GB2547675A - Subsea high integrity pipeline protection system with bypass - Google Patents

Subsea high integrity pipeline protection system with bypass Download PDF

Info

Publication number
GB2547675A
GB2547675A GB1603260.9A GB201603260A GB2547675A GB 2547675 A GB2547675 A GB 2547675A GB 201603260 A GB201603260 A GB 201603260A GB 2547675 A GB2547675 A GB 2547675A
Authority
GB
United Kingdom
Prior art keywords
bypass
valve
barrier
valves
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1603260.9A
Other versions
GB201603260D0 (en
Inventor
Simon Stephane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Energy Technology UK Ltd
Original Assignee
GE Oil and Gas UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Oil and Gas UK Ltd filed Critical GE Oil and Gas UK Ltd
Priority to GB1603260.9A priority Critical patent/GB2547675A/en
Publication of GB201603260D0 publication Critical patent/GB201603260D0/en
Priority to US16/075,999 priority patent/US11408566B2/en
Priority to EP17705875.7A priority patent/EP3420265B1/en
Priority to PCT/EP2017/053602 priority patent/WO2017144360A1/en
Publication of GB2547675A publication Critical patent/GB2547675A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/017Production satellite stations, i.e. underwater installations comprising a plurality of satellite well heads connected to a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/20Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/12Arrangements for supervising or controlling working operations for injecting a composition into the line
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Abstract

A subsea high integrity pipeline protection system (HIPPS) comprises a fluid inlet 2 and a fluid outlet 3. A first barrier valve 4 is connected between the fluid inlet and the fluid outlet, and a second barrier valve is connected between the first barrier valve and the fluid outlet. A bypass circuit allows fluid to circumvent the barrier valves when closed. The bypass circuit includes first and second bypass valves 6,7 connected in series, and a third bypass valve 8 connected in parallel to the second bypass valve.

Description

Subsea High Integrity Pipeline Protection System with Bypass
Field of the Invention
This invention relates to a subsea high integrity pipeline protection system, for example in a subsea hydrocarbon extraction facility. The invention also relates to a method of testing a subsea high integrity pipeline protection system.
Background of the Invention
In hydrocarbon production lines, for example in subsea hydrocarbon extraction facilities, a single production line may receive a fluid input from a number of different hydrocarbon wells. Variations in the rate of fluid production from each well means that the pressure of the combined fluid input may become dangerously high. Downstream pipelines can be damaged by the resultant overpressure fluid.
High integrity pipeline protection systems (HIPPS), as known in the art, can prevent the transmission of overpressure fluid to downstream pipelines by closing one or more HIPPS valve, which contains the overpressure fluid to pipelines upstream of the HIPPS. HIPPS may comprise a bypass circuit containing one or more bypass valve. The bypass circuit allows fluid to circumvent a closed HIPPS valve in the HIPPS when the bypass valve(s) are opened.
In the prior art, such bypass valves are manually operated, for example using a remotely operated underwater vehicle (ROV). This manual operation is prone to human error, and so does not result in a high degree of safety.
The present invention aims to overcome some of the problems associated with prior art HIPPS.
As prior art there may be mentioned US8725434, which discloses a method for diagnostics of a high integrity protections system for protection of a pipeline, US8051875, which discloses a HIPPS having a bypass line, US8201624, which discloses a HIPPS having a number of pressure sensors, US8616230, which discloses a HIPPS with sensors connected to a control module, US8161993, which discloses a HIPPS including a plurality of barrier valves and a control module, and “Delivering a HIPPS Safety Critical Control System” by Ray Phillips (accessible at https://www.onepetro.org/eonf8r8nce-pap8r/SPE-96757-MS), which discloses a HIPPS with local valve control.
Summary of the Invention
According to the present invention from one aspect, there is provided a subsea high integrity pipeline protection system comprising: a fluid inlet; a fluid outlet; a first barrier valve connected between the fluid inlet and the fluid outlet; a second barrier valve connected between the first barrier valve and the fluid outlet; and a bypass circuit which allows fluid to circumvent the barrier valves when closed; wherein the bypass circuit includes first and second bypass valves connected in series, and a third bypass valve connected in parallel to the second bypass valve.
The system could further comprising a flow reducing device connected downstream of the second bypass valve.
The system could further comprise an injection circuit connected at a point between the first, second and third bypass valves. The injection circuit could include a one-way valve.
The system could further comprise a pressure sensor connected upstream of the first barrier valve.
The system could further comprise a pressure sensor connected between the first and second barrier valves.
The system could further comprise a pressure sensor connected at a point between the first, second and third bypass valves.
The system could further comprise three or more pressure sensors connected downstream of the second barrier valve.
The system could further comprise a logic solver connected to the first and second barrier valves, the first, second and third bypass valves and the or each pressure sensor. The logic solver could be programmed to de-energise the first and second barrier valves when at least one pressure sensor detects a pressure above a predetermined threshold.
According to the present invention from a second aspect, there is provided a method of testing a subsea high integrity pipeline protection system comprising: a fluid inlet; a fluid outlet; a first barrier valve connected between the fluid inlet and the fluid outlet; a second barrier valve connected between the first barrier valve and the fluid outlet; and a bypass circuit which allows fluid to circumvent the barrier valves when closed; wherein the bypass circuit includes first and second bypass valves connected in series, and a third bypass valve connected in parallel to the second bypass valve; the method comprising the steps of: closing the first, second and third bypass valves; closing the first barrier valve; closing a further valve downstream of the second barrier valve; opening the second barrier valve; injecting test fluid into the high integrity pipeline protection system at a point between the first, second and third bypass valves; and opening the third bypass valve.
Brief Description of the Drawings
Fig. 1 schematically shows a subsea high integrity pipeline protection system (HIPPS) according to the invention.
Detailed Description of the Invention
Fig. 1 shows a subsea high integrity pipeline protection system (HIPPS) 1. The HIPPS 1 comprises a fluid input 2 and a fluid output 3. When connected in a subsea hydrocarbon extraction facility, the fluid input 2 will typically be in fluid connection with a hydrocarbon export pipeline and the fluid output 3 will typically be in fluid connection with a riser for transferring exported hydrocarbons to a surface location. A first safety critical HIPPS barrier valve 4 and a second safety critical HIPPS barrier valve 5 are connected between the fluid input 2 and the fluid output 3. Three safety critical bypass valves 6, 7, 8 are connected on a bypass circuit which bypasses the first and second HIPPS barrier valves 4, 5. Typically the bypass circuit will use smaller piping than the main pipeline. Bypass valve 7 and bypass valve 8 are connected in parallel to one another, and both bypass valves 7 and 8 are connected in series with bypass valve 6. A flow reducing device 9 (such as an orifice plate) is connected in the bypass circuit downstream of bypass valve 7.
Each of the valves 4-8 is ‘fail closed’, i.e. they require an energy input to remain open, and will automatically close in the absence of an energy input. Each of the valves 4-8 may be operated electrically or hydraulically. A number of pressure sensors are connected to the HIPPS 1. A first pressure sensor 12 is connected to the HIPPS 1 between the fluid input 2, the first HIPPS barrier valve 4 and the bypass valve 6 as shown. A second pressure sensor 13 is connected between the first HIPPS barrier valve 4 and the second HIPPS barrier valve 5 as shown. A third pressure sensor 14 is connected between the bypass valve 6, the bypass valve 7 and bypass valve 9 as shown. A further three pressure sensors 15, 16, 17 are connected between the second HIPPS barrier valve 5, the bypass valve 7 and the bypass valve 8, and the fluid output 3 as shown.
Each of the valves 4-8 and the pressure sensors 12-17 is connected to a safety critical logic controller 18, which is operable to control energisation and de-energisation of each of the respective valves This may be done indirectly using a directional control valve (DCV) as an intermediate device between the controller and the valves.
In normal working conditions, e.g. the production of hydrocarbon fluids, fluids are transmitted from the fluid input 2 to the fluid output 3. The first and second HIPPS barrier valves 4, 5 are open (i.e. energised) and the bypass valves 6, 7, 8 are closed (i.e. de-energised).
The logic controller 18 is programmed with a logic wherein the detection of overpressure, i.e. pressure in excess of a predetermined threshold, by any of the pressure sensors 12-17 will trigger the logic controller 18 to instruct the first and second HIPPS barrier valves 4, 5 to deenergise. This prevents overpressure fluid from being transmitted from the fluid input 2 to the fluid output 3, and so prevents damage from being inflicted on pipelines downstream of the fluid output 3 by said overpressure fluid.
In order to maintain the first and second HIPPS barrier valves 4, 5 in good condition it is desirable to equalise the pressure on both sides of the valves (i.e. upstream of HIPPS barrier valve 4 and downstream of HIPPS barrier valve 5) before opening them. To achieve this, the system is reset by opening bypass valve 8 to inject remediating fluid from the injection circuit 10 and the one-way valve 11. Bypass valve 8 is closed again when fluid injection is no longer required.
Then, provided the pressure downstream of HIPPS barrier valve 5 has fallen to a safe level (this can be measured with pressure sensors 15-17), bypass valves 6 and 7 are opened. This allows fluid upstream of HIPPS barrier valve 4 to safely vent, due to the flow reducing device 9 downstream of bypass valve 7, until the pressure upstream of HIPPS barrier valve 4 has equalised with the pressure downstream of HIPPS barrier valve 5. This can be measured using pressure sensor 12 and pressure sensors 15-17. During this process, bypass valve 8 can also be opened to increase the rate of venting.
In order to confirm that the HIPPS 1 is operational, and to comply with safety regulations, it is required to conduct regular testing (e.g. annually) of all the safety critical components in the HIPPS 1. These include the valves 4-8, the sensors 15-17, the logic controller 18 and potentially sensor 14.
The HIPPS 1 can be tested by closing HIPPS barrier valve 4 (e.g. by issuing an external command to the logic controller 18), another valve downstream in the pipeline (not shown on Figure 1) and injecting test fluid. The fluid can be injected, for example, through the injection circuit 10 and one way valve 11 by opening bypass valve 8. The injection of additional fluid through the injection circuit 10 will lead to an increase in pressure detected downstream of HIPPS barrier valve 5. If this pressure increase rises above an overpressure threshold, then the logic controller 18 will be triggered to cause HIPPS barrier valve 5 to close. A method to measure leakage across HIPPS barrier valve 4 and bypass valve 6 is also enabled by the HIPPS 1. Leakage can be tested by opening bypass valve 6 with HIPPS barrier valve 4 closed and another valve upstream in the pipeline (not shown on Figure 1) closed. This will cause fluid to enter the bypass circuit. The bypass valve 6 is then closed and bypass valve 8 is opened and then closed (followed by the HIPPS barrier valve 5 if necessary) so as to ensure that the pressure downstream of valves 4 and 6 is significantly below the pressure upstream of those valves. Pressure decay upstream of HIPPS barrier valve 4 and bypass valve 6 can be measured using pressure sensor 12. Similarly, leakage across HIPPS barrier valve 5 and bypass valves 7 and 8 can be tested by opening both HIPPS barrier valve 4 and bypass valve 6, and measuring pressure decay upstream of HIPPS barrier valve 5 and bypass valves 7 and 8 using any of pressure sensors 12-14.
The logic controller 18 is programmed with a logic that is intended to protect the HIPPS 1 from damage, and to prevent fluid upstream of the HIPPS 1 from being transferred across the HIPPS 1, including through the bypass circuit. The logic controller 18 logically links the pressure sensors 15-17, the HIPPS bypass valves 4, 5 and the bypass valves 6-8 in the following manner: 1) If an aggregate pressure detected by pressure sensors 15-17 is above a predetermined threshold, the logic controller 18 de-energises HIPPS barrier valve 4 and HIPPS barrier valve 5. The HIPPS barrier valves 4 and 5 can only be re-energised if the aggregate pressure detected by pressure sensors 15-17 is below a predetermined reset threshold and the bypass valves 6-8 are de-energised. 2) If an aggregate pressure detected by pressure sensors 15-17 is above a predetermined threshold, the logic controller 18 de-energises bypass valves 6-7. Bypass valves 6-7 can only be re-energised if the aggregate pressure detected by pressure sensors 15-17 is below a predetermined reset threshold. 3) Bypass valve 8 can only be energised if HIPPS barrier valve 4 and bypass valve 6 are de-energised. 4) Bypass valve 6 can only be energised if HIPPS barrier valve 5 and bypass valve 8 are both de-energised. 5) Bypass valve 7 can only be energised is HIPPS barrier valves 4 and 5 are both deenergised.
In the above, “aggregate pressure” means a combination of the measurements of the three pressure sensors 15-17, for example in a 2oo3 (two out of three) or 1oo3 (one out of three) architecture.
During normal operations, all the bypass valve 6-8 are closed and so the pressure between the bypass valves 6-8 should be ambient. The pressure in the main pipeline through the HIPPS 1 (i.e. from the fluid inlet 2 to the fluid outlet 4 through the HIPPS barrier valves 4, 5) is above ambient as fluid is flowing. Leakage in any bypass valve will cause the pressure between the bypass valves to rise to match that in the main pipeline. This increase can be measured using pressure sensor 14. As this sensor is connected to the logic controller 18, the logic controller 18 can be programmed to close the HIPPS barrier valves 4 and 5 on detection of a pressure increase by pressure sensor 14 during normal operations, so that remedial action can be taken on the HIPPS 1 before damage occurs.
While the invention has been described above with respect to a specific circuit architecture, this is exemplary only and the invention is not so limited. For example, a redundant bypass valve can be included in the bypass circuit in series with bypass valve 6, either upstream or downstream, to increase the level of safety. Bypass valve 7 and the flow reducing device 9 may not be present (for example flow rate reduction may be achieved by sizing valve 8 and the associated pipework). The subsea pipeline may be isolated using a single HIPPS barrier valve instead of two valves in series.

Claims (22)

CLAIMS:
1. A subsea high integrity pipeline protection system comprising: a fluid inlet; a fluid outlet; a first barrier valve connected between the fluid inlet and the fluid outlet; a second barrier valve connected between the first barrier valve and the fluid outlet; and a bypass circuit which allows fluid to circumvent the barrier valves when closed; wherein the bypass circuit includes first and second bypass valves connected in series, and a third bypass valve connected in parallel to the second bypass valve.
2. A system according to claim 1, further comprising a flow reducing device connected downstream of the second bypass valve.
3. A system according to claim 1 or 2, further comprising an injection circuit connected at a point between the first, second and third bypass valves.
4. A system according to claim 3, wherein the injection circuit includes a one-way valve.
5. A system according to any preceding claim, further comprising a pressure sensor connected upstream of the first barrier valve.
6. A system according to any preceding claim, further comprising a pressure sensor connected between the first and second barrier valves.
7. A system according to any preceding claim, further comprising a pressure sensor connected at a point between the first, second and third bypass valves.
8. A system according to any preceding claim, further comprising three pressure sensors connected downstream of the second barrier valve.
9. A system according to any of claim 6 to 8, further comprising a logic solver connected to the first and second barrier valves, the first, second and third bypass valves and the or each pressure sensor.
10. A system according to claim 9, wherein the logic solver is programmed to deenergise the first and second barrier valves when at least one pressure sensor detects a pressure above a predetermined threshold.
11. A method of testing a subsea high integrity pipeline protection system comprising: a fluid inlet; a fluid outlet; a first barrier valve connected between the fluid inlet and the fluid outlet; a second barrier valve connected between the first barrier valve and the fluid outlet; and a bypass circuit which allows fluid to circumvent the barrier valves when closed; wherein the bypass circuit includes first and second bypass valves connected in series, and a third bypass valve connected in parallel to the second bypass valve; the method comprising the steps of: closing the first, second and third bypass valves; closing the first barrier valve; closing a further valve downstream of the second barrier valve; opening the second barrier valve; injecting test fluid into the high integrity pipeline protection system at a point between the first, second and third bypass valves; and opening the third bypass valve.
12. A method according to claim 11, wherein the system further comprises a flow reducing device connected downstream of the second bypass valve.
13. A method according to claim 11 or 12, wherein the system further comprises an injection circuit connected at a point between the first, second and third bypass valves.
14. A method according to claim 13, wherein the injection circuit includes a one-way valve.
15. A method according to any of claims 11 to 14, wherein the method further comprises detecting pressure in the system using a pressure sensor connected upstream of the first barrier valve.
16. A method according to any of claims 11 to 15, wherein the method further comprises detecting pressure in the system using a pressure sensor connected between the first and second barrier valves.
17. A method according to any of claims 11 to 16, wherein the method further comprises detecting pressure in the system using a pressure sensor connected at a point between the first, second and third bypass valves.
18. A method according to any of claims 11 to 17, further comprising detecting pressure in the system using three pressure sensors connected downstream of the second barrier valve.
19. A method according to any of claim 16 to 18, further comprising connecting a logic solver to the first and second barrier valves, the first, second and third bypass valves and the or each pressure sensor.
20. A method according to claim 19, wherein the logic solver is programmed to deenergise the first and second barrier valves when at least one pressure sensor detects a pressure above a predetermined threshold.
21. A system substantially as hereinbefore described with respect to the accompanying Figure.
22. A method substantially as hereinbefore described with respect to the accompanying Figure.
GB1603260.9A 2016-02-25 2016-02-25 Subsea high integrity pipeline protection system with bypass Withdrawn GB2547675A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1603260.9A GB2547675A (en) 2016-02-25 2016-02-25 Subsea high integrity pipeline protection system with bypass
US16/075,999 US11408566B2 (en) 2016-02-25 2017-02-17 Subsea high integrity pipeline protectoin system with bypass
EP17705875.7A EP3420265B1 (en) 2016-02-25 2017-02-17 Subsea high integrity pipeline protection system with bypass
PCT/EP2017/053602 WO2017144360A1 (en) 2016-02-25 2017-02-17 Subsea high integrity pipeline protection system with bypass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1603260.9A GB2547675A (en) 2016-02-25 2016-02-25 Subsea high integrity pipeline protection system with bypass

Publications (2)

Publication Number Publication Date
GB201603260D0 GB201603260D0 (en) 2016-04-13
GB2547675A true GB2547675A (en) 2017-08-30

Family

ID=55806914

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1603260.9A Withdrawn GB2547675A (en) 2016-02-25 2016-02-25 Subsea high integrity pipeline protection system with bypass

Country Status (4)

Country Link
US (1) US11408566B2 (en)
EP (1) EP3420265B1 (en)
GB (1) GB2547675A (en)
WO (1) WO2017144360A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190808A1 (en) * 2018-03-26 2019-10-03 Saudi Arabian Oil Company High integrity protection system for hydrocarbon flow lines
US10663988B2 (en) 2018-03-26 2020-05-26 Saudi Arabian Oil Company High integrity protection system for hydrocarbon flow lines

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753852B2 (en) 2016-05-10 2020-08-25 Saudi Arabian Oil Company Smart high integrity protection system
US11261726B2 (en) 2017-02-24 2022-03-01 Saudi Arabian Oil Company Safety integrity level (SIL) 3 high-integrity protection system (HIPS) fully-functional test configuration for hydrocarbon (gas) production systems
US10570712B2 (en) * 2017-04-17 2020-02-25 Saudi Arabian Oil Company Protecting a hydrocarbon fluid piping system
US11078755B2 (en) 2019-06-11 2021-08-03 Saudi Arabian Oil Company HIPS proof testing in offshore or onshore applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8161993B2 (en) * 2008-09-23 2012-04-24 Chevron U.S.A. Inc. Subsea system and method for protecting equipment of a subsea system
US8725434B2 (en) * 2006-12-29 2014-05-13 Saudi Arabian Oil Company Wellhead hips with automatic testing and self-diagnostics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852387A (en) * 1988-02-19 1989-08-01 Bingham George H Method for testing relief valve
EP1440267B1 (en) * 2001-11-01 2005-09-28 Shell Internationale Researchmaatschappij B.V. Over-pressure protection system
GB0213635D0 (en) * 2002-06-13 2002-07-24 Alpha Thames Ltd Pressure protection system
GB2401164B (en) * 2003-04-29 2006-01-18 Abb Offshore Systems Ltd Pipeline protection system
GB2439552B (en) * 2006-05-20 2011-03-02 Vetco Gray Controls Ltd Pipeline protection system
US7793725B2 (en) * 2006-12-06 2010-09-14 Chevron U.S.A. Inc. Method for preventing overpressure
US7905251B2 (en) * 2006-12-29 2011-03-15 Saudi Arabian Oil Company Method for wellhead high integrity protection system
EP2592318B1 (en) 2011-11-08 2014-10-22 Vetco Gray Controls Limited Pipeline protection systems
US10954783B2 (en) * 2015-10-22 2021-03-23 Halliburton Energy Services, Inc. Extraction cleaner and gas system check

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725434B2 (en) * 2006-12-29 2014-05-13 Saudi Arabian Oil Company Wellhead hips with automatic testing and self-diagnostics
US8161993B2 (en) * 2008-09-23 2012-04-24 Chevron U.S.A. Inc. Subsea system and method for protecting equipment of a subsea system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190808A1 (en) * 2018-03-26 2019-10-03 Saudi Arabian Oil Company High integrity protection system for hydrocarbon flow lines
US10663988B2 (en) 2018-03-26 2020-05-26 Saudi Arabian Oil Company High integrity protection system for hydrocarbon flow lines
US11175683B2 (en) 2018-03-26 2021-11-16 Saudi Arabian Oil Company High integrity protection system for hydrocarbon flow lines

Also Published As

Publication number Publication date
EP3420265B1 (en) 2022-05-25
US11408566B2 (en) 2022-08-09
EP3420265A1 (en) 2019-01-02
WO2017144360A1 (en) 2017-08-31
GB201603260D0 (en) 2016-04-13
US20190219230A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
EP3420265B1 (en) Subsea high integrity pipeline protection system with bypass
US7905251B2 (en) Method for wellhead high integrity protection system
US8051875B2 (en) Pipeline protection system
EP2592318B1 (en) Pipeline protection systems
US11175683B2 (en) High integrity protection system for hydrocarbon flow lines
US8725434B2 (en) Wellhead hips with automatic testing and self-diagnostics
EP3245439B1 (en) Self-contained, fully mechanical, 1 out of 2 flowline protection system
EA015299B1 (en) Wellhead flowline protection and testing system with esp speed controller and emergency isolation valve
US11906061B2 (en) In-line testing of pressure safety valves
US20190294183A1 (en) High integrity protection system for hydrocarbon flow lines
CN103493033B (en) High-integrity protective system and test thereof and method of operating
WO2012083040A1 (en) Apparatus and method for clustered wellhead high integrity protection system
CN107883056B (en) Real-time online safety valve monitoring system and safety valve leakage monitoring method
US20140352822A1 (en) Air bleed valve float arrangement with restrictor

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)