GB2554924A - Improvements in or relating to continuous inkjet printers - Google Patents

Improvements in or relating to continuous inkjet printers Download PDF

Info

Publication number
GB2554924A
GB2554924A GB1617490.6A GB201617490A GB2554924A GB 2554924 A GB2554924 A GB 2554924A GB 201617490 A GB201617490 A GB 201617490A GB 2554924 A GB2554924 A GB 2554924A
Authority
GB
United Kingdom
Prior art keywords
phase
prints
test
printer
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1617490.6A
Other versions
GB201617490D0 (en
Inventor
Adrian Chapman Christopher
Andrew Martin Fenton Steven
John Lee Daniel
Morgan Jonathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Domino UK Ltd
Original Assignee
Domino UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Domino UK Ltd filed Critical Domino UK Ltd
Priority to GB1617490.6A priority Critical patent/GB2554924A/en
Publication of GB201617490D0 publication Critical patent/GB201617490D0/en
Priority to US16/341,532 priority patent/US10987926B2/en
Priority to EP17787583.8A priority patent/EP3526047B1/en
Priority to PCT/GB2017/053118 priority patent/WO2018069733A1/en
Publication of GB2554924A publication Critical patent/GB2554924A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/125Sensors, e.g. deflection sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/115Ink jet characterised by jet control synchronising the droplet separation and charging time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/03Ink jet characterised by the jet generation process generating a continuous ink jet by pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • B41J2/085Charge means, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • B41J2/09Deflection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/12Ink jet characterised by jet control testing or correcting charge or deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2002/022Control methods or devices for continuous ink jet

Abstract

Methods of controlling and reducing the inter-message gap in a continuous inkjet (CIJ) printer whilst phase testing comprise: performing individual measures (C) that combine to provide a phase test between prints (A, E). A control method including first stage and second stage amplifiers wherein the second stage amplifier may be switched out is also disclosed; as is a continuous inkjet printer including an FPGA. A method of phase testing including measuring an initial phase charge at a plurality of positions and defining a threshold which dictates whether a position is classed as a pass or fail is also disclosed; in this method a defined number of measures are then made in a test between prints.

Description

(54) Title of the Invention: Improvements in or relating to continuous inkjet printers
Abstract Title: Shortening inter-message gap on a continuous inkjet printer whilst phase testing (57) Methods of controlling and reducing the inter-message gap in a continuous inkjet (CIJ) printer whilst phase testing comprise: performing individual measures (C) that combine to provide a phase test between prints (A, E). A control method including first stage and second stage amplifiers wherein the second stage amplifier may be switched out is also disclosed; as is a continuous inkjet printer including an FPGA. A method of phase testing including measuring an initial phase charge at a plurality of positions and defining a threshold which dictates whether a position is classed as a pass or fail is also disclosed; in this method a defined number of measures are then made in a test between prints.
FIG. 3
At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.
/4
11 17
FIG. 1
2/4
11 17
FIG. 2A (Prior Art)
FIG. 2B
3/4
LO
FIG. 3
FFFFFPPPPPPPPFFF Phase position/16ths of a cycle
FIG. 4
4/4
Starting position Actual best position Range of pass positions First test position Second test position Third test position Test results Action Set point Set point within one place from best position? Set point in a pass position? Set point closer than start position?
9 9 5-12 11 13 12 PFP -3 9 Y Y Y
9 8 4-11 11 13 12 PFF -4 8 Y Y Y
9 7 3-10 11 10 12 FPF -5 7 Y Y Y
9 6 2-9 11 10 9 FFP -3 6 Y Y Y
9 5 1-8 11 10 9 FFF -6 3 N Y Y
9 4 0-7 11 10 9 FFF -6 3 Y Y Y
9 3 15-6 11 10 9 FFF -6 3 Y Y Y
9 2 14-5 11 10 9 FFF -6 3 Y Y Y
9 1 13-4 11 10 9 FFF -6 3 N Y Y
9 0 12-3 11 10 9 FFF -6 3 N Y Y
9 15 11-2 11 13 15 PPP 4 13 N Y Y
9 14 10-1 11 13 15 PPP 4 13 Y Y Y
9 13 9-0 11 13 15 PPP 4 13 Y Y Y
9 12 8-15 11 13 15 PPP 4 13 Y Y Y
9 11 7-14 11 13 15 PPF -5 10 Y Y Y
9 10 6-13 11 13 15 PPF -5 10 Y Y Y
FIG. 5
IMPROVEMENTS IN OR RELATING TO CONTINUOUS INKJET PRINTERS
Field of the Invention
This invention relates to a continuous inkjet (CIJ) printer and, in particular, to the charging of droplets in a CIJ printer.
Background to the Invention
CIJ printers are widely used to place identification codes on products passing along production line and thus typically print at the high speeds dictated by the speeds of those lines.
A commonly encountered CIJ printer includes a printer housing that contains a system for pressurising ink. Once pressurised, part of the ink flow is directed, via an ink feed line housed in a conduit, to a printhead. At the printhead the pressurised ink is passed through a nozzle to form an inkjet. In the known manner, a vibration or perturbation is applied to the inkjet causing the jet to break into a stream of droplets.
The device used to apply the perturbation is known as a droplet generator and typically contains a transducer driven at a required frequency by a sinusoidal electrical signal running at the same frequency. The electrical signal is commonly termed the modulation signal.
Downstream of the droplet generator, the printer includes a charge electrode to charge selected droplets, and an electrostatic facility to deflect the charged droplets away from their original trajectory and onto a substrate. By controlling the amount of charge that is placed on droplets, the trajectories of those droplets can be controlled to form a printed image.
A CIJ printer is so termed because the printer forms a continuous stream of droplets irrespective of whether or not any particular droplet is to be used to print. The printer selects the drops to be used for printing by applying a charge to those drops, unprinted drops being allowed to continue, on the same trajectory as they were jetted from the nozzle, into a catcher or gutter. The unprinted drops collected in the gutter are returned from the printhead to the printer housing via a gutter line included in the same conduit as contains the pressurised ink feed line feeding ink to the printhead. Ink, together with entrained air, is generally returned to the printer housing under vacuum. That vacuum may be generated by a pump in the gutter line or by a vacuum source located further along the ink circulation system.
In order to produce a good print quality a continuous inkjet printer needs to charge the ink droplets accurately. As well as selecting and applying the right electrical potential to the charge electrode, it is also required to synchronise the application of charge voltage with the point at which the jet of ink breaks into droplets, a point known as the ‘break-up’ point. The precise position of the break-up point changes slightly over time in response to various system variables such as temperature, ink viscosity, ink pressure etc. Generally, as these variables are well controlled, the change in movement of the droplet is also small and within the scale of the distance between ink drops in the stream.
As the change in position is less than a drop separation the process for synchronising the charging of a drop with the drop formation the printer needs only to determine the phase relationship between the modulation signal and the drop-charging signal. The process of controlling this synchronisation is commonly known as ‘phasing’ and is achieved by testing the amount of charge transferred to a drop or group of drops for a range of phase positions, the feedback of this being via a phase sensor. Phasing is well known to those versed in the CIJ art and a detailed description of an example of phasing can be found in EP 0 386 049.
Phasing normally takes place between every print undertaken by a CIJ printer and it is well understood that the tests required to determine the correct phase for charging take a finite time to perform. This can present a problem during the use of a CIJ printer because, as described above, these printers are used for printing on high speed production lines where the products may be spaced closely together. In this situation the so called inter-message gap i.e. the time between successive prints is only about a millisecond which compromises the ability of the printer to effect proper phase testing.
It is an object of this invention to provide methods and/or apparatus relating to a CIJ printer that will go at least some way in addressing the above-mentioned problem; or which will at least provide a novel and useful choice.
Summary of the Invention
In one aspect the invention provides a method of controlling a continuous inkjet printer configured to execute prints, and to undertake phase tests, said method being characterized in that individual measures that combine to provide a phase test are undertaken between successive prints.
In a second aspect the invention provides a method of reducing the intermessage gap in a continuous inkjet printer configured to execute prints and to undertake phase testing between prints, said method comprising dividing a phase test into a number of measures, at least some of said measures being performed between different prints.
In a third aspect the invention provides a method of shortening an intermessage gap in a continuous inkjet printer configured to execute prints with gaps there-between and to undertake phase testing between said prints, said printer having a first stage amplifier and a second stage amplifier configured to amplify charges measured during phase testing, said method comprising switching out at least one of said amplifiers when said printer is not undertaking phase testing.
Preferably said method comprises switching out said second stage amplifier.
In a fourth aspect the invention provides a continuous inkjet printer including a system clock; a field programmable gate array (FPGA); and having a printing state, a phase measuring state and a phase test method; said printer being characterized in that said FPGA is configured to receive an input from said system clock and to control the onset of both said printing state and said phase measuring state; and to control said phase test method.
Preferably said FPGA is configured to initiate measures comprising part of said phase test method following a predetermined number of pulses of said system clock after an end of said printing state.
In a fifth aspect the invention provides a method of undertaking a phase test for a continuous inkjet printer configured to execute a sequence of prints wherein as an initial step, the charges on phase test droplets are measured at n positions and wherein a threshold is established so that the charges on droplets at n/2 positions are grouped, lie above the threshold, and are termed ‘passes’ while the droplets at the remaining n/2 positions lie below the threshold and are termed ‘fails’; and an initial print position is established being in the middle of the pass positions, said method being characterized in that between prints test charges are measured at a defined number of phase test positions and specified passes or fails.
Preferably said defined number of phase test positions are determined relative to said initial print position.
Preferably said defined number of tests comprises three tests.
Preferably the pass or fail statuses of the three tests are compared with data held in memory to determine if a change in print position would enhance print quality.
In a sixth aspect the invention provides a method of reducing the intermessage gap in a continuous inkjet printer executing prints with gaps therebetween, wherein an initial phase test is undertaken on start-up to determine passes and fails at a sequence of phase test positions and wherein an initial print position is established being the position at which a pass charge is the greatest; and wherein phase test measures are subsequently undertaken between prints, said method being characterized in that a defined number of measures are made in a test, each being categorized a pass or a fail, and a combination of passes and fails is used to determine an optimum print position.
Preferably said defined number of measures comprises three measures.
Preferably said method comprises comparing a measured pattern of passes and fails with a table of passes and fails, and print positions, held in a memory.
Many variations in the way the invention may be performed will present themselves to those skilled in the art upon reading the following description. The description which follows should not be regarded as limiting but rather, as an illustration only of one mode of performing the invention. Where possible, a description of any element or component should be taken as including any or all equivalents thereof whether or not specifically mentioned.
Brief Description of the Drawings
The various aspects of the invention will now be described with reference to the accompanying drawing in which:
Figure 1: shows a diagrammatic view of a CIJ printhead;
Figure 2A: shows prior art phasing circuit incorporated in a CIJ printhead;
Figure 2B: shows a phasing circuit for a CIJ printer adapted in accordance with an aspect of the invention;
Figure 3: shows a timing diagram for phase tests between CIJ print jobs undertaken at high speed;
Figure 4: shows typical results of signal charge level against phase position for a CIJ printer; and
Figure 5: shows a table outlining scenarios when a preferred phase setting method as described herein is used.
Detailed Description of Working Embodiment
A typical CIJ printhead 10 is shown in Figure 1. Ink is fed under pressure into a chamber 12 of droplet generator 11, from which it emerges as a jet 13 from a small outlet nozzle 14. The droplet generator further includes an electromechanical transducer such as a piezoelectric transducer assembly shown schematically at 15. The assembly 15 may be located within the chamber 12 or externally thereof.
Downstream of the nozzle 14 are located a charge electrode or pair of charge electrodes 16 and a phase detection electrode or pair of phase detection electrodes 17 that are arranged so as to be either side of and close to the jet 13. Typically, the two electrodes or sets of electrodes are placed within 500 microns of the jet and, for simplicity and accuracy of alignment, are preferably embodied in a single assembly.
The printhead 10 further comprises a pair of charged deflector plates 18 configured to generate a static electric field there-between; and a catcher or gutter 19 to collect unprinted drops.
In operation a sinusoidal electrical drive signal, commonly referred to as the modulation signal, is applied to the electro mechanical transducer 15. The frequency of the sine wave is chosen to match the nozzle size and jetting speed as defined by the physics of Rayleigh instability, to cause the jet 13 to break into a stream of droplets. For example, a frequency of around 80kHz applied to ink jetted through a 60 micron nozzle at 20m/s should lead to the formation of droplets from the jet 13.
In normal operation, when modulation is applied, droplets form within the charge electrode 16. Those droplets that are to be printed are charged by applying a square electrical pulse to the charge electrode, which is the full width of the period of the modulation signal. The charged droplets fly past the phase detection electrodes 17 and are deflected by the electric field held between the charged deflector plates 18. Charges are chosen on successive drops to form a character subject to a minimum charge value being necessary to deflect a drop past the gutter or catcher 19.
Phase testing is undertaken between prints. In order to conduct a phase test, the printer applies a potential to the charge electrode that is half the length of the time period of the modulation drive frequency. The phasing drops are charged with a small voltage that is preferably of opposite sign to that used to print. The net effect on the droplets of this charging is that the phasing droplets are deflected in the opposite direction to the printed drops but, as the charge voltage is small, the charge on the drops is also small resulting in the phasing drops still being caught in the ink gutter 19.
As the charges on the phasing drops are small the printer employs a high gain circuit in order to amplify the signals generated by the drops as they pass the phase detector 17. Such a circuit, common in prior art CIJ printers such as the Domino A-Series printer, is shown in Figure 2A and comprises two operational amplifiers 21 and 22 configured to run as ac coupled differentiators. Device values in the feedback loop of the inverting input are chosen to achieve gains of around 100. The phase detector 17 is connected to the non-inverting input 23 of the first amplification stage. Even with this high gain it is often not possible to detect a single droplet and thus a packet of eight or more droplets are typically charged to aid detection.
The phase detector 17 is a simple device, normally consisting of a shielded electrode, and is not able to discriminate between the printed droplets and the droplets used for phase tests. In the prior art case, the circuit is kept active at all times and, when a printed drop passes the detector, the amplifiers 21 and 22 apply gain, charging the capacitor in the feedback loop. It is thus possible for the capacitor to become fully charged, particularly in the second stage 22 compromising the performance of the amplifiers and making them less responsive or even unresponsive. As a consequence it becomes necessary to wait for the capacitor to be discharged so that the operational amplifiers 21 and 22 perform as designed when a phasing pulse is applied. Typically, the discharge time could be 500us or as long as 1ms. The long discharge time of the capacitor is a consequence of the high gain required by the circuit in order for the charge on the phasing drops to be detected.
Accordingly, in another aspect of the invention that can be understood with reference to Figure 2B, a solution to the problem of discharging the capacitor is provided. A controllable switch 24, controlled for example by a fieldprogrammable gate array device (FPGA), is inserted into the feedback loop of the second amplification stage 22. During normal operation when the printer is printing, the switch is shut. Shutting the switch rapidly removes any residual charge on the capacitor and as it is shorted circuited by the switch it prevents the capacitor from being recharged. The amplification stage then simply acts as a follower with unity gain. It should be clear that the switch could be placed in the feedback loop of either or both of the amplifiers but clearly the greater benefit is derived when the switch is placed in the feedback loop of the second stage amplifier 22.
Controlling the charge electrode and hence the charging of the drop for printing and phase tests using an FPGA has significant benefits in reducing the time between prints whilst still allowing for a phase test to be performed. In existing art a device such as an FPGA has routines which are called by the system software. The system software has no knowledge of the clock which drives drop formation and has its own task priority and execution times which, of necessity, limits print speed.
It is desirable for a CIJ printer to measure the phase position at any time it is not printing. Accordingly, if an FPGA as opposed to system software controls all aspects of charge control, the initiation of a phase test period can be considered deterministic when based on the next available droplet once the last printed droplet has passed the sensor 17. In such an embodiment the FPGA is synced to the master clock of the printer and can thus count pulses and implement a phase test measurement after n pulses. In other words the FPGA can count a number of drops (cycles of the master clock) and determine, following the end of a print, which is the first drop that can be used for a phase test measurement. So rather than the printer system software executing various routines and then starting a phase test at the next available drop when phase test has reached the top of the list against a number of competing threads in the software the FPGA determines exactly when a phase test can start as determined by the exact availability of a drop for charging after n charge periods.
Figure 3 illustrates a typical charging scheme as a function of time for a printer printing codes 5 drops high. In section A, the last stroke of a printed message is shown, printing vertically 3 drops, followed by a non-printed drop and a further printed drop in the top position. In section B, the printer waits a pre-determined time for the highly charged printing droplets to pass the sensor
17. The wait time may be pre-determined by experiment generally for a range of inks and pressure conditions and stored in a look up table, or by the printer by using the time taken between charging a phasing drop and detecting it at the last phase test. Once the pre-determined time has passed, the FPGA will start charging phase test drops as shown in section C. The FPGA will also open the switch 24 to increase the gain of the phasing detection circuit shown in Figure 2B. The increased gain can be switched concomitantly with the charging of the phasing drop or at the predetermined time defined for section B after the charging of the drop. Once all phasing drops in the packet are charged there is another wait, illustrated as section D, which is equal to the predetermined time from section B or until the sensor has detected that the drops have passed the sensor. At this point, i.e. the transition between section D and section E, the switch 24 is closed so that the gain of the detection circuit is lowered.
The printer can either make another phase test or print if a print-go instruction is received, a print-go instruction generally taking priority over a phasing operation. In the example of Figure 3, a print-go instruction has been received and in section E the printer is printing the first stroke of the next printed message. As illustrated in Figure 3, the inter-message gap is B+C+D.
In this way the printer can make optimum use of every droplet produced in the stream whether it is for printing, for phasing, or is a drop not used whilst the last printed droplet passes the sensor 17; and the time between prints for a phase measurement to be made can therefore be minimised.
In yet a further aspect of the invention a novel phasing method is proposed to reduce or minimise the number of measures comprising a phase test and to ensure that an optimum phase position is achieved, from a finite number of phase measures, to charge a drop for printing.
Typically, upon start up, a CIJ printer will follow a number of initiation routines. One such routine is to determine the best phase position for printing. Once a drive level for the electromechanical transducer 15 has been determined, the printer carries out a number of tests to measure the amount of charge at all of the n phase positions available to the printer. Referring to Figure 4, the number (n) of available phase test positions is 16 and a typical response when stepping through the 16 phase positions is illustrated, the response comprising charge amplitudes as measured by the phase sensor 17 from a packet of droplets charged with a half-width pulse. In the case of Figure 4, which shows the results from such a set of tests, the optimum position for printing is 9/16 of a modulation cycle advanced from the signal used to drive the electromechanical transducer 15, i.e. the position where most charge is on a droplet. As phase measurements involve very small amounts of charge and high gain, there is a large error to the measurement and so preferably the phase signal measurement from a test is compared to a threshold value. If the measured charge level is higher than the threshold this is deemed a pass (P) and if lower than the threshold value this is deemed a fail (F). The threshold value may be pre-determined, for example by experiment, and designed into the printer at a fixed level; but is preferably determined by the electronics and software systems choosing a value that will result in a
50:50 split between pass and fails for all phase tests, thereby choosing the threshold value dynamically.
When the phase tests are sorted into passes and fails it can be seen that the passes and fails are in contiguous phase positions, with the maximum value falling in the centre of the contiguous blocks of passes. As an initiation process, the printer therefore performs a phase test at all possible positions and determines whether the phase test for each individual position is deemed a pass or a fail. When all phase tests have been collected the printing phase position is set at the centre position of the contiguous block of passes and this is referred to below as the initial print position.
Those skilled in the art will realise that, for closely spaced high-speed printing applications, there is not time to perform the 16 phase tests needed to determine which of the 16 phase steps gives the highest measured charge output. As the threshold value between pass and fail has been set so that 50% of the phase positions deliver a pass then it follows that the optimum position for printing lies four phase steps in front of the transition point between pass and fail.
Leading on from this, one known method to determine the best phase position between prints is to start at the initial print position, increment the phase position by one and perform a test measure, continue to increment the phase position by one until the first failure is observed, and then step back four positions. As can be seen in Figure 4, if we have selected the initial print position to be 9, the first test measure will be at position 10 and will be a pass, the second test measure will be at position 11 and will be a pass, the third test measure will be at position 12 and will be a pass and the fourth test measure will be at position 13 and a fail. We would then step back four positions to position 9 and set this for printing. This method is much faster as it only takes four test measures but is still too long for closely spaced high-speed applications.
Another known method involves, as an initial step, moving forward four phase positions and performing a test measure, stepping forward if the result is a pass and backward if the result is a fail. Once pass and fail are found in contiguous positions the print set point is four steps retarded from this transition point. So again looking at the case illustrated in Figure 4, we would start at position 9 then step forward 4 to position 13, which would register as a fail. The test position would be retarded one place and tested at position 12, which would be measured as a pass, the pass to fail transition thus occurs at position 13, which would lead to the set position being retarded four steps to position 9. This method is again much faster but takes at least two tests and, apart from perhaps being too long for closely spaced high-speed applications, this method also has the problem that an indeterminate number of tests is required if the best printing position has shifted between prints. For example, if the phase pattern has shifted two steps earlier to position 7, then the transition point will be between positions 10 and 11 and, following the stated methodology, the printer will test at position 13 and find a failure, then at 12 and find a failure, then at 11 and find a failure, and finally at 10, before stepping back to position 7. Such a case would take 4 tests, and in the case of a closely spaced high speed printing application would mean, in practice, that the printer would never reach the end of its phase test resulting in degraded print quality from the printer.
To overcome the above problems, another aspect of this invention proposes a novel phase testing method in which a single phase test measure is made between prints and a combination of the results of the measures, which comprises a phase test, is then used as the basis of a decision of whether it is necessary or beneficial to change the print position. In the illustrated example, three measures are combined to form a phase test.
According to the proposed method in three consecutive measures the phase position is stepped forward two positions for a pass and one position back for a fail, the results being recorded in a look-up table. An assessment of whether a change is necessary is made after every third measurement according to a predetermined set of data in the table.
Assuming again that the printer is set at an initial print position, position 9, and has a phase position as presented in Figure 4, we find a first test measure at position 11 which is recorded as a pass, a second test measure at 13, which is recorded as a fail and a third test measure at 12, which is recorded as a pass. The resulting PFP combination is then compared with the data in the look-up table illustrated in Figure 5, indicating that the printer needs to retard three steps from the last measurement, thus setting at position 9.
The table in Figure 5 displays all of the possible outcomes of phase tests where the phasing window has drifted between prints. At the last successful phase test the printer had chosen position 9, which for all scenarios is then the initial print position. At line two of the table a situation is illustrated in which the best printing position has moved down one to position 8. In line with this change, the phasing window has also moved so that passes are found between positions 4 and 11, whereas before the phase pass window was positioned between 5 and 12. The table shows the result and steps taken for the three tests and the action resulting from the test pattern.
The resulting actions shown in Figure 5 have been chosen to ensure consistency and the best result for print quality. It is realised that, as there are eight pass positions then, as far as the system is concerned, there are effectively two central positions and the choice depends on whether the high edge transition or the low edge transition has been found. Accordingly, the objective is to let the printer choose the best printing position within an error margin of one phase step. The table in Figure 5 shows that this is achieved on all but four of the sixteen possible scenarios. A further benefit is that the method sets the printer to a closer point to the best printing position after three tests so that if the entire method were used twice the printer would arrive at the optimum setting.
The result of using the novel method outlined above is that it is possible to monitor and control a continuous inkjet printer even if it is printing in the demanding application where prints take place on closely spaced substrates at high speed. The system can cope with gross changes in phase position, returning the printer to a near optimised phase positions generally within three measurements and certainly within six measurements. Normally a printer will drift quite slowly with respect to the modulation frequency but can drift by one or two steps.

Claims (13)

Claims
1. A method of controlling a continuous inkjet printer configured to execute prints, and to undertake phase tests, said method being characterized in that individual measures that combine to provide a phase test are undertaken between successive prints.
2. A method of reducing the inter-message gap in a continuous inkjet printer operable to execute prints and to undertake phase testing between prints, said method comprising dividing said phase test into a number of measures, at least said measures being performed between different prints.
3. A method of shortening an inter-message gap in a continuous inkjet printer configured to execute prints with gaps there-between and to undertake phase testing between said prints, said printer having a first stage amplifier and a second stage amplifier configured to amplify charges measured during phase testing, said method comprising switching out at least one of said amplifiers when said printer is not undertaking phase testing.
4. A method as claimed in claim 3 comprising switching out said second stage amplifier.
5. A continuous inkjet printer including a system clock; a field programmable gate array (FPGA); and having a printing state, a phase measuring state and a phase test method; said printer being characterized in that said FPGA is configured to receive an input from said system clock and to control the onset of both said printing state and said phase measuring state and to control said phase test method.
6. A printer as claimed in claim 5 wherein said FPGA is configured to initiate measures comprising part of said phase test method following a predetermined number of pulses of said system clock after an end of said printing state.
7. A method of undertaking a phase test for a continuous inkjet printer configured to execute a sequence of prints wherein as an initial step, the charges on phase test droplets are measured at n positions and wherein a threshold is established so that the charges on droplets at n/2 positions are grouped, lie above the threshold, and are termed ‘passes’ while the droplets at the remaining n/2 positions lie below the threshold and are termed ‘fails’; and an initial print position is established being in the middle of the pass positions, said method being characterized in that between prints test charges are measured at a defined number of phase test positions and specified passes or fails.
8. A method as claimed in claim 7 wherein said defined number of phase test positions are determined relative to said initial print position.
9. A method as claimed in claim 7 or claim 8 wherein said defined number of tests comprises three tests.
10. A method as claimed in any one of claims 7 to 9 wherein pass or fail statuses of the three tests are compared with data held in memory to determine if a change in print position would enhance print quality.
11. A method of reducing the inter-message gap in a continuous inkjet printer executing prints with gaps there-between, wherein an initial phase test is undertaken on start-up to determine passes and fails at a sequence of phase test positions and wherein an initial print position is established being the position at which a pass charge is the greatest;
and wherein phase test measures are subsequently undertaken between prints, said method being characterized in that a defined number of measures are made in a test, each being categorized as a pass or a fail and a combination of passes and fails is used to determine an optimum printing position.
12. A method as claimed in claim 11 wherein said defined number of measures comprises three measures.
13. A method as claimed in claim 11 or claim 12 comprising comparing a measured pattern of passes and fails with a table of passes and fails, and print positions, held in a memory.
Intellectual
Property
Office
Application No: GB1617490.6 Examiner: Dr David Palmer
GB1617490.6A 2016-10-14 2016-10-14 Improvements in or relating to continuous inkjet printers Withdrawn GB2554924A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1617490.6A GB2554924A (en) 2016-10-14 2016-10-14 Improvements in or relating to continuous inkjet printers
US16/341,532 US10987926B2 (en) 2016-10-14 2017-10-16 Continuous inkjet printers
EP17787583.8A EP3526047B1 (en) 2016-10-14 2017-10-16 Improvements in or relating to continuous inkjet printers
PCT/GB2017/053118 WO2018069733A1 (en) 2016-10-14 2017-10-16 Improvements in or relating to continuous inkjet printers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1617490.6A GB2554924A (en) 2016-10-14 2016-10-14 Improvements in or relating to continuous inkjet printers

Publications (2)

Publication Number Publication Date
GB201617490D0 GB201617490D0 (en) 2016-11-30
GB2554924A true GB2554924A (en) 2018-04-18

Family

ID=57680834

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1617490.6A Withdrawn GB2554924A (en) 2016-10-14 2016-10-14 Improvements in or relating to continuous inkjet printers

Country Status (4)

Country Link
US (1) US10987926B2 (en)
EP (1) EP3526047B1 (en)
GB (1) GB2554924A (en)
WO (1) WO2018069733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835067A4 (en) * 2018-08-07 2022-04-06 Hitachi Industrial Equipment Systems Co., Ltd. Inkjet recording device and control method for inkjet recording device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115384191B (en) * 2022-08-24 2023-09-29 镭德杰标识科技武汉有限公司 Pulsation damper and ink-jet printer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535348A (en) * 1975-11-28 1978-12-13 Burroughs Corp Phase correction in ink jet printers
US4470052A (en) * 1981-04-10 1984-09-04 Recognition Equipment Incorporated A-C Coupled, modulator based, phase-error sensing for IJP
GB2250236A (en) * 1987-10-30 1992-06-03 Linx Printing Tech Adjusting ink-handling characteristics in continuous-jet ink-drop printer
US5408255A (en) * 1992-11-16 1995-04-18 Videojet Systems International, Inc. Method and apparatus for on line phasing of multi-nozzle ink jet printheads
US5940101A (en) * 1996-07-08 1999-08-17 Silver Seiko, Ltd. Method and apparatus for determining optimum ink drop formation-frequency in an ink jet printer
US6206509B1 (en) * 1996-12-23 2001-03-27 Domino Printing Sciences, Plc Method and apparatus for controlling a multi-nozzle ink jet printhead
US6309058B1 (en) * 1996-12-23 2001-10-30 Ammar Lecheheb Method and apparatus for controlling a multi-nozzle ink jet printhead
US6325494B1 (en) * 1996-12-23 2001-12-04 Domino Printing Sciences, Plc Modulation waveform amplitude adjustment in a multi-nozzle printhead based on charge signal phase relationships
US6447108B1 (en) * 1996-12-23 2002-09-10 Domino Printing Sciences, Plc Continuous inkjet printhead control
US20050280676A1 (en) * 2004-06-17 2005-12-22 Rybicki Michael J System and method for auto-threshold adjustment for phasing
EP1944163A1 (en) * 2007-01-12 2008-07-16 Domino Printing Sciences Plc Conversion circuit for continuous inkjet printers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750191A (en) * 1972-09-25 1973-07-31 Ibm Synchronization of multiple ink jets
US3769632A (en) * 1972-12-11 1973-10-30 Ibm Digital phase control for an ink jet recording system
JPS5230333B2 (en) * 1973-12-05 1977-08-08
JPS593157B2 (en) * 1979-02-26 1984-01-23 シャープ株式会社 Charge detection device for inkjet printers
US4344078A (en) * 1980-11-06 1982-08-10 Xerox Corporation Integrated waveguide drop sensor array and method for ink jet printing system
US5646663A (en) * 1994-09-16 1997-07-08 Videojet Systems International, Inc. Method and apparatus for continuous ink jet printing with a non-sinusoidal driving waveform
GB0320773D0 (en) * 2003-09-05 2003-10-08 Willett Int Ltd Method and device
DE102004041961B3 (en) * 2004-08-31 2006-03-30 Infineon Technologies Ag Integrated semiconductor circuit with integrated capacitance between Kontaktanscluss and substrate and method for their preparation
EP1847391A1 (en) * 2006-04-20 2007-10-24 Domino Printing Sciences Plc Continuous inkjet printer and its manufacturing
FR2971451B1 (en) * 2011-02-11 2013-03-15 Markem Imaje STIMULATION RANGE DETECTION IN A CONTINUOUS INK JET PRINTER
US9152101B2 (en) * 2013-12-02 2015-10-06 Xerox Corporation Printer device using inter-document gap to reduce motion disturbance and method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535348A (en) * 1975-11-28 1978-12-13 Burroughs Corp Phase correction in ink jet printers
US4470052A (en) * 1981-04-10 1984-09-04 Recognition Equipment Incorporated A-C Coupled, modulator based, phase-error sensing for IJP
GB2250236A (en) * 1987-10-30 1992-06-03 Linx Printing Tech Adjusting ink-handling characteristics in continuous-jet ink-drop printer
US5408255A (en) * 1992-11-16 1995-04-18 Videojet Systems International, Inc. Method and apparatus for on line phasing of multi-nozzle ink jet printheads
US5940101A (en) * 1996-07-08 1999-08-17 Silver Seiko, Ltd. Method and apparatus for determining optimum ink drop formation-frequency in an ink jet printer
US6206509B1 (en) * 1996-12-23 2001-03-27 Domino Printing Sciences, Plc Method and apparatus for controlling a multi-nozzle ink jet printhead
US6309058B1 (en) * 1996-12-23 2001-10-30 Ammar Lecheheb Method and apparatus for controlling a multi-nozzle ink jet printhead
US6325494B1 (en) * 1996-12-23 2001-12-04 Domino Printing Sciences, Plc Modulation waveform amplitude adjustment in a multi-nozzle printhead based on charge signal phase relationships
US6447108B1 (en) * 1996-12-23 2002-09-10 Domino Printing Sciences, Plc Continuous inkjet printhead control
US20050280676A1 (en) * 2004-06-17 2005-12-22 Rybicki Michael J System and method for auto-threshold adjustment for phasing
EP1944163A1 (en) * 2007-01-12 2008-07-16 Domino Printing Sciences Plc Conversion circuit for continuous inkjet printers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835067A4 (en) * 2018-08-07 2022-04-06 Hitachi Industrial Equipment Systems Co., Ltd. Inkjet recording device and control method for inkjet recording device
US11376848B2 (en) 2018-08-07 2022-07-05 Hitachi Industrial Equipment Systems Co., Ltd. Inkjet recording device and control method for inkjet recording device

Also Published As

Publication number Publication date
WO2018069733A1 (en) 2018-04-19
EP3526047A1 (en) 2019-08-21
US20190366712A1 (en) 2019-12-05
GB201617490D0 (en) 2016-11-30
US10987926B2 (en) 2021-04-27
EP3526047B1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
US3969733A (en) Sub-harmonic phase control for an ink jet recording system
US4047183A (en) Method and apparatus for controlling the formation and shape of droplets in an ink jet stream
US10987926B2 (en) Continuous inkjet printers
EP0039772B1 (en) Multinozzle ink jet printer and method of operating such a printer
JP2008502506A (en) System and method for automatic threshold adjustment for phase matching
EP0964784B1 (en) Continuous inkjet printhead control
US5523778A (en) Segmented charge tunnel for drop charging in a printhead
US7393085B2 (en) Method of operating a continuous ink jet printer apparatus
US20130113855A1 (en) Method and System for Adjusting Printhead Voltage Parameters in an Inkjet Printer
US6309058B1 (en) Method and apparatus for controlling a multi-nozzle ink jet printhead
JP2014504974A (en) A novel method for activation range detection in continuous ink jet printers
EP0968088B1 (en) Continuous ink jet printing
US6206509B1 (en) Method and apparatus for controlling a multi-nozzle ink jet printhead
WO1998028151A9 (en) Continuous ink jet printing
JP2015033821A (en) Inkjet recording device
EP1688263B1 (en) Method for an inkjet printer and a printer which has been modified for this method to be applied
JP2018020447A (en) Device and method for liquid discharge
JPH05193139A (en) Ink-jet press
JP2022147106A (en) Printer, printing method, printing program, and recording medium
GB2558041A (en) Improvements in or relating to continuous inkjet printers
JPS5942966A (en) Ink jet recording mechanism
JPS58194573A (en) Detector for deflected position of ink droplet
JPS61268452A (en) Nozzle clogging detection for ink jet recorder
JP2011131558A (en) Ejection inspection device and printing apparatus
JPH02127047A (en) Ink-jet printer

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)