, dok je za plovidbu uz vjetar potrebno više vremena i vještine, a u krajnjem slučaju preostaju vesla s ljudskom posadom. Before the advent of machines, vessels were propelled by oars and muscle energy (biological) was used. In addition, sailing ships were used as a propulsion system, and the first ones were built around 3500 BC when they heralded the era of world exploration and trade. Sailboats are suitable for sailing downwind and sideways, while upwind sailing requires more time and skill, and as a last resort, manned oars remain.

Tako su sve do izuma željeznice u 19. stoljeću, čamci i brodovi bili jedini način prijevoza robe na velikim udaljenostima. Danas postoje razne vrste čamaca i brodova izrađenih od mnogih materijala, od drveta, plastike, stakloplastike, aluminija, čelika i betona. Thus, until the invention of the railway in the 19th century, boats and ships were the only means of transporting goods over long distances. Today there are various types of boats and ships made of many materials, from wood, plastic, fiberglass, aluminum, steel and concrete.

Vodeni promet se odvija plovidbom na oceanima, morima, jezerima, rijekama i kanalima. To je jedan od najstarijih oblika prometovanja, a povezivao je velike gradove koji su uglavnom nastajali na obalama mora i rijeka. Danas vodeni promet čini oko 80% ukupnog prometa, a ekonomičnost mu je puno veća nego kod kopnenog i zračnog, ponajprije u trgovačkom pomorskom prometu ali i svim ostalim granama pomorskog prometa i to prvenstveno zbog malih infrastrukturnih investicija. Water transport takes place by navigation on oceans, seas, lakes, rivers and canals. It is one of the oldest forms of transportation, and it connected large cities that were mostly built on the coasts of seas and rivers. Today, water transport accounts for about 80% of the total traffic, and its economy is much higher than that of land and air, primarily in commercial maritime transport, but also in all other branches of maritime transport, primarily due to small infrastructure investments.

Na samom početku 19. stoljeća izgrađen je prvi relativno uspješni parobrod, a nakon toga unaprijeđeni su brodski kotlovi, parni strojevi, a dolazi i do otkrića i usavršavanja parne turbine. At the very beginning of the 19th century, the first relatively successful steamship was built, and after that ship's boilers, steam engines were improved, and the steam turbine was discovered and perfected.

Izumom brodskog vijka napravljen je veliki korak u razvoju parobroda i značajno je povećana brzina brodova. Brodski vijak izumljen je 1827 god. With the invention of the screw, a big step was taken in the development of steamships and the speed of ships was significantly increased. The ship screw was invented in 1827.

Nakon otkrića brodskog vijka slijedeći veliki iskorak u brodograđevnoj industriji bio je uvođenje dizelskog motora. Usavršavanjem brodskog dizelskog motora dobiven je najprikladniji stroj za pogon brodova (utrošak goriva je blizu 20% manji od parnoturbinskog pogona). After the discovery of the ship's screw, the next big step forward in the shipbuilding industry was the introduction of the diesel engine. By perfecting the ship's diesel engine, the most suitable machine for ship propulsion was obtained (fuel consumption is close to 20% lower than a steam turbine drive).

Ovi brodovi koriste dizelsko-električne pogone kojima mogu biti pridodani i plinskoturbinsko-električni i dizel-električni pogoni. These ships use diesel-electric drives to which gas turbine-electric and diesel-electric drives can be added.

Danas se razrađuju koncepti pogona plovila koji će doći u bliskoj budućnosti, sa naglaskom na obnovljivu energiju, kao što su energija vjetra i vode, ali prije svega sunčeva energija koja se putem solarnih ćelija pretvara u električnu energiju potrebnu za pogon električnih motora. Today, concepts are being developed for the propulsion of vessels that will come in the near future, with an emphasis on renewable energy, such as wind and water energy, but above all solar energy, which is converted through solar cells into the electricity needed to drive electric motors.

Danas svjedočimo impresivnim ostvarenjima kao rezultata intenzivnih i sveobuhvatnih napora da se potrebe za energijom, ne samo kretanja, plovila osiguraju korištenjem obnovljive i ekološki čiste energije, prije svega sunčeve energije koja se solarnim ćelijama pretvara u električnu energiju. Today, we are witnessing impressive achievements as a result of intensive and comprehensive efforts to ensure the energy needs, not only movement, of vessels using renewable and ecologically clean energy, above all solar energy, which is converted into electricity by solar cells.

Među ta ostvarenja vrijedi istaći izgrađeni brod dugačak 31 metar i opremljen sa 530 kvadratnih metara površine na koju je postavljeno 38.000 solarnih ćelija. Among these achievements, it is worth highlighting the built ship 31 meters long and equipped with 530 square meters of surface on which 38,000 solar cells were installed.

U nastojanju da se za određeno plovilo osigura što veći iznos električne energije pretvorene solarnim ćelijama iz solarne, sve se češće susreću slučajevi da se namjenski dizajnira i dimenzionira plovilo na kojem će biti položene solarne ćelije na unaprijed predviđenim mjestima. In an effort to provide for a certain vessel the greatest possible amount of electricity converted by solar cells from the solar plant, more and more often cases are encountered that the vessel is specially designed and dimensioned on which solar cells will be placed in predetermined places.

Stanje tehnike sadržano u patentnoj literaturi (DE29610516U, EP0825104, JP7179195, JP62068199, US3982963, US5131341, US5720452, US8152577) obuhvaća ponajčešće tehnička rješenja koja uglavnom razrađuju razne vrste mehaničkih sklopova za fiksiranje ploča solarnih ćelija na razne vrste već izgrađenih plovila, pri čemu neki od patentnih spisa (DE29610516, GB1598751, JP2007224538, US4371139, US4421943) predstavljaju tehnička rješenja mehaničkih sklopova koji omogućavaju podešavanje kuta nagiba podloge na kojoj su položene solarne ćelije, dok se nemali broj patentnih spisa (CA2063243, US4695785, US4873480, US4999560, US5001415, US5131341, US8152577) odnosi na tehnička rješenja električnih spojeva i sklopova kojima se postiže naponsko prilagođavanje i akumuliranje električne energije dobivene iz solarnih ćelija. Neki od patentnih spisa (DE4136379, EP0825104, JP7179195, JP62068199, US3982963, US5131341, US5720452, US8152577) obrađuju i razne načine polaganja solarnih panela na vanjske plohe plovila, dok nekoliko patentnih spisa (GB2405742, DE3836259, US2002182946) predstavlja tehnička rješenja kombiniranih izvora energije za potrebe plovila, gdje su, osim solarne energije, na raspolaganju i drugi poznati izvori energije kao što su tekući i plinoviti energenti, vjetar, valovi. The state of the art contained in the patent literature (DE29610516U, EP0825104, JP7179195, JP62068199, US3982963, US5131341, US5720452, US8152577) mostly includes technical solutions that mainly develop various types of mechanical assemblies for fixing solar cell panels to various types of already built vessels, where some of of patent documents (DE29610516, GB1598751, JP2007224538, US4371139, US4421943) represent technical solutions of mechanical assemblies that enable adjustment of the angle of inclination of the substrate on which the solar cells are placed, while a large number of patent documents (CA2063243, US4695785, US4873480, US4999560, US5131, US510511) US8152577) refers to technical solutions of electrical connections and circuits that achieve voltage adjustment and accumulation of electrical energy obtained from solar cells. Some of the patent documents (DE4136379, EP0825104, JP7179195, JP62068199, US3982963, US5131341, US5720452, US8152577) deal with various ways of laying solar panels on the outer surfaces of the vessel, while several patent documents (GB2405742, DE3836259, US204628) present technical solutions for combined energy sources. for the needs of vessels, where, in addition to solar energy, other known sources of energy are available, such as liquid and gaseous energy sources, wind, waves.

Nije poznato da je stanjem tehnike obuhvaćeno ijedno tehničko rješenje koje se odnosi na polaganje solarnih ćelija na praktički sve raspoložive vanjske plohe novih ali i već izgrađenih plovnih jedinica na način kako je to riješeno predmetnim izumom. It is not known that the state of the art includes any technical solution that refers to the laying of solar cells on practically all available external surfaces of new or already built vessels in the way that is solved by the subject invention.

Tehničko rješenje prema izumu definirano je u kontekstu stakloplastike, kojim se pojmom označava tehnologija gradnje novih plovila u kojoj se koristi staklena tkanina kao element čvrstoće i smola kao vezivni materijal. Staklena tkanina napravljena od niti koje također mogu biti i od karbona, kevlara ili nekog drugog materijala predviđenog za gradnju u staklopalstici. Smola kao vezivni materijal ove tehnologije može biti različitog sastava a najpoznatiji su poliester, vinilester i epoksid. Međusobnim povezivanjem staklenih tkanina uz pomoć smole, dobivamo stakloplastični proizvod. The technical solution according to the invention is defined in the context of fiberglass, which term denotes the technology of building new vessels in which glass fabric is used as a strength element and resin as a binding material. Glass fabric made of threads that can also be made of carbon, Kevlar or some other material intended for construction in fiberglass. The resin as a binding material of this technology can be of different composition, the best known being polyester, vinylester and epoxy. By interconnecting glass fabrics with the help of resin, we get a fiberglass product.

Postoji nekoliko tehnologija gradnje novih plovila u stakloplastici koje podrazumijevaju postojanje kalupa za gradnju 1.1 broda u koji se redom polažu: sloj gelcoata 2.1, sloj staklene tkanine pa sloj smole 2.2, i tako redom do željenih dimenzija laminata 1.2. Prethodno polaganju prvog sloja potrebno je kalup premazati odjeljivačem koji služi da se stakloplastični odljevak ne bi zalijepio za kalup. There are several technologies for building new vessels in fiberglass that imply the existence of a mold for building a boat 1.1 in which the following layers are laid: gelcoat layer 2.1, glass fabric layer, then resin layer 2.2, and so on until the desired dimensions of the laminate 1.2. Before laying the first layer, it is necessary to coat the mold with a separator that serves to prevent the fiberglass casting from sticking to the mold.

Uobičajeno je da se kao prvi sloj stavi gelcoat koji u finalnom proizvodu služi kao vanjski završni sloj, a u koji je moguće dodavati i razne pigmente boje te tako osigurati boju odljevka prema želji. Pored slojeva tkanine ponekad se nanose i jezgreni slojevi spužvastih materijala koji služe za povećanje debljine laminata a samim time i poboljšanje mehaničkih svojstva trupa uz minimalno povećanje mase. It is customary to apply a gelcoat as the first layer, which in the final product serves as an outer finishing layer, and to which it is possible to add various color pigments and thus ensure the desired color of the casting. In addition to fabric layers, core layers of spongy materials are sometimes applied, which serve to increase the thickness of the laminate and thereby improve the mechanical properties of the hull with a minimal increase in mass.

Ovaj postupak laminacije moguće je provesti i nekim naprednijim tehnološkim procesima kao što je vakuum infuzija kod koje se slojevi tkanine stažu jedan na drugi, te se takva cjelina pokrivena zaštitnim materijalom vakumira na određeni podtlak. Smola kao vezivni materijal se potom pušta putem određenog rasporeda usisnih kanala da prodrije kroz sve slojeve. Ovaj tehnološki proces, kao i istiskivanja smole, provede se s ciljem da se omjer tkanine i smole poveća čime se pridonosi dodatnoj čvrstoći i smanjenoj težini plovila. This lamination procedure can also be carried out with some more advanced technological processes, such as vacuum infusion, in which layers of fabric are stacked on top of each other, and such a unit, covered with a protective material, is vacuumed to a certain negative pressure. The resin as a binding material is then released through a specific arrangement of suction channels to penetrate through all the layers. This technological process, as well as resin extrusion, is carried out with the aim of increasing the ratio of fabric to resin, which contributes to additional strength and reduced weight of the vessel.

Laminat prikazan na slici 2. je osnovna struktura stakloplastičnog proizvoda a definiran je brojem slojeva staklene tkanine 2.2, te njene debljine i načina tkanja, tipova i debljine jezgrenih elemenata koji se mogu staviti, vrsti smole, gelcoata (vanjskog sloja) i ostalog. The laminate shown in Figure 2 is the basic structure of the fiberglass product and is defined by the number of layers of glass fabric 2.2, its thickness and method of weaving, the types and thickness of the core elements that can be placed, the type of resin, gelcoat (outer layer) and others.

Definiranje laminat - plana prethodi gradnji, a dimenzionira se sukladno potrebnim tehničkim karakteristikama stakloplastike, prvenstveno čvrstoće, što je kod brodova u skladu sa pravilima registra broda. Laminat - plan različit je za pojedine dijelove broda, ali i za pojedine zone dijelova broda te je moguć u najjednostavnijoj varijanti od 2 sloja staklene tkanine i smole kao vezivnog materijala do znatno više slojeva u koje su uključene različite vrste i debljine staklenog tkanja i jezgrenih materijala. Defining the laminate - the plan precedes construction, and it is dimensioned in accordance with the necessary technical characteristics of fiberglass, primarily strength, which in the case of ships is in accordance with the rules of the ship registry. Laminate - the plan is different for individual parts of the ship, but also for individual zones of the parts of the ship, and is possible in the simplest variant from 2 layers of glass fabric and resin as a binding material to significantly more layers that include different types and thicknesses of glass weaving and core materials .

Sastavna komponenta tehničkog rješenja prema izumu je An integral component of the technical solution according to the invention is

Solarna ćelija 3.2 kao osnovni element u pretvorbi sunčeve energije u električni napon. Manjih je dimenzija, 125×125 mm ili 156×156 mm su najčešće dimenzije, i obično je naponske vrijednosti 0,5 V. Solarna ćelija može biti izrađena od različitih materijala, a najrašireniji u primjeni su mono-silicijski i poli-silicijski zbog svoje tržišno prihvatljive cijene. Solar cell 3.2 as a basic element in the conversion of solar energy into electrical voltage. It has smaller dimensions, 125×125 mm or 156×156 mm are the most common dimensions, and it usually has a voltage value of 0.5 V. A solar cell can be made of different materials, and the most widely used are mono-silicon and poly-silicon due to their market acceptable prices.

Solarni modul 3.1 sastoji se od više međusobno povezanih solarnih ćelija, te na tržištu postoji kao gotov proizvod. Dimenzija solarnog modula određena je brojem ćelija koje se međusobno spajaju da tvore određenu visinu napona (npr. 12V, 24V, 4 8V). Solar module 3.1 consists of several interconnected solar cells, and is available on the market as a finished product. The size of the solar module is determined by the number of cells that connect to each other to form a certain voltage height (eg 12V, 24V, 4 8V).

Izlaganje suštine izuma Presentation of the essence of the invention

Suština rješenja naznačenog tehničkog problema sastoji se u tome da se na vanjskim plohama plovila, prije svega na trupu, unutar laminata stakloplastike integriraju solarne ćelije u jedan od slojeva laminata prikazanih na slici 4. i slici 5. The essence of the solution to the indicated technical problem consists in integrating solar cells on the outer surfaces of the vessel, primarily on the hull, within the fiberglass laminate in one of the laminate layers shown in Figure 4 and Figure 5.

Solarne ćelije polažu se u skladu sa pravilima struke. Prvenstvena namjena ovog izuma je polaganje solarnih ćelija u jedan od slojeva prilikom izrade novog plovila, no ovaj izum podrazumijeva i da se završena plovila već izgrađena od ostalih materijala oblažu u stakloplastiku gdje se u jedan od slojeva smještaju solarne ćelije. Solar cells are laid in accordance with the rules of the profession. The primary purpose of this invention is to lay solar cells in one of the layers during the construction of a new vessel, but this invention also implies that finished vessels already built from other materials are covered in fiberglass, where solar cells are placed in one of the layers.

Sam postupak gradnje plovila u stakloplastici, dio kojega je integriranje solarnih ćelija sličan je klasičnom postupku gradnje plovila s tom razlikom da se između jednog ud prvih slojeve staklene tkanine polažu solarne ćelije koje se poslije spajaju u module. Ne mora svaki put biti unaprijed točno definirano između kojih slojeva će se solarne ćelije položiti već je to ostavljeno na promišljanje graditelju. Mogućnost prilagodbe broja slojeva podrazumijeva da se u obzir uzme činjenica da više vanjskih slojeva ispred solarnih ćelije tvori bolju mehaničku zaštitu solarnih ćelija, dok manje slojeve propušta više sunčeve energije kako bi se postigao optimum. Isto tako ne mora biti unaprijed definirano da li će se kao prvi vanjski sloj postavljati gelcoat ili će prvi sloj biti stakleno tkanje. Ukoliko se postavlja gelcoat (4.1, 5.1) on mora omogućiti propusnost sunčeve energije. Pretpostavka je da će se solarne ćelije najčešće nalaziti između prvog i drugog sloja staklene tkanine. The very process of building a fiberglass vessel, part of which is the integration of solar cells, is similar to the classic process of building a vessel with the difference that solar cells are laid between one of the first layers of glass fabric, which are then connected into modules. It does not always have to be precisely defined in advance between which layers the solar cells will be laid, but that is left to the builder's discretion. The possibility of adjusting the number of layers implies that the fact that more outer layers in front of the solar cells form a better mechanical protection of the solar cells is taken into account, while smaller layers let more solar energy through in order to achieve the optimum. Likewise, it does not have to be pre-defined whether gelcoat will be installed as the first outer layer or whether the first layer will be glass weaving. If gelcoat (4.1, 5.1) is installed, it must allow the permeability of solar energy. The assumption is that the solar cells will most often be located between the first and second layers of glass fabric.

Moguće je integrirane solarne ćelije položiti i na neki od ostalih materijala za gradnju broda, no one moraju biti integrirane u laminat kojim se taj materijal oblaže. Postupak gradnje je sličan gradnju u kalupu s razlikom da se u ovom slučaju solarne ćelije polažu u jedan od zadnjih slojeva kako bi što više bile izloženije utjecaju sunčeve energije. It is possible to lay integrated solar cells on some of the other materials for building the ship, but they must be integrated into the laminate used to cover that material. The construction process is similar to construction in a mold with the difference that in this case the solar cells are placed in one of the last layers so that they are exposed to the influence of solar energy as much as possible.

Solarne ćelije integrirane u laminat trupa i ostalih dijelova plovila na naprijed opisani način čine s laminatom jednu cjelinu. Pri tome su ćelije međusobno povezane serijski i paralelno čineći tako određene module s pripadajućim iznosima napona, koji se dalje putem elektro elementa povezuju u energetski sustav broda. Solar cells integrated into the laminate of the hull and other parts of the vessel in the manner described above form a whole with the laminate. At the same time, the cells are connected to each other in series and in parallel, thus forming certain modules with corresponding voltage values, which are further connected to the ship's energy system via an electrical element.

Međusobne veze pojedinih ćelija su višestruke, čime je osigurana funkcionalnost sustava ukoliko dođe do prekida veza između pojedinih ćelija ili modula ili ukoliko dođe do kvara pojedinih ćelija ili modula. Veličina modula definirana je visinom napona brodskog sustava, dok se elektro elementi koriste u raznim varijantama osiguravajući stalan napon brodskog energetskog sustava. Uključenje elektro elemenata prilikom spoja modula solarnih ćelija na energetski sustav broda, ima bitnu ulogu u trenutcima kad dolazi do oštećenja pojedinog dijela plovila a samim time i oštećenja ćelija u tom području. Ista funkcija izražena je i kad dođe do kvara na pojedinoj solarnoj ćeliji ili modulu. U tim okolnostima elektro pretvarači osiguravaju stalni napon oštećenog modula te je isti moguće spojiti na energetski sustav broda. The interconnections of individual cells are multiple, which ensures the functionality of the system if the connections between individual cells or modules are interrupted or if individual cells or modules fail. The size of the module is defined by the voltage level of the ship's system, while electrical elements are used in various variants ensuring a constant voltage of the ship's energy system. The inclusion of electrical elements during the connection of the solar cell module to the ship's energy system plays an important role in moments when a particular part of the vessel is damaged and thus the cells in that area are damaged. The same function is expressed when there is a failure of a single solar cell or module. In these circumstances, the electrical converters ensure the constant voltage of the damaged module and it is possible to connect it to the ship's energy system.

Kratak opis crteža Brief description of the drawing

Slika 1: Prikaz gradnje u stakloplastici Figure 1: View of construction in fiberglass

Pozicija 1.1: Kalup broda; Position 1.1: Mold of the ship;

Pozicija 1.2: Slojevi laminata stakloplastike; Position 1.2: Fiberglass laminate layers;

Slika 2: Prikaz laminata Figure 2: View of laminate

Pozicija 2.1: Gel coat, lak ili drugi završni premaz; Position 2.1: Gel coat, varnish or other final coating;

Pozicija 2.2: Razni slojevi stakloplastike (staklena tkanina+vezivna smola); Position 2.2: Various layers of fiberglass (glass cloth+binding resin);

Slika 3: Prikaz solarnog modula Figure 3: View of the solar module

Pozicija 3.1: Solarni modul; Position 3.1: Solar module;

Pozicija 3.2: Solarne ćelije; Position 3.2: Solar cells;

Slika 4: Prikaz integriranih solarnih ćelija u laminata ispod zadnjeg sloja staklene tkanine Figure 4: View of integrated solar cells in the laminate under the last layer of glass fabric

Pozicija 4.1: Gel coat, lak ili drugi završni premaz; Position 4.1: Gel coat, varnish or other final coating;

Pozicija 4.2: Sloj staklene tkanine; Position 4.2: Glass fabric layer;

Pozicija 4.3: Sloj solarnih ćelija; Position 4.3: Layer of solar cells;

Pozicija 4.4: Razni slojevi staklopalstike; Position 4.4: Various layers of fiberglass;

Slika 5: Prikaz integriranih solarnih ćelija u laminat ispod gelcoata Figure 5: Display of integrated solar cells in the laminate under the gelcoat

Pozicija 5.1: Gel coat, lak ili drugi završni premaz; Position 5.1: Gel coat, varnish or other final coating;

Pozicija 5.2: Sloj solarnih ćelija; Position 5.2: Layer of solar cells;

Pozicija 5.3: Razni slojevi stakloplastike; Item 5.3: Various layers of fiberglass;

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

Prilikom integriranja solarnih ćelija u laminat trupa potrebno je provesti tehnološki proces laminacije prema pravilima struke a isto tako moguće je već postojeće elemente trupa plovila od raznih materijala obložiti stakloplastičnim slojem. U nastavku su prikaza spomenuti načini korištenja izuma. When integrating solar cells into the hull laminate, it is necessary to carry out the technological lamination process according to the rules of the profession, and it is also possible to cover the already existing elements of the vessel's hull made of various materials with a fiberglass layer. In the continuation of the presentation, the ways of using the invention are mentioned.

Laminacija u kalupu: Lamination in the mold:

1. Premazati kalup odjeljivačem 1. Coat the mold with a release agent

2. Nanijeti sloj gelcoata transparente boje. Ovaj sloj gelcoata može biti izostavljen ovisno o projektnim zahtjevima. 2. Apply a layer of gelcoat of transparent color. This layer of gelcoat can be omitted depending on project requirements.

3. Nanijeti sloj smole 3. Apply a layer of resin

4. Postaviti prvi sloj staklene tkanine. Ukoliko postoji sloj gelcoata ovaj sloj staklene tkanine može biti izostavljen. 4. Place the first layer of glass fabric. If there is a layer of gelcoat, this layer of glass fabric can be omitted.

5. Nanijeti sloj smole 5. Apply a layer of resin

6. Postaviti sloj solarnih ćelija pazeći pritom da su električni kontakti neprekinuti 6. Place a layer of solar cells, making sure that the electrical contacts are uninterrupted

7. Nanijeti sloj smole 7. Apply a layer of resin

8. Postaviti drugi i svaki slijedeći sloj staklene tkanine, odnosno laminata, sa međupremazom od smole. Umjesto staklene tkanine moguće je u pojedinim slojevima staviti jezgreni spužvasti materijal. Potrebno je pri tome paziti da elektro kontakti svih solarnih ćelija budu dostupni, odnosno da vire ispred slojeva laminata. 8. Place the second and every subsequent layer of glass fabric, or laminate, with an intermediate layer of resin. Instead of glass fabric, it is possible to put core sponge material in individual layers. It is necessary to ensure that the electrical contacts of all solar cells are accessible, i.e. that they protrude in front of the laminate layers.

9. Spojiti solarne ćelije u solarne module prema unaprijed definiranoj električnoj shemi, uzevši o obzir pri tome primarne i sekundarne veze te sve elektro elemente solarnog modula. 9. Connect the solar cells to the solar modules according to the predefined electrical scheme, taking into account the primary and secondary connections and all the electrical elements of the solar module.

Postupak laminacije moguće je provesti i vakuum infuzijom pazivši pri tome da stvoreni vakuum ne ošteti solane ćelije. Mogućnost ovog tehnološkog postupka osigurava se tako da se postupci pod točkama 1 – 6 sprovedu kao što je navedeno, a zatim se unutar točke 8 napravi tehnologija vakuum infuzije. The lamination process can also be carried out by vacuum infusion, making sure that the created vacuum does not damage the salt cells. The possibility of this technological procedure is ensured so that the procedures under points 1 - 6 are carried out as stated, and then within point 8 the technology of vacuum infusion is made.

Oblaganje površina plovila izrađenih iz ostalih materijal u stakloplastiku: Covering the surfaces of vessels made of other materials in fiberglass:

1. Izraditi prolaze (izbušiti rupe) na postojećem materijalu za prolaz elektro kontakata solarnih ćelija. 1. Make passages (drill holes) in the existing material for passage of electrical contacts of solar cells.

2. Pripremiti površinu za bolje prianjanje materijala. Ovisno o materijalu površinu će trebati odmastiti, prebrusiti, nanijeti vezni sloj. 2. Prepare the surface for better adhesion of the material. Depending on the material, the surface will need to be degreased, sanded, and a bonding layer applied.

3. Nanijeti sloj smole 3. Apply a layer of resin

4. Postaviti prvi i svaki slijedeći sloj staklene tkanine, odnosno laminata, sa međupremazom od smole. Nanijeti sloj smole 4. Place the first and each subsequent layer of glass fabric, or laminate, with an intermediate layer of resin. Apply a layer of resin

5. Postaviti sloj solarnih ćelija pazeći pritom da su električni kontakti neprekinuti te da su provučeni kroz unaprijed izrađene prolaze u postojećem materijalu trupa. 5. Place the layer of solar cells, making sure that the electrical contacts are unbroken and that they are threaded through pre-made passages in the existing hull material.

6. Nanijeti sloj smole 6. Apply a layer of resin

7. Nanijeti završni sloj staklene tkanine, ili više slojeva. 7. Apply the final layer of glass fabric, or several layers.

8. Površinu izgladiti nanošenjem transparentnog materijala, te prebrusiti. Pro tome voditi računa o transparentnosti površine te paziti da ne dođe do oštećenja solarnih ćelija. 8. Smooth the surface by applying a transparent material and sand it. Therefore, take care of the transparency of the surface and make sure that the solar cells are not damaged.

9. Spojiti solarne ćelije u solarne module prema unaprijed definiranoj električnoj shemi, uzevši o obzir pri tome primarne i sekundarne veze te sve elektro elemente solarnog modula. 9. Connect the solar cells to the solar modules according to the predefined electrical scheme, taking into account the primary and secondary connections and all the electrical elements of the solar module.

Claims (5)

1. Solarne ćelije integrirane u stakloplastičnu ljusku oplošja plovila, naznačene time, da se slojevi solarnih ćelija (4.3, 5.2) integriraju u jedan od, u pravilu, prvih slojeva laminata (1.2) stakloplastike prilikom izrade novog plovila, kao i pri oblaganju u stakloplastiku plovila već izgrađenih od ostalih materijala pri čemu se stakloplastika sastoji od staklene tkanine i smola kao vezivnog materijala, tako da solarne ćelije čine s laminatom jednu cjelinu. 1. Solar cells integrated into the fiberglass hull of the vessel, indicated by the fact that the layers of solar cells (4.3, 5.2) are integrated into one of, as a rule, the first layers of the fiberglass laminate (1.2) during the construction of a new vessel, as well as when sheathing in fiberglass vessels already built from other materials, whereby the fiberglass consists of glass fabric and resins as a binding material, so that the solar cells form a whole with the laminate. 2. Solarne ćelije integrirane u stakloplastičnu ljusku oplošja plovila prema patentnom zahtjevu 1, naznačene time, da se slojevi solarnih ćelija (4.3, 5.2) mogu polagati između bilo koja dva sloja laminata (1.2) stakloplastike vodeći pritom računa da se postigne optimum budući da više vanjskih slojeva ispred solarnih ćelije tvori bolju mehaničku zaštitu solarnih ćelija, dok manje slojeva propušta više sunčeve energije. 2. Solar cells integrated into the fiberglass shell of the boat hull according to patent claim 1, characterized by the fact that the layers of solar cells (4.3, 5.2) can be laid between any two layers of fiberglass laminate (1.2), taking care to achieve the optimum since more outer layers in front of the solar cells form a better mechanical protection of the solar cells, while fewer layers let more solar energy through. 3. Solarne ćelije integrirane u stakloplastičnu ljusku oplošja plovila prema patentnom zahtjevu 1, naznačene time, da se slojevi solarnih ćelija (4.3, 5.2) najčešće nalazi između prvog i drugog sloja staklene tkanine.3. Solar cells integrated into the fiberglass hull of the vessel according to patent claim 1, characterized by the fact that the layers of solar cells (4.3, 5.2) are most often located between the first and second layers of glass fabric. 4. Solarne ćelije integrirane u stakloplastičnu ljusku oplošja plovila prema prethodnim patentnim zahtjevima, naznačene time, da se staklena tkanina sastoji od niti koje mogu biti i od karbona, kevlara ili nekog drugog materijala predviđenog za gradnju u stakloplastici dok smola kao vezivni materijal može biti različitog sastava a najpoznatiji su poliester, vinilester i epoksid.4. Solar cells integrated into the fiberglass shell of the hull of the vessel according to the previous patent claims, indicated by the fact that the glass fabric consists of threads that can also be made of carbon, Kevlar or some other material intended for construction in fiberglass, while the resin as a binding material can be of different composition and the best known are polyester, vinylester and epoxy. 5. Solarne ćelije integrirane u stakloplastičnu ljusku oplošja plovila prema prethodnim patentnim zahtjevima, naznačene time, da su solarne ćelije međusobno višestruko povezane serijski i paralelno čineći tako određene naponske module, koji se dalje putem elektro elementa povezuju u energetski sustav broda. 5. Solar cells integrated into the fiberglass hull of the vessel according to the previous patent claims, indicated by the fact that the solar cells are multiple connected to each other in series and in parallel thus forming certain voltage modules, which are further connected to the energy system of the ship via an electrical element.
HRP20120648AA 2012-08-08 2012-08-08 Solar cells integrated into fiberglass boat hull HRPK20120648B3 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HRP20120648AA HRPK20120648B3 (en) 2012-08-08 2012-08-08 Solar cells integrated into fiberglass boat hull
PCT/HR2013/000024 WO2014023985A1 (en) 2012-08-08 2013-07-26 Grp integrated solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20120648AA HRPK20120648B3 (en) 2012-08-08 2012-08-08 Solar cells integrated into fiberglass boat hull

Publications (2)

Publication Number Publication Date
HRP20120648A2 true HRP20120648A2 (en) 2014-02-14
HRPK20120648B3 HRPK20120648B3 (en) 2015-05-08

Family

ID=49182282

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20120648AA HRPK20120648B3 (en) 2012-08-08 2012-08-08 Solar cells integrated into fiberglass boat hull

Country Status (2)

Country Link
HR (1) HRPK20120648B3 (en)
WO (1) WO2014023985A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580960A (en) * 2019-02-01 2020-08-05 Sunew Filmes Fotovoltaicos Photovoltaic device, photovoltaic device apparatus and method of manufacturing photovoltaic device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982963A (en) 1974-08-05 1976-09-28 Solar Power Corporation Solar battery maintainer
DE7709152U1 (en) 1977-03-24 1977-08-18 Rheinisches Zinkwalzwerk Gmbh & Co Kg, 4354 Datteln DEVICE FOR INSTALLING A SLOPE OF A SOLAR COLLECTOR
US4371139A (en) 1979-12-31 1983-02-01 Sunsearch, Inc. Adjustable mounting rack for solar collectors
US4421943A (en) 1982-02-19 1983-12-20 Cities Service Company Collapsible mobile solar energy power source
GB2176667B (en) 1985-06-11 1989-07-05 Toshiba Kk Electric motor running system employing a photovoltaic array
CA1256942A (en) 1985-06-20 1989-07-04 Gunther Mieth Circuit arrangement for feeding an electrical load from a solar generator
JPS6268199A (en) 1985-09-19 1987-03-28 Mitsubishi Heavy Ind Ltd Charging equipment for boat mounted on mother ship
WO1988004801A1 (en) 1986-12-19 1988-06-30 Stuart Maxwell Watkinson Electrical power transfer apparatus
US4873480A (en) 1988-08-03 1989-10-10 Lafferty Donald L Coupling network for improving conversion efficiency of photovoltaic power source
DE3836259A1 (en) 1988-10-25 1990-04-26 Kranert Klaus Solar-powered sailing yacht
DE4017860A1 (en) 1990-06-02 1991-12-05 Schottel Werft ENERGY RECOVERY SYSTEM, IN PARTICULAR PROPELLER SHIP DRIVE, WITH POWER FROM A SOLAR GENERATOR
US5131341A (en) 1990-12-03 1992-07-21 Edwin Newman Solar powered electric ship system
DE4136379A1 (en) 1991-11-05 1992-07-23 Klaus Dr Ing Kranert Solar panel arrangement for yacht - has fixed, folding and sliding solar panels to provide auxiliary motive power
JPH07179195A (en) 1992-08-12 1995-07-18 Kansai Electric Power Co Inc:The Solar boat
DE4301404C1 (en) * 1993-01-20 1994-07-28 Michael C Lenz Process for the production of solar generators
US5720452A (en) 1996-05-29 1998-02-24 Lockheed Martin Corporation Solar panel parallel mounting configuration
DE29610516U1 (en) 1996-06-08 1996-08-08 Genschorek, Gido, 15827 Dahlewitz Device for fastening plate-shaped components
NL1003795C1 (en) 1996-08-13 1996-10-25 Eurotool Beheer B V Vessel equipped with solar cells.
US20020182946A1 (en) 2001-05-29 2002-12-05 Eitaro Tanaka Power generation plant ship
GB2405742B (en) 2003-09-06 2008-02-27 Martin Philip Usher Energy & water autonomous generator
JP4764202B2 (en) 2006-02-22 2011-08-31 真俊 玉置 Solar cell panel installation device and gantry constituting the installation device
DE202006008377U1 (en) * 2006-05-26 2007-10-04 Boots- Und Schiffswerft Cuxhaven Gmbh Solar lift
JPWO2010100943A1 (en) * 2009-03-06 2012-09-06 リンテック株式会社 Protective sheet for solar cell module and solar cell module using the same
US8152577B1 (en) 2010-04-28 2012-04-10 Mitlyng Randy A Electric boat

Also Published As

Publication number Publication date
WO2014023985A1 (en) 2014-02-13
HRPK20120648B3 (en) 2015-05-08

Similar Documents

Publication Publication Date Title
US20150027125A1 (en) Process for harvesting, storing, and using renewable energy to propel and power boats and ships, and maximize their average speed
CN101337579A (en) Traffic ship using wind energy and solar energy as main power source
CN101837827A (en) Electrical propulsion green ship combined with power generation of wind power and solar energy
CN103318380A (en) Push catamaran
Rutkowski Study of Green Shipping Technologies-Harnessing Wind, Waves and Solar Power in New Generation Marine Propulsion Systems
CN208007217U (en) A kind of three body unmanned boat of solar energy of long-distance remote control seawater sampling
JP2009073455A (en) New method of ocean current power generation by genbu ship
US20180281902A1 (en) Solar powered boat
CN103171737A (en) Energy-saving high-speed ship
CN108016573A (en) Band can manipulate the long-distance remote control seawater sampling solar energy unmanned boat that aerofoil profile stablizes lateral body
CN106627979B (en) O&M catamaran on a kind of intertidal belt submarine
HRP20120648A2 (en) Solar cells integrated into fiberglass boat hull
Eastlack et al. Zero emission super-yacht
CN203172868U (en) Energy saving high speed vessel
CN205770095U (en) A kind of energy-conserving and environment-protective boats and ships
CN201357931Y (en) Three-body abutted cruise ship
CN204124315U (en) A kind of not heavy environment protection ship operated steadily
Guellard et al. An overview of electric and solar boats market in France
CN103046613B (en) Energy-conservation collection seawater cruise liner
CN202557781U (en) Movable sail hydraulic environmental-protection sailship
CN105186988B (en) Connect the Big Dipper positioning photovoltaic plant that floating on water photovoltaic module is constituted with waterproof rope
CN204775812U (en) Limbs ship
KR20130094077A (en) Hybrid vessel powered by wind and solar energy
CN206485509U (en) O&M catamaran on a kind of intertidal belt submarine
CN101314397B (en) Parent-subsidiary wind sailing boat

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
PKB1 Consensual patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20190711

Year of fee payment: 8

ODRP Renewal fee for the maintenance of a patent

Payment date: 20200714

Year of fee payment: 9

PBKO Lapse due to non-payment of renewal fee for consensual patent

Effective date: 20210808