GB2543549A - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
GB2543549A
GB2543549A GB1518691.9A GB201518691A GB2543549A GB 2543549 A GB2543549 A GB 2543549A GB 201518691 A GB201518691 A GB 201518691A GB 2543549 A GB2543549 A GB 2543549A
Authority
GB
United Kingdom
Prior art keywords
support assembly
platform
coolant
heat pump
platforms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1518691.9A
Other versions
GB2543549B (en
GB201518691D0 (en
Inventor
Al-Wazzan Raied
Denvir Donal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andor Technology Ltd
Original Assignee
Andor Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andor Technology Ltd filed Critical Andor Technology Ltd
Priority to GB1518691.9A priority Critical patent/GB2543549B/en
Publication of GB201518691D0 publication Critical patent/GB201518691D0/en
Priority to US15/009,218 priority patent/US10443906B2/en
Priority to CN201610910714.5A priority patent/CN106989537B/en
Priority to EP16194924.3A priority patent/EP3159631B1/en
Publication of GB2543549A publication Critical patent/GB2543549A/en
Application granted granted Critical
Publication of GB2543549B publication Critical patent/GB2543549B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/003Details of machines, plants or systems, using electric or magnetic effects by using thermionic electron cooling effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids

Abstract

A support assembly of a heat pump system, in particular a thermoelectric heat pump system comprises a plurality of platforms 36 to support at least one thermoelectric heat pump 14, at least one support structure 38 to support one of the platforms, and wherein due to thermal expansion / contraction of the heat pump(s) at least one platform is moveable with respect to another platform. Each platform may be moveable with respect to an adjacent platform. The support structure(s) may be mounted on a base 34 and thereby spaces each platform from the base. The support structure(s) may be flexible and may have a curvilinear shape defining one or more loops, may be bellowed, rectilinear or may comprise a pipe. The support structure(s) may have first end connected to the base and a second end connected to the platform. Each platform may be rectangular or cuboid and may not be connected to one another, and they may support an image sensor 12 to be cooled. A coolant may communicate through each platform via the pipe support structure thereby defining a heat sink 30 to remove heat from the heat pump(s).

Description

Heat Pump System
Field of the Invention
This invention relates to heat pumps. The invention relates particularly to thermoelectric heat pumps, especially thermoelectric coolers.
Background to the Invention A problem with heat pumps, especially solid state heat pumps, is that thermal expansion and contraction during use can damage the material from which the pump is made. This problem is typically exacerbated with scale thereby limiting the size of the heat pump and therefore its usefulness.
For example, a thermoelectric cooler (TEC) may comprise stacked layers of semiconductor or equivalent heat pumping elements in between thin ceramic plates. The ceramic material has a propensity for internal thermal expansion that can cause fracturing of the ceramic, which dictates a maximum size of the area of the ceramic layer that should be used for the manufacture of TECs. For multilayer TECs this is typically in the region of 45mm x 45mm.
The limit on the ceramic layer size restricts the number of semiconductor pillars that can be fitted in an array between layers and ultimately limits the maximum heat pumping capacity of the TEC device. In applications where the heat pumping capacity of a single TEC device is not sufficient, a heat pumping structure comprising multiple TEC devices can be used. However, thermal expansion and contraction of the device being cooled can damage the heat pumping structure.
For example, in the case where the device being cooled is an image sensor, multiple TEC devices may be used in parallel to remove heat from the image sensor. However, as the image sensor is cooled it shrinks as a result of thermal contraction and this can cause a mechanical fracture in the heat pumping structure, resulting in degradation or total failure in cooling performance.
Addressing these problems is complicated for applications where the device to be cooled needs to operate in a vacuum since the use of gases and lubricants is to be avoided.
It would be desirable to provide a heat pump system that mitigates the problems outlined above.
Summary of the Invention A first aspect of the invention provides a support assembly for a heat pump system, the support assembly comprising: a plurality of platforms for supporting at least one respective heat pump; and at least one respective support structure for supporting a respective one of said platforms, wherein at least one of said platforms is movable with respect to at least one other of said platforms.
Preferably, each platform is movable with respect to at least one adjacent platform.
The support assembly typically includes a base, wherein at least one of said at least one respective support structure supports the respective platform with respect to said base. Optionally, said at least one respective support structure supports the respective platform with respect to said base. Preferably, said at least one respective support structure is configured to allow the respective platform to move with respect to said base.
Optionally, at least one of said at least one respective support structure supports the respective platform with respect to at least one other of said platforms.
Preferably, said a least one respective support structure is resiliently flexible to allow the respective platform to move.
Said platforms may be located side-by-side to form a composite platform. The composite platform may have a substantially planar obverse face comprised of the respective obverse faces of said platforms.
Each platform is contiguous with or spaced from the, or each adjacent platform in a rest state.
In preferred embodiments said at least one respective support structure holds said respective platform spaced apart from a base in a first direction, and is configured to allow movement of the respective platform in at least one other direction that is perpendicular to said first direction.
Typically, said at least one respective support structure holds said respective platform spaced apart from a base in a first direction, and is configured to allow movement of the respective platform in at least one direction that is substantially parallel with said first direction.
In typical embodiments, said platforms are not connected to one another although in alternative embodiments one or more platform may be connected to one or more adjacent platform, preferably in a manner that allows relative movement.
In preferred embodiments, said at least one respective support structure has a first end and a second end, and a body between the first and second ends, the body preferably being resiliently flexible. The first end may be coupled to the base and the second end may coupled to the respective platform. Alternatively, the first end may be connected to the respective platform and said second end is connected to another of said platforms.
The body may be shaped to define at least one curvilinear portion between the first and second ends. For example the body may be shaped to define one or more loops between its first and second ends. Alternatively, the body may comprises a bellowed portion between the first and second ends, or may be rectilinear.
In preferred embodiments, said at least one respective support structure comprises a pipe.
Typically, at least two of said respective support structures are provided for each platform.
In preferred embodiments, the support assembly incorporates a heat sink system. The heat sink system may comprise a coolant circulation system by which coolant received in use from a coolant source is returned to a coolant sink via said platforms, preferably through said platforms. In such cases, the at least one respective support structure may comprise a pipe, optionally a pair of concentric pipes, and forms part of said coolant circulation system in respect of the respective platform.
Optionally, each platform includes at least one respective coolant distribution channel, said at least one respective support structure being connected to said coolant distribution channel for the delivery of said coolant to, and return of said coolant from, said at least one coolant delivery channel. Said at least one respective support structure may comprise at least one support structure for delivering said coolant to said at least one coolant distribution channel of the respective platform and at least one support structure for returning said coolant from said at least one coolant distribution channel.
Typically, said heat sink system includes a coolant delivery manifold and a coolant return manifold connected to said coolant circulation system such that said coolant is received, in use, from said coolant source by said coolant delivery manifold, circulated by said circulation system and returned to said coolant sink by said return manifold. Conveniently, at least one of and preferably both of said coolant delivery manifold and a coolant return manifold are provided on or in said base.
Typically, said at least one support structure for delivering said coolant to said at least one coolant distribution channel of the respective platform is connected to said delivery manifold, and at least one support structure from returning said coolant from said at least one coolant distribution channel is connected to said return manifold.
In preferred embodiments, each platform carries at least one respective heat pump. Typically, each of said at least one respective heat pump is coupled to a common object to be cooled. The common object may comprise a single item, e.g. a single image sensor, or an assembly of items, e.g. a mosaic of image sensors.
Typically said common object comprises an electronic component, for example a image sensor, microprocessor or other integrated circuit, or a mechanical component, for example a container or an assembly of two or more such components.
In preferred embodiments, each platform carries a single respective heat pump.
Preferably, said heat pump comprises a thermoelectric heat pump, especially a thermoelectric cooler. Typically said thermoelectric cooler has a hot side and a cool side, said hot side being thermally coupled to the obverse face of the respective platform. The respective cool side of each thermoelectric cooler is typically thermally coupled to an object to be cooled. A second aspect of the invention provides a heat pump system comprising a support assembly according to the first aspect of the invention, wherein each platform carries at least one respective heat pump, preferably a single respective heat pump.
In typical embodiments, the heat pump system includes a vacuum housing, said support assembly and heat pumps being located within said housing and held under vacuum. A third aspect of he invention provides an image sensor assembly comprising the heat pump system of the second aspect of the invention, wherein, preferably, the respective cool side of each thermoelectric cooler is thermally coupled to an image sensor.
Further advantageous aspects of the invention will be apparent to those ordinarily skilled in the art upon review of the following description of a specific embodiment and with reference to the accompanying drawings.
Brief Description of the Drawings
An embodiment of the invention is now described by way of example and with reference to the accompanying drawings in which:
Figure 1 is an isometric view of a heat pump system embodying the invention, the system being shown in assembly with an image sensor;
Figure 2 is a side view of the heat pump system and image sensor assembly of Figure 1;
Figure 3 is an isometric view of a support assembly embodying a second aspect of the invention, the support assembly being part of the heat pump system of Figure 1;
Figure 4 is a side view of the support assembly of Figure 3;
Figure 5 is a plan view of the underside of support assembly of Figure 3;
Figures 6A to 6F show a side view and an end view of respective alternative embodiments of a support structure being part of the support assembly of Figure 3;
Figure 7 A is a plan view of a thermoelectric cooler suitable for use with embodiments of the invention; and
Figure 7B is a side view of the thermoelectric cooler.
Detailed Description of the Drawings
Referring now to Figure 1 and 2 of the drawings there is shown, generally indicated as 10, a heat pump system embodying one aspect of the invention. The heat pump system 10 is shown in assembly with an image sensor 12. In use the heat pump system cools the image sensor 12 by drawing heat away from the underside of the sensor 12.
The image sensor 12 may be of any conventional type. For example, the image sensor 12 may be a charge-coupled device (CCD) image sensor (including interline CCD sensors and electron multiplying CCD sensors, an active pixel sensor, a CMOS image sensor, a sCMOS (scientific CMOS) sensor, infrared imaging sensor or other electronic image sensor. The image sensor 12 is typically part of an imaging device such as a camera or microscope (not shown). It will be understood that the invention is not limited to use with image sensors and may be used with any other object that requires cooling, especially refrigeration below ambient temperature, or otherwise cooling by a relatively large amount, e.g. an amount that calls for active cooling rather than passive cooling. For example, heat pump systems and/or support assemblies embodying the invention may be used with structures such as containers, e.g. for samples or specimens, mechanical or electronic components or devices, e.g. a biochip, microprocessor or other integrated circuit. Advantageously, a single structure, or object, is supported by a support assembly having a plurality of platforms that can move with respect to each other, as is described on more detail hereinafter. The single structure/object may comprise a single item, e.g. one image sensor, or may comprise an assembly of multiple items, e.g. multiple image sensors, connected together (typically rigidly or substantially rigidly).
The heat pump system 10 comprises a plurality of heat pumps 14. In preferred embodiments, the heat pumps 14 are solid state heat pumps, typically thermoelectric heat pumps. Thermoelectric heat pumps are also known as thermoelectric modules (TEMs) or, in applications where they perform a cooling function, as thermoelectric coolers (TECs). In the illustrated embodiment, the heat pumps 14 are TECs (which are also known as Peltier coolers). In alternative embodiments (not illustrated), the heat pumps 14 could be other solid state heat pumps.
Figures 7 A and 7B show an exemplary embodiment of the TEC 14 as used in the illustrated embodiment of the system 10. The TEC 14 comprises stacked layers 16 of heat pumping elements 18, each layer being provided between plates 20. Typically, each heat pumping element 18 is comprised of a p-type semiconductor material (e.g. a p-doped semiconductor telluride pellet) or an n-type semiconductor material (e.g. an n-doped semiconductor telluride pellet). The heat pumping elements 18 of each layer are configured to be thermally in parallel to each other and electrically in series. Each layer is electrically connected to the adjacent layer(s). Electrical terminals 22 are provided for supplying electrical power to the heat pumping elements, typically via electrical leads 24. The plates 20 are formed from a thermally conducting and electrically insulating material, typically a ceramic material. Opposite faces 26, 28 of the TEC 14 are designated as the “hot side” 26 and the “cool side” 28. When DC current flows through the TEC 14, the action of the heat pumping elements 18 brings heat from the cool side 28 to the hot side, so that cool side gets cooler while the hot side gets hotter. It will be understood that the TECs 14 may take any other suitable form, e.g. any other conventional TEC, and need not necessarily have more than one layer of heat pumping elements. The TEC 14 shown in Figures 7A and 7B have 6 layers by way of example only; more generally the TEC 14 may have one or more layers.
Referring again to Figures 1 and 2, the cool sides 28 of the TECs 14 are thermally coupled to the image sensor 12, typically to its reverse face. The image sensor 12 may be mounted on, and typically fixed to, the TECs 14 by any convenient means, which may include a thermally conductive layer (not shown) comprising, for example, pad(s), adhesive and/or solder. Typically, the image sensor 12 includes connector pins (not shown) which may be connected to corresponding connector pins (not shown) provided on a base 34 by any convenient connectors (not shown) e.g. wires or ribbon cable, to connect the image sensor 12 to an electronic system (not shown).
The hot side 26 of each TEC 14 is thermally coupled to a heat sink system 30. Each TEC 14 may be mounted on, and typically fixed to, a respective surface of the heat sink system 30 by any convenient means, e.g. by a thermally conductive layer (not shown) comprising, for example, pad(s), adhesive and/or solder. In use, the TECs 14 transfer heat from the image sensor 12 to the heat sink system 30 thereby cooling the image sensor 12. The heat sink system 30 disposes of the heat transferred from the image sensor 12 as is describe d in more detail below.
The heat sink system 30 is incorporated into a support assembly 32 for the TECs 14. The support assembly 32 comprises the base 34 and a plurality of platforms 36. Each platform 36 is connected to the base 34 by one or more respective support structures 38. Typically, the platforms 36 are located side-by-side, at least when in a rest state, typically in a two dimensional array, and are preferably substantially co-planar with one another. The platforms 36 together form a composite platform for supporting the TECs14. Adjacent platforms 36 may be contiguous with one another, at least in the rest state, although they may alternatively be spaced apart. The preferred arrangement is that the respective obverse faces 37 of the platforms 36 are substantially coplanar with one another, thereby providing the composite platform with a substantially level surface on which the TECs 14 are mounted. Typically each platform 36 is substantially cuboid in shape, or at least substantially rectangular, e.g. substantially square, in longitudinal cross section, which facilitates their arrangement as a composite platform. In alternative embodiments, the platforms may take any other regular or irregular shape.
In the illustrated embodiment, there are four platforms 36 arranged in a 2 x2 array. In alternative embodiments there may be more than or fewer than four platforms as suits the application. Typically, a respective platform 36 is provided for each TEC 14, i.e. one TEC 14 per platform. Alternatively, more than one TEC 14 may be mounted on the same platform 36, i.e. more than one TEC 14 per platform.
The base 34 is shown as comprising a plate, but may take any other convenient form comprising one or more structures with respect to which the platforms are supported. Typically, the base 34 has an obverse face 40 that is disposed substantially parallely with the composite platform, usually substantially parallel with the obverse faces 37 of the platforms 36.
In preferred embodiments therefore, the platforms 36 are supported on the base 34 by the support structures 38, the support structures 38 holding the platforms 36 spaced apart from the base 34 in a longitudinal direction, i.e. a direction perpendicular to the obverse face 40 of the base in preferred embodiments.
The platforms 36 are capable of moving with respect to each other (and therefore also with respect to the base 34), at least in one or more lateral directions (being perpendicular to the longitudinal direction), i.e. directions that are substantially parallel with the obverse face 40 of the base 34 in preferred embodiments. To this end, the platforms 36 are preferably not connected to each other. Alternatively, the platforms 36 may be coupled to one another by any coupling means, e.g. one or more flexible connectors or joints, that allows relative movement between the platforms 36. In any event, it is preferred that the platforms are freely movable with respect to each other. It will be understood that the characteristics of the composite platform described above in relation to the rest state may not apply when one or more of the platforms has moved with respect to the others.
In alternative embodiments (not illustrated) the platforms, or at least some of them, may be located adjacent the base and be supported with respect to the base by one or more support structures. In preferred embodiments, including the illustrated embodiment, each platform is supported by the base by one or more respective support structure. Alternatively, one or more of the platforms may be supported by the base by one or more respective support structure, the other platform(s) being supported by one or more of the base-supported platforms or by each other so long as at least one of the other platform(s) is supported by one or more of the base-supported platforms. In such embodiments, the base-supported platform(s) may be connected directly to the base by one or more of the support structures 38. Each other platform may be coupled to one or more of the other platforms, conveniently to one or more adjacent platform, by a connector or other coupling, at least one and optionally all of which allow relative movement between the respective platforms. Therefore the inter-platform coupling preferably comprises a flexible resilient connector, e.g. the support structure 38 described herein. Alternatively, the connection between some of the platforms, and/or between one or more of the platforms and the base may be rigid. In any event, at least one platform is movable with respect to at least one other platform and with respect to the base, although typically there are multiple platforms movable with respect to each other and with respect to the base. The movement between platforms is typically in one or more lateral directions, e.g. towards and away from each other. In typical embodiments, the lateral directions are substantially parallel with the major plane of the image sensor or other object being supported. Alternatively or in addition, the platforms may move in the longitudinal direction, e.g. towards and away from the image sensor or other object being supported.
As is described in more detail below, the platforms 36 form part of the heat sink system 30. To this end it is preferred that the platforms 36 are formed from a thermally conductive material, typically metal, e.g. copper.
The support structures 38 may be rigid or semi-rigid and may be formed form any convenient material, e.g. metal, plastics or composite material. Typically the support structures 38 are sufficiently flexible and resilient to facilitate the movement of the platforms 36 described above. In addition, the support structure s 38 may be sufficiently flexible and resilient to allow movement of the respective platforms 36 towards and away from the base 34, i.e. in the longitudinal direction in the illustrated example.
In preferred embodiments, each platform 36 is supported by at least two respective support structures 38.
In typical embodiments, a respective platform 36 is provided for each TEC14. In alternative embodiments, more than one TEC 14 may be mounted on any one or more of the platforms.
The preferred support structures 38 have a first end coupled to the base 34 and a second end coupled to the respective platform 36, and a body between the first and second ends. In preferred embodiments, the body of at least one and preferably all of the support structures 38 is rectilinear, or curvilinear or a combination of the two, and/or includes a portion that facilitates bending. Figures 6A to 6F illustrate examples of suitable support structures 38A to 38F respectively, any one or more of which may be used in support assemblies or heat pump systems embodying the invention. Typically, all of the support structures 38 of a given support assembly are of the same type although they may be different, Although the body may be rectilinear (not illustrated) between the first and second ends, it is preferred that the body of the support structure 38 is shaped to define at least one curvilinear portion between the first and second ends. It is further preferred that the support structure 38 is shaped to define one or more loops between its first and second ends. Hence, the or each curvilinear or looped portion is located between the base 34 and the platform 36. The, or each curvilinear portion, and in particular the or each loop, may be disposed substantially in a plane that is parallel with, oblique to or perpendicular to the obverse face of the composite platform. Figure 6D illustrates a structure with a bellowed portion between the first and second ends.
Advantageously, the illustrated embodiments, and other similar configurations, improve the ability of the support structure to bend resiliently, which facilitates the desired movement of the platform 36. In preferred embodiments, the support structures 38 form part of the heat sink system 30 and to this end each support structure 38, in particular the body, comprises a pipe. In such embodiments, it is preferred that the pipes 38 are formed from a thermally conductive material, typically metal, e.g. copper.
Referring in particular to Figures 4 and 5, the heat sink system 30 further includes a coolant delivery manifold 42 and a coolant return manifold 44. Each manifold 42, 44 may comprise one or more channels 46, 48 formed in the base 34 (e.g. in the illustrated base plate) or platforms 36 respectively, and/or may comprise one or more pipes forming the base 34 or part of the base 34 or platforms 36 respectively. In the illustrated embodiment, the delivery manifold 42 comprised pipes being part of the base 34 and being located beneath the base plate, while the return manifold 44 comprises channels formed in the platforms. The delivery manifold 42 has an inlet 50 for connection to a source (not shown) of coolant, which is typically water but may be any other suitable fluid as desired. The return manifold 44 has an outlet 52 for connection to a sink (not shown) for the coolant. The coolant source and sink form part of a coolant delivery and return system (not shown) which typically includes one or more pumps (not shown) and pipes (not shown) for delivering the coolant to the heat sink system 30 from the coolant source, and returning the coolant from the heat sink system to the coolant sink. In alternative embodiments, the coolant may be circulated by convection rather than by pumping. The coolant source and sink may be implemented as a common reservoir (not shown), i.e. such that the coolant is recirculated to and from the heat sink system 30.
The delivery manifold 42 has a respective outlet 54 for at least one support structure 38 for each platform 36, the first end of the respective support structure 38 being connected to the respective outlet 54 so that the coolant can flow from the manifold 42 into the support structure 38. The return manifold 44 has a respective inlet 56 for at least one other support structure 38 for each platform 36, the first end of a respective support structure 38 being connected to the respective inlet 56 so that the coolant can flow from the support structure 38 into the manifold 44. In preferred embodiment, for each platform 36 there is at least one support structure 38 for delivering coolant to the platform and at least one other support structure for returning the coolant from the platform 36. In the illustrated embodiment, there are two support structures 38 for delivering coolant to each platform and two other support structures for returning the coolant from the platform 36. In alternative embodiments there may be more than two support structures for delivering coolant to each platform and more than two other support structures for returning the coolant from the platform. Alternatively still, one or more support structures may be provided that both deliver coolant to and return coolant from the respective platform, such support structures being configured, e.g. internally divided, to provide at least one delivery channel and at least one return channel (not illustrated). For example, each platform may have a respective support structure comprised of concentric pipes, one of the outer and inner pipes carrying the coolant to the platform and the other returning it from the platform.
With reference in particular to Figure 4, each platform 36 is provided with one or more coolant distribution channels 60 having at least one inlet 62 and at least one outlet 64. In particular, each distribution channel 60 has a respective inlet 62 for each support structure 38 that delivers coolant to the platform 36 and a respective outlet for each support structure 38 that returns coolant from the platform 36. In the illustrated embodiment each platform 36 has two channels 60 (only one visible), each having one inlet 62 and one outlet 64. More or fewer distribution channels 60 may be provided as desired. The, or each, channel 60 extends laterally across the platform 36. The channel(s) 60 may be rectilinear or curvilinear as desired. The configuration of the channel(s) 60, i.e. the location, shape and/or size of the channel(s) 60, is preferably arranged to extend across the length and breadth of the platform. The channel(s) may be formed in the platform 36, i.e. beneath the obverse face 37 (as illustrated in Figure 4), or may be provided by one or more pipes (not illustrated) carried by the platform.
The second end of the, or each, respective support structure 38 for delivering coolant to the platform 36 is connected to a respective inlet 62 of the respective channel 60 so that the coolant can flow from the support structure 38 into the channel 60. The second end of the, or each, respective support structure 38 for returning coolant from the platform 36 is connected to a respective outlet 64 of the respective channel 60 so that the coolant can flow from channel 60 into the support structure 38.
Hence, the support structures 38 and channels 60 provide a coolant circulation system, being part of the heat sink system 30 together with the platforms 36, by which coolant received by the manifold 42 from the coolant source is circulated through the platform 36 and returned to the coolant sink via the manifold 44. The heat sink system 30 disposes of the heat transferred from the TECs 14 by conduction (e.g. from the platforms 36 and the support structures 38) and by the heat exchanging action of the coolant circulation system.
In alternative embodiments (not illustrated) the heat sink system is not a coolant (fluid) circulation system and may take other forms, e.g. comprising an air-cooled heat sink. In such embodiments, each, or at least some of the, support structures may comprise a heat pipe having one end connected to a respective platform and the other end connected to a heat sink. The heat sink may therefore in some embodiments provide the base.
During use, when the image sensor 12 (and/or other components of the system including the TECs 14 themselves) expands or contracts (which may or may not occur uniformly across the sensor 12) a resulting force is imparted to the TECs 14. Because the platforms 36 are able to move relative to one another, the TECs 14 can move relative to one another in response to the force exerted by the image sensor 12, thereby dissipating the force which may otherwise have damaged the TECs 14.
In typical embodiments, the hot side 26 of each TEC 14 is maintained at an ambient temperature by the heat sink system 30, while the cool side 28 is maintained below ambient temperature. For example image sensors tend to work best when cooled to below zero centigrade. In some applications it can be advantageous to deep cool to in the region of-90°C to -100°C.
It will be apparent that in preferred embodiments, multiple TECs 14 are used with a mechanical support assembly that accommodates thermal expansion or contraction of the system components while still providing efficient removal of the relatively high heat load from the bottom layer of the TECs. In addition, the support assembly supports the image sensor in a manner that reduces the transmission of vibrations or other unwanted side-effects. Advantageously, thermal contraction of the various components is accommodated by individually mounting the bottom (hot side) of each TEC on a moveable platform while the top (cool side) of each TEC is rigidly fixed to the image sensor, thereby allowing in particular for contraction of the image sensor when it is cooled and the resulting inward movement of the TECs 14. The high heat load generated at the hot side of the TECs is efficiently removed by the use of liquid cooling in (e.g. copper) piping which also acts as a flexible join accommodating the thermal movements of the mechanical structure.
Embodiments of the invention are particularly, but not exclusively, suitable for use in applications where the object being cooled and the heat pump system are in vacuum (i.e. located within a housing and held under vacuum), where other techniques such as lubricated joints cannot be used.
It is found that embodiments of the invention can successfully deep cool image sensors with an active area of up to approximately 61.4 mm x 61.4 mm, whereas previously similar deep cooling using self contained thermoelectric cooling techniques was achievable only with image sensors having an active area of up to 28 mm x 28mm.
Moreover, the self contained nature of the thermoelectric cooling avoids the need for cumbersome refrigeration systems or liquid nitrogen supplies. This reduces operating costs and allows deep cooled cameras to be used in remote locations without supervision.
While the invention has been described herein in the context of thermoelectric cooling, it will be understood that it is not limited to such. In alternative embodiment, the heat pump system may be configured to heat rather than cool an object.
The invention is not limited to the embodiment(s) described herein but can be amended or modified without departing from the scope of the present invention.

Claims (50)

CLAIMS:
1. A support assembly for a heat pump system, the support assembly comprising: a plurality of platforms for supporting at least one respective heat pump; and at least one respective support structure for supporting a respective one of said platforms, wherein at least one of said platforms is movable with respect to at least one other of said platforms.
2. The support assembly of claim 1, wherein each platform is movable with respect to at least one adjacent platform.
3. The support assembly of claim 1 or 2, further including a base, wherein at least one of said at least one respective support structure supports the respective platform with respect to said base.
4. The support assembly of claim 1 or 2, further including a base, wherein said at least one respective support structure supports the respective platform with respect to said base.
5. The support assembly of claim 3 or 4, wherein said at least one respective support structure is configured to allow the respective platform to move with respect to said base.
6. The support assembly of any one of claims 1 to 3, wherein at least one of said at least one respective support structure supports the respective platform with respect to at least one other of said platforms.
7. The support assembly of any preceding claim, wherein said a least one respective support structure is resiliently flexible to allow the respective platform to move.
8. The support assembly of any preceding claim, wherein said platforms are located side-by-side to form a composite platform.
9. The support assembly of claim 8, wherein said composite platform has a substantially planar obverse face comprised of the respective obverse faces of said platforms.
10. The support assembly of any preceding claim, wherein each platform is contiguous with or spaced from the, or each adjacent platform in a rest state.
11. The support assembly of any preceding claim, wherein said at least one respective support structure holds said respective platform spaced apart from a base in a first direction, and is configured to allow movement of the respective platform in at least one other direction that is perpendicular to said first direction.
12. The support assembly of any preceding claim, wherein said at least one respective support structure holds said respective platform spaced apart from a base in a first direction, and is configured to allow movement of the respective platform in at least one direction that is substantially parallel to said first direction.
13. The support assembly of any preceding claim, wherein said platforms are substantially rectangular in longitudinal cross section.
14. The support assembly of claim 13, wherein said platforms are substantially cuboid in shape.
15. The support assembly of any of claims 1 to 5 or 7 to 13, wherein said platforms are not connected to one another.
16. The support assembly of any preceding claim, wherein said at least one respective support structure has a first end and a second end, and a body between the first and second ends.
17. The support assembly of claim 16, wherein said body is resiliently flexible.
18. The support assembly of claim 16 or 17, wherein said body is shaped to define at least one curvilinear portion between the first and second ends.
19. The support assembly of claim 18, wherein said body is shaped to define one or more loops between its first and second ends.
20. The support assembly of claim 18 or 19, wherein said at least one curvilinear portion, or said one or more loops, are disposed substantially in a plane that is perpendicular with an obverse face of the respective platform.
21. The support assembly of claim 20, wherein said at least one curvilinear portion comprises a single loop.
22. The support assembly of claim 16 or 17, wherein said body comprises a bellowed portion between the first and second ends.
23. The support assembly of claim 16 or 17, wherein said body is rectilinear.
24. The support assembly of any one of claims 16 to 23, wherein said at least one respective support structure comprises a pipe.
25. The support assembly of any preceding claim, wherein at least two of said respective support structures are provided for each platform.
26. The support assembly of any one of claims 16 to 25, further comprising a base wherein said first end is coupled to the base and said second end is coupled to the respective platform.
27. The support assembly of any one of claims 16 to 25 wherein said first end is connected to the respective platform and said second end is connected to another of said platforms.
28. The support assembly of any preceding claim incorporating a heat sink system.
29. The support assembly of claim 28, wherein said heat sink system comprises a coolant circulation system by which coolant received in use from a coolant source is returned to a coolant sink via said platforms, preferably through said platforms.
30. The support assembly of claim 29, wherein said at least one respective support structure comprises a pipe, optionally a pair of concentric pipes, and forms part of said coolant circulation system in respect of the respective platform.
31. The support assembly of claim 30, wherein each platform includes at least one respective coolant distribution channel, said at least one respective support structure being connected to said coolant distribution channel for the delivery of said coolant to, and return of said coolant from, said at least one coolant delivery channel.
32. The support assembly of claim 31, wherein said at least one respective support structure comprises at least one support structure for delivering said coolant to said at least one coolant distribution channel of the respective platform and at least one support structure for returning said coolant from said at least one coolant distribution channel.
33. The support assembly of any one of claims 29 to 32, wherein said heat sink system includes a coolant delivery manifold and a coolant return manifold connected to said coolant circulation system such that said coolant is received, in use, from said coolant source by said coolant delivery manifold, circulated by said circulation system and returned to said coolant sink by said return manifold.
34. The support assembly of claim 33, wherein at least one of and preferably both of said coolant delivery manifold and a coolant return manifold are provided on or in said base.
35. The support assembly of claim 33 or 34 when dependent on claim 32, wherein said at least one support structure for delivering said coolant to said at least one coolant distribution channel of the respective platform is connected to said delivery manifold, and at least one support structure from returning said coolant from said at least one coolant distribution channel is connected to said return manifold.
36. The support assembly as claimed in any preceding claim, wherein each platform carries at least one respective heat pump.
37. The support assembly of claim 36, wherein each of said at least one respective heat pump is coupled to a common object to be cooled.
38. The support assembly of claim 37, wherein said common object comprises an electronic component, for example a image sensor, microprocessor or other integrated circuit, or a mechanical component, for example a container.
39. The support assembly as claimed in any one of claims 36 to 38, wherein each platform carries a single respective heat pump.
40. The support assembly of any one of claims 36 to 39, wherein said heat pump comprises a thermoelectric heat pump.
41. The support assembly as claimed in claim 40, wherein said thermoelectric heat pump comprises a thermoelectric cooler.
42. The support assembly of claim 41, wherein said thermoelectric cooler has a hot side and a cool side, said hot side being thermally coupled to the obverse face of the respective platform.
43. The support assembly of claim 42, wherein the respective cool side of each thermoelectric cooler is thermally coupled to an object to be cooled.
44. The support assembly of claim 43, wherein said object is an image sensor.
45. The support assembly of any one of claims 1 to 28 or 36 to 44, wherein said at least one support structure comprises a heat pipe.
46. A heat pump system comprising a support assembly as claimed in any one of claims 1 to 45, wherein each platform carries at least one respective heat pump, preferably a single respective heat pump.
47. The heat pump system of claim 46, wherein said heat pump comprises a thermoelectric heat pump.
48. The heat pump system of claim 47, wherein said thermoelectric heat pump comprises a thermoelectric cooler having a hot side and a cool side, said hot side being thermally coupled to the obverse face of the respective platform.
49. The heat pump system of any one of claims 46 to 48, further including a vacuum housing, said support assembly and heat pumps being located within said housing and held under vacuum.
50. An image sensor assembly comprising the heat pump system of claim 48, wherein the respective cool side of each thermoelectric cooler is thermally coupled to an image sensor.
GB1518691.9A 2015-10-21 2015-10-21 Thermoelectric Heat pump system Active GB2543549B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1518691.9A GB2543549B (en) 2015-10-21 2015-10-21 Thermoelectric Heat pump system
US15/009,218 US10443906B2 (en) 2015-10-21 2016-01-28 Heat pump system
CN201610910714.5A CN106989537B (en) 2015-10-21 2016-10-19 Heat pump system
EP16194924.3A EP3159631B1 (en) 2015-10-21 2016-10-20 Support asembly for a thermoelectric heat pump system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1518691.9A GB2543549B (en) 2015-10-21 2015-10-21 Thermoelectric Heat pump system

Publications (3)

Publication Number Publication Date
GB201518691D0 GB201518691D0 (en) 2015-12-02
GB2543549A true GB2543549A (en) 2017-04-26
GB2543549B GB2543549B (en) 2020-04-15

Family

ID=55131434

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1518691.9A Active GB2543549B (en) 2015-10-21 2015-10-21 Thermoelectric Heat pump system

Country Status (4)

Country Link
US (1) US10443906B2 (en)
EP (1) EP3159631B1 (en)
CN (1) CN106989537B (en)
GB (1) GB2543549B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443906B2 (en) * 2015-10-21 2019-10-15 Andor Technology Limited Heat pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114877557B (en) * 2021-11-29 2022-11-22 中国科学院国家天文台 Push-type heat insulation support for semiconductor refrigeration sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US261607A (en) * 1882-07-25 Reservoir for storing and supplying compressed air
GB1177844A (en) * 1966-06-08 1970-01-14 Siemens Ag Thermo-Electric Devices
JPH11108489A (en) * 1997-10-06 1999-04-23 Fuji Electric Co Ltd Fixing structure for thermo-electrical cooling device

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2755361A (en) * 1953-07-13 1956-07-17 Alan G Golby Thermo-electric overload safety switch and indicator systems
US2780757A (en) * 1955-08-02 1957-02-05 Texas Instruments Inc Rectifier structure
US2997514A (en) * 1958-03-11 1961-08-22 Whirlpool Co Refrigerating apparatus
US3082276A (en) * 1960-08-17 1963-03-19 Westinghouse Electric Corp Thermoelectric appliance
US3269875A (en) * 1961-06-02 1966-08-30 Texas Instruments Inc Thermoelectric assembly with heat sink
US3225549A (en) * 1962-04-18 1965-12-28 Thore M Elfving Thermoelectric cooling device
US3208877A (en) * 1962-06-14 1965-09-28 Carrier Corp Thermoelectric panels
US3289749A (en) * 1964-03-24 1966-12-06 Frigitronics Of Conn Inc Refrigerated medical apparatus and heating means therefor
US3255593A (en) * 1964-05-06 1966-06-14 Borg Warner Thermoelectric system
US3240261A (en) * 1964-12-14 1966-03-15 Robert H Dietrich Thermoelectric apparatus and method
US3252504A (en) * 1964-12-30 1966-05-24 Borg Warner Thermoelectric air conditioning systems
US3221508A (en) * 1965-01-28 1965-12-07 John B Roes Flexible cold side for thermoelectric module
US3510362A (en) * 1966-10-20 1970-05-05 Teledyne Inc Thermoelectric assembly
DE1539330A1 (en) * 1966-12-06 1969-11-06 Siemens Ag Thermoelectric arrangement
US3819418A (en) * 1969-07-08 1974-06-25 Siemens Ag Thermoelectric generator and method of producing the same
SE340321B (en) * 1970-03-23 1971-11-15 Asea Ab
US3804676A (en) * 1971-10-01 1974-04-16 Isotopes Inc Thermoelectric generator with thermal expansion block
US3895313A (en) * 1973-09-17 1975-07-15 Entropy Conversion Laser systems with diamond optical elements
US3955122A (en) * 1974-02-26 1976-05-04 Armor Elevator Company, Inc. Heat sink mounting for controlled rectifiers
FR2315771A1 (en) * 1975-06-27 1977-01-21 Air Ind IMPROVEMENTS TO THERMO-ELECTRICAL INSTALLATIONS
US4051890A (en) * 1976-05-18 1977-10-04 Melchior August S Directional heat transfer unit
US4138692A (en) * 1977-09-12 1979-02-06 International Business Machines Corporation Gas encapsulated cooling module
US4203129A (en) * 1978-07-11 1980-05-13 International Business Machines Corporation Bubble generating tunnels for cooling semiconductor devices
US4279292A (en) * 1978-09-29 1981-07-21 The United States Of America As Represented By The Secretary Of The Navy Charge coupled device temperature gradient and moisture regulator
US4274476A (en) * 1979-05-14 1981-06-23 Western Electric Company, Inc. Method and apparatus for removing heat from a workpiece during processing in a vacuum chamber
US4254431A (en) * 1979-06-20 1981-03-03 International Business Machines Corporation Restorable backbond for LSI chips using liquid metal coated dendrites
US4395728A (en) * 1979-08-24 1983-07-26 Li Chou H Temperature controlled apparatus
US4313492A (en) * 1979-12-20 1982-02-02 International Business Machines Corporation Micro helix thermo capsule
US4318722A (en) * 1980-04-09 1982-03-09 Gerald Altman Infrared radiation cooler for producing physiologic conditions such as a comfort or hypothermia
DE3164237D1 (en) * 1980-12-23 1984-07-19 Air Ind Thermo-electrical plants
US4561011A (en) * 1982-10-05 1985-12-24 Mitsubishi Denki Kabushiki Kaisha Dimensionally stable semiconductor device
US4448240A (en) * 1982-12-20 1984-05-15 International Business Machines Corporation Telescoping thermal conduction element for cooling semiconductor devices
FR2542855B1 (en) * 1983-03-17 1985-06-28 France Etat Armement THERMOELECTRIC INSTALLATION
JPH0673364B2 (en) * 1983-10-28 1994-09-14 株式会社日立製作所 Integrated circuit chip cooler
JPS60160149A (en) * 1984-01-26 1985-08-21 Fujitsu Ltd Cooling system for integrated circuit device
US4561040A (en) * 1984-07-12 1985-12-24 Ibm Corporation Cooling system for VLSI circuit chips
JPS61220359A (en) * 1985-03-26 1986-09-30 Hitachi Ltd Cooling structure of semiconductor module
US4879632A (en) * 1985-10-04 1989-11-07 Fujitsu Limited Cooling system for an electronic circuit device
US4920574A (en) * 1985-10-04 1990-04-24 Fujitsu Limited Cooling system for an electronic circuit device
US4750086A (en) * 1985-12-11 1988-06-07 Unisys Corporation Apparatus for cooling integrated circuit chips with forced coolant jet
US4759403A (en) * 1986-04-30 1988-07-26 International Business Machines Corp. Hydraulic manifold for water cooling of multi-chip electric modules
US5022462A (en) * 1986-04-30 1991-06-11 International Business Machines Corp. Flexible finned heat exchanger
JPH0797617B2 (en) * 1986-05-23 1995-10-18 株式会社日立製作所 Refrigerant leakage prevention device
US5195020A (en) * 1987-05-25 1993-03-16 Fujitsu Limited Cooling system used with an electronic circuit device for cooling circuit components included therein having a thermally conductive compound layer and method for forming the layer
US5084671A (en) * 1987-09-02 1992-01-28 Tokyo Electron Limited Electric probing-test machine having a cooling system
US4996589A (en) * 1987-10-21 1991-02-26 Hitachi, Ltd. Semiconductor module and cooling device of the same
FR2624956B1 (en) * 1987-12-18 1990-06-22 Sodern TEMPORARY SUPERCOOLING DEVICE OF A COOLED DETECTOR
US4848090A (en) * 1988-01-27 1989-07-18 Texas Instruments Incorporated Apparatus for controlling the temperature of an integrated circuit package
FR2631433B1 (en) * 1988-05-10 1990-08-24 Sagem IMPROVEMENTS IN OR RELATING TO DEVICES FOR ADJUSTING THE TEMPERATURE OF AN ELEMENT BY BLOWING A GAS TO THE APPROPRIATE TEMPERATURE
US4951740A (en) * 1988-06-27 1990-08-28 Texas A & M University System Bellows heat pipe for thermal control of electronic components
US5365400A (en) * 1988-09-09 1994-11-15 Hitachi, Ltd. Heat sinks and semiconductor cooling device using the heat sinks
US4910642A (en) * 1988-12-05 1990-03-20 Sundstrand Corporation Coolant activated contact compact high intensity cooler
US5092129A (en) * 1989-03-20 1992-03-03 United Technologies Corporation Space suit cooling apparatus
US4958257A (en) * 1989-03-29 1990-09-18 Hughes Aircraft Company Heat conducting interface for electronic module
US4928207A (en) * 1989-06-15 1990-05-22 International Business Machines Corporation Circuit module with direct liquid cooling by a coolant flowing between a heat producing component and the face of a piston
US5050036A (en) * 1989-10-24 1991-09-17 Amdahl Corporation Liquid cooled integrated circuit assembly
GB2244368A (en) * 1990-05-16 1991-11-27 Chloride Silent Power Ltd A thermal shunt for a battery contained in a thermally-insulated container
DE4121534C2 (en) * 1990-06-30 1998-10-08 Toshiba Kawasaki Kk Cooler
US5031689A (en) * 1990-07-31 1991-07-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible thermal apparatus for mounting of thermoelectric cooler
JP3223257B2 (en) * 1991-03-27 2001-10-29 株式会社フェローテック Manufacturing method of thermoelectric conversion module
US5294830A (en) * 1991-05-21 1994-03-15 International Business Machines Corporation Apparatus for indirect impingement cooling of integrated circuit chips
US5154661A (en) * 1991-07-10 1992-10-13 Noah Precision, Inc. Thermal electric cooling system and method
US5166863A (en) * 1991-07-15 1992-11-24 Amdahl Corporation Liquid-cooled assembly of heat-generating devices and method for assembling and disassembling
US5206791A (en) * 1992-02-07 1993-04-27 Digital Equipment Corporation Bellows heat pipe apparatus for cooling systems
JP2801998B2 (en) * 1992-10-12 1998-09-21 富士通株式会社 Electronic equipment cooling device
US5511799A (en) * 1993-06-07 1996-04-30 Applied Materials, Inc. Sealing device useful in semiconductor processing apparatus for bridging materials having a thermal expansion differential
JP2500757B2 (en) * 1993-06-21 1996-05-29 日本電気株式会社 Integrated circuit cooling structure
DE69401040T2 (en) * 1993-07-12 1997-06-05 Nec Corp Housing structure for microwave switching
US5465581A (en) * 1993-08-24 1995-11-14 Hewlett-Packard Analytical system having energy efficient pump
JP3233808B2 (en) * 1995-03-17 2001-12-04 富士通株式会社 Electronic package cooling system
JP3520607B2 (en) 1995-05-26 2004-04-19 松下電工株式会社 Peltier module and manufacturing method thereof
US5847366A (en) * 1996-06-18 1998-12-08 Intel Corporation Apparatus and method for controlling the temperature of an integrated circuit under test
JP3952325B2 (en) * 1997-06-10 2007-08-01 Smc株式会社 High speed sheet cooling system
JP3347977B2 (en) * 1997-07-02 2002-11-20 フリヂスター株式会社 Liquid circulation type thermoelectric cooling / heating device
JPH11101525A (en) 1997-09-29 1999-04-13 Tatsuo Konya Electronic temperature regulator
KR100248066B1 (en) * 1998-01-13 2000-03-15 윤종용 Cooler of optical fiber draw tower
JP3870002B2 (en) * 2000-04-07 2007-01-17 キヤノン株式会社 Exposure equipment
US6370881B1 (en) * 2001-02-12 2002-04-16 Ge Medical Systems Global Technology Company Llc X-ray imager cooling device
US6543246B2 (en) * 2001-07-24 2003-04-08 Kryotech, Inc. Integrated circuit cooling apparatus
JP4745556B2 (en) * 2001-08-20 2011-08-10 キヤノン株式会社 Positioning apparatus, exposure apparatus, and device manufacturing method
JP2003121023A (en) * 2001-10-10 2003-04-23 Tokyo Electron Ltd Heating medium circulation device and heat treatment equipment using this
US6502405B1 (en) * 2001-10-19 2003-01-07 John Van Winkle Fluid heat exchanger assembly
US7385821B1 (en) * 2001-12-06 2008-06-10 Apple Inc. Cooling method for ICS
US7100389B1 (en) * 2002-07-16 2006-09-05 Delta Design, Inc. Apparatus and method having mechanical isolation arrangement for controlling the temperature of an electronic device under test
US7164466B2 (en) * 2002-08-27 2007-01-16 Nikon Corporation Detachable heat sink
US20040052052A1 (en) * 2002-09-18 2004-03-18 Rivera Rudy A. Circuit cooling apparatus
US20070257766A1 (en) * 2003-11-18 2007-11-08 Richards Robert F Micro-Transducer and Thermal Switch for Same
EA012095B1 (en) * 2004-03-31 2009-08-28 Белитс Компьютер Системс, Инк. Low-profile thermosyphon-based cooling system for computers and other electronic devices
US7325588B2 (en) * 2004-04-29 2008-02-05 Hewlett-Packard Development Company, L.P. High serviceability liquid cooling loop using flexible bellows
JP4689984B2 (en) * 2004-07-20 2011-06-01 株式会社ワイ・ワイ・エル DC superconducting power transmission cable and power transmission system
US7243704B2 (en) * 2004-11-18 2007-07-17 Delta Design, Inc. Mechanical assembly for regulating the temperature of an electronic device, having a spring with one slideable end
US20070227701A1 (en) * 2006-03-31 2007-10-04 Bhatti Mohinder S Thermosiphon with flexible boiler plate
US20070283709A1 (en) * 2006-06-09 2007-12-13 Veeco Instruments Inc. Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system
US20070289313A1 (en) * 2006-06-15 2007-12-20 Mohinder Singh Bhatti Thermosiphon with thermoelectrically enhanced spreader plate
US8176972B2 (en) * 2006-08-31 2012-05-15 International Business Machines Corporation Compliant vapor chamber chip packaging
US7995344B2 (en) * 2007-01-09 2011-08-09 Lockheed Martin Corporation High performance large tolerance heat sink
US7679917B2 (en) * 2007-02-02 2010-03-16 Deck Joseph F Electronic assembly cooling
US7855397B2 (en) * 2007-09-14 2010-12-21 Nextreme Thermal Solutions, Inc. Electronic assemblies providing active side heat pumping
US20090181553A1 (en) * 2008-01-11 2009-07-16 Blake Koelmel Apparatus and method of aligning and positioning a cold substrate on a hot surface
US9500701B2 (en) * 2010-03-17 2016-11-22 Delta Design, Inc. Alignment mechanism
JP5901917B2 (en) * 2011-09-15 2016-04-13 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
DE102012211259A1 (en) * 2012-06-29 2014-01-02 Behr Gmbh & Co. Kg Thermoelectric temperature control unit
US9366482B2 (en) * 2012-09-29 2016-06-14 Intel Corporation Adjustable heat pipe thermal unit
JP6028531B2 (en) * 2012-11-09 2016-11-16 日立金属株式会社 Signal transmission device
JP5686127B2 (en) * 2012-11-16 2015-03-18 日立金属株式会社 Signal transmission device
WO2014160033A1 (en) * 2013-03-14 2014-10-02 Gmz Energy Inc. Thermoelectric module with flexible connector
DE102013212511A1 (en) 2013-06-27 2014-12-31 Behr Gmbh & Co. Kg Thermoelectric temperature control unit
DE102013212524A1 (en) 2013-06-27 2015-01-15 Behr Gmbh & Co. Kg Thermoelectric temperature control unit
US9743558B2 (en) * 2014-10-14 2017-08-22 Intel Corporation Automatic height compensating and co-planar leveling heat removal assembly for multi-chip packages
GB2543549B (en) * 2015-10-21 2020-04-15 Andor Tech Limited Thermoelectric Heat pump system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US261607A (en) * 1882-07-25 Reservoir for storing and supplying compressed air
GB1177844A (en) * 1966-06-08 1970-01-14 Siemens Ag Thermo-Electric Devices
JPH11108489A (en) * 1997-10-06 1999-04-23 Fuji Electric Co Ltd Fixing structure for thermo-electrical cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443906B2 (en) * 2015-10-21 2019-10-15 Andor Technology Limited Heat pump system

Also Published As

Publication number Publication date
GB2543549B (en) 2020-04-15
EP3159631A1 (en) 2017-04-26
GB201518691D0 (en) 2015-12-02
EP3159631B1 (en) 2021-07-28
US10443906B2 (en) 2019-10-15
CN106989537A (en) 2017-07-28
US20170115040A1 (en) 2017-04-27
CN106989537B (en) 2021-06-01

Similar Documents

Publication Publication Date Title
US10031300B2 (en) Optic module cage assembly utilizing a stationary heatsink
US7032389B2 (en) Thermoelectric heat pump with direct cold sink support
US5031689A (en) Flexible thermal apparatus for mounting of thermoelectric cooler
US5253702A (en) Integral heat pipe, heat exchanger, and clamping plate
JP6403664B2 (en) Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
US8713957B2 (en) Thermoelectric-enhanced, vapor-condenser facilitating immersion-cooling of electronic component(s)
US7414844B2 (en) Liquid cooled heat sink with cold plate retention mechanism
US8385080B2 (en) Semiconductor module, socket for the same, and semiconductor module/socket assembly
US9414526B2 (en) Cooling apparatus with dynamic load adjustment
US9253923B2 (en) Fabricating thermal transfer and coolant-cooled structures for cooling electronics card(s)
EP2790474B1 (en) Thermoelectric cooler/heater integrated in printed circuit board
US20130126139A1 (en) Heat transporting unit, electronic circuit board and electronic device
US10750639B2 (en) Cooling memory modules
EP2923537B1 (en) Flexible thermal interface for electronics
US7584622B2 (en) Localized refrigerator apparatus for a thermal management device
US10892170B2 (en) Fabricating an integrated circuit chip module with stiffening frame and orthogonal heat spreader
US20150047809A1 (en) Fabricating thermal transfer structure(s) and attachment mechanism(s) for cooling electronics card(s)
US20150077937A1 (en) Apparatus for cooling board mounted optical modules
KR102110773B1 (en) Apparatus and method for providing a temperature difference circuit card environment
AU2002306686B2 (en) Electronic module with fluid dissociation electrodes and methods
EP3159631B1 (en) Support asembly for a thermoelectric heat pump system.
US20130093270A1 (en) High temperature environment capable motor controller
US20190033930A1 (en) Cooling device for use in heat dissipation associated with electronic components
KR20190091765A (en) Heat exchanging Apparatus
JPH03209859A (en) Semiconductor cooling device