GB2542231A - Single or dual layer ammonia slip catalyst - Google Patents

Single or dual layer ammonia slip catalyst Download PDF

Info

Publication number
GB2542231A
GB2542231A GB1610559.5A GB201610559A GB2542231A GB 2542231 A GB2542231 A GB 2542231A GB 201610559 A GB201610559 A GB 201610559A GB 2542231 A GB2542231 A GB 2542231A
Authority
GB
United Kingdom
Prior art keywords
catalyst
molecular sieve
scr catalyst
scr
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1610559.5A
Other versions
GB201610559D0 (en
GB2542231B (en
Inventor
Larsson Mikael
Lu Jing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of GB201610559D0 publication Critical patent/GB201610559D0/en
Publication of GB2542231A publication Critical patent/GB2542231A/en
Application granted granted Critical
Publication of GB2542231B publication Critical patent/GB2542231B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/783CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates (APO compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

A catalyst article having an extruded support having a plurality of channels, and a single layer coating or a bi-layer coating on the support. The single layer coating contains a blend of platinum on a support with low ammonia storage and a 1st for selective catalytic reduction (SCR) catalyst. The bi-layer coating has a bottom layer of a blend of Pt on a support and a 1st SCR catalyst, and the top layer is a 2nd SCR catalyst. The extruded support may contain a third SCR catalyst. The low ammonia storage support may be a silica or zeolite. The 1st SCR catalyst can either be a Cu-SCR or Fe-SCR catalyst. The 2nd SCR catalyst may also contain a base metal promoter such as Ce-Zr or MnO2.The catalytic articles are useful for SCR of NOx in exhaust gases and can be used to provide an improvement in N2 yield from NH3. Methods of using the catalytic articles in an SCR process, where the amount of ammonia slip is reduced, are also described. The application also relates to an exhaust system, engine and vehicle.

Description

SINGLE OR DUAL LAYER AMMONIA SLIP CATALYST FIELD OF THE INVENTION
The invention relates to ammonia slip catalysts (ASC), articles containing ammonia slip catalysts and methods of manufacturing and using such articles to reduce ammonia slip.
BACKGROUND OF THE INVENTION
Hydrocarbon combustion in diesel engines, stationary gas turbines, and other systems generates exhaust gas that must be treated to remove nitrogen oxides (NOx), which comprises NO (nitric oxide) and NO2 (nitrogen dioxide), with NO being the majority of the NOx formed. NOx is known to cause a number of health issues in people as well as causing a number of detrimental environmental effects including the formation of smog and acid rain. To mitigate both the human and environmental impact from NOx in exhaust gas, it is desirable to eliminate these undesirable components, preferably by a process that does not generate other noxious or toxic substances.
Exhaust gas generated in lean-burn and diesel engines is generally oxidative. NOx needs to be reduced selectively with a catalyst and a reductant in a process known as selective catalytic reduction (SCR) that converts NOx into elemental nitrogen (N2) and water. In an SCR process, a gaseous reductant, typically anhydrous ammonia, aqueous ammonia, or urea, is added to an exhaust gas stream prior to the exhaust gas contacting the catalyst. The reductant is absorbed onto the catalyst and the NOx is reduced as the gases pass through or over the catalyzed substrate. In order to maximize the conversion of NOx, it is often necessary to add more than a stoichiometric amount of ammonia to the gas stream. However, release of the excess ammonia into the atmosphere would be detrimental to the health of people and to the environment. In addition, ammonia is caustic, especially in its aqueous form. Condensation of ammonia and water in regions of the exhaust line downstream of the exhaust catalysts can result in a corrosive mixture that can damage the exhaust system. Therefore the release of ammonia in exhaust gas should be eliminated. In many conventional exhaust systems, an ammonia oxidation catalyst (also known as an ammonia slip catalyst or "ASC") is installed downstream of the SCR catalyst to remove ammonia from the exhaust gas by converting it to nitrogen. The use of ammonia slip catalysts can allow for NOx conversions of greater than 90% over a typical diesel driving cycle.
It would be desirable to have a catalyst that provides for both NOx removal by SCR and for selective ammonia conversion to nitrogen, where ammonia conversion occurs over a wide range of temperatures in a vehicle’s driving cycle, and minimal nitrogen oxide and nitrous oxide byproducts are formed.
SUMMARY OF THE INVENTION
In a first aspect, the invention relates to a catalyst article comprising: (a) an extruded support having an inlet, an outlet and a plurality of channels through which exhaust gas flows during operation of an engine, and (b) a single layer coating or a bilayer coating on the support, where the extruded support comprises a third SCR catalyst, the single layer coating comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the bi-layer coating comprises a bottom layer and a top layer, where the bottom layer is located between the top layer and the extruded support, the bottom layer comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the top layer comprises a second SCR catalyst.
In another aspect, the invention relates to an exhaust system comprising a catalyst of the first aspect of the invention and a means for forming NH3 in the exhaust gas.
In yet another aspect, the invention relates to a vehicle comprising an exhaust system comprising a catalyst of the first aspect of the invention and a means for forming NH3 in the exhaust gas.
In still another aspect, the invention relates to a method of improving the N2 yield from ammonia in an exhaust gas at a temperature from about 250 °C to about 350 °C by contacting an exhaust gas comprising ammonia with a catalyst article of the first aspect of the invention.
In another aspect, the invention relates to a method of reducing N2O formation from NH3 in an exhaust gas, the method comprising contacting an exhaust gas comprising ammonia with a catalyst article of the first aspect of the invention.
Brief Description of the Drawings
Fig. lisa diagram of a configuration in which a single layer blend of an ammonia slip catalyst is located on each side of a substrate containing a third SCR catalyst.
Fig. 2 is a diagram of a configuration in which a bi-layer coating having a bottom layer comprising a mixture of platinum on a low ammonia storage support and a first SCR catalyst with a top layer comprising a second SCR catalyst is located on each side of a substrate containing a third SCR catalyst.
DETAILED DESCRIPTION OF THE INVENTION
As used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to "a catalyst" includes a mixture of two or more catalysts, and the like.
As used herein, the term “ammonia slip”, means the amount of unreacted ammonia that passes through the SCR catalyst.
The term “support” means the material to which a catalyst is fixed.
The term “a support with low ammonia storage” means a support that stores less than 0.001 mmol NH3 per m of support. The support with low ammonia storage is preferably a molecular sieve or zeolite having a framework type selected from the group consisting of AEI, ANA, ATS, BEA, CDO, CFI, CHA, CON, DDR, ERI, FAU, FER, GON, IFR, IFW, IFY, IHW, IMF, IRN, IRY, ISV, ITE, ITG, ITN, ITR, ITW, IWR, IWS, IWV, IWW, JOZ, LTA, LTF, MEL, MEP, MFI, MRE, MSE, MTF, MTN, MTT, MTW, MVY, MWW, NON, NSI, RRO, RSN, RTE, RTH, RUT, RWR, SEW, SFE, SFF, SFG, SFH, SFN, SFS, SFV, SGT, SOD, SSF, SSO, SSY, STF, STO, STT, SVR, SVV, TON, TUN, UOS, UOV, UTL, UWY, VET, VNI. More preferably, the molecular sieve or zeolite has a framework type selected from the group consisting of BEA, CDO, CON, FAU, MEL, MFI and MWW, even more preferably the framework type is selected from the group consisting of BEA and MFT
The term “calcine”, or “calcination”, means heating the material in air or oxygen. This definition is consistent with the IUPAC definition of calcination. (IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML online corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi: 10.1351/ goldbook.) Calcination is performed to decompose a metal salt and promote the exchange of metal ions within the catalyst and also to adhere the catalyst to a substrate. The temperatures used in calcination depend upon the components in the material to be calcined and generally are between about 400 °C to about 900 °C for approximately 1 to 8 hours.
In some cases, calcination can be performed up to a temperature of about 1200 °C. In applications involving the processes described herein, calcinations are generally performed at temperatures from about 400 °C to about 700 °C for approximately 1 to 8 hours, preferably at temperatures from about 400 °C to about 650 °C for approximately 1 to 4 hours.
The term “about” means approximately and refers to a range that is optionally ± 25%, preferably ± 10%, more preferably, ± 5%, or most preferably ± 1% of the value with which the term is associated.
When a range, or ranges, for various numerical elements are provided, the range, or ranges, can include the values, unless otherwise specified.
The term “N2 selectivity” means the percent conversion of ammonia into nitrogen.
The terms “first”, “second” and “third” are generally used herein as labels to differentiate features having the same name and they are not numerically limiting as to the number of each of these features, unless the context indicates otherwise. For example, the reference to a “third SCR catalyst” does not imply that a “second SCR catalyst” must be present.
In a first aspect of the invention, a catalyst article comprises: (a) an extruded support having an inlet, an outlet and a plurality of channels through which exhaust gas flows during operation of an engine, and (b) a single layer coating or a bi-layer coating on the support, where the extruded support comprises a third SCR catalyst, the single layer coating comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the bi-layer coating comprises a bottom layer and a top layer, where the bottom layer is located between the top layer and the extruded support, the bottom layer comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the top layer comprises a second SCR catalyst.
The support with low ammonia storage can be a siliceous support, where the siliceous support can comprise a silica or a zeolite with silica-to-alumina ratio of > 100, preferably >200, more preferably > 250, even more preferably > 300,especially > 400, more especially > 500, even more especially > 750, and most preferably > 1000.
The siliceous support preferably comprises BEA, CDO, CON, FAU, MEL, MFI or MWW. The catalyst article can provide an improvement in N2 yield from ammonia at a temperature from about 250 °C to about 300 °C compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer. The catalyst article can protect the platinum from one or more substances present in the catalyst that can poison the platinum, such as vanadium. The catalytic article may protect platinum from other poisons such as potassium, sodium, iron and tungsten.
When the first SCR catalyst comprises vanadium, the catalyst article can provide reduced deactivation compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer.
The term “active component loading” refers to the weight of the support of platinum + the weight of platinum + the weight of the first SCR catalyst in the blend. Platinum can be present in the catalyst in an active component loading from about 0.01 to about 0.3 wt. %, inclusive, preferably from about 0.03-0.2 wt. %, inclusive, more preferably, from about 0.05-0.17 wt. %, inclusive, most preferably, from about 0.07-0.15 wt. %, inclusive.
Additional catalysts such as palladium (Pd), gold (Au) silver (Ag), ruthenium (Ru) or rhodium (Rh) can be present with Pt, preferably in the blend with Pt. SCR Catalysts
In various embodiments, the compositions can comprise one, two or three SCR catalysts.
The first SCR catalyst, which is always present in the catalyst article or composition of the invention, can be present either (1) in a blend with Pt on a support with low ammonia storage or (2) in a top layer when the catalysts are present in a bilayer and Pt is present in a bottom layer.
The first SCR catalyst is preferably a Cu-SCR catalyst, an Fe-SCR catalyst or a mixed oxide, more preferably a Cu-SCR catalyst or a mixed oxide, most preferably a Cu-SCR catalyst. The Cu-SCR catalyst comprises copper and a molecular sieve. The Fe-SCR catalyst comprises iron and a molecular sieve. Molecular sieves are further described below.
The molecular sieve can be an aluminosilicate, an aluminophosphate (A1PO), a silico-aluminophosphate (SAPO), or a mixture thereof. The copper or iron can be located within the framework of the molecular sieve and/or in extra-framework (exchangeable) sites within the molecular sieve.
The second SCR catalyst and the third SCR catalyst can be the same or different.
The second SCR catalyst and the third SCR catalyst may each independently be a base metal, an oxide of a base metal, a noble metal, a molecular sieve, a metal exchanged molecular sieve or a mixture thereof.
The base metal can be selected from the group consisting of vanadium (V), molybdenum (Mo), tungsten (W), chromium (Cr), cerium (Ce), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), and mixtures thereof. SCR compositions consisting of vanadium supported on a refractory metal oxide such as alumina, silica, zirconia, titania, ceria and combinations thereof are well known and widely used commercially in mobile applications. Typical compositions are described in U.S. Pat. Nos. 4,010,238 and 4,085,193, the entire contents of which are incorporated herein by reference. Compositions used commercially, especially in mobile applications, comprise T1O2 on to which WO3 and V2O5 have been dispersed at concentrations ranging from 5 to 20 wt. % and 0.5 to 6 wt. %, respectively.
The second SCR catalyst can comprise a promoted Ce-Zr or a promoted MnCL. Preferably, the promoter comprises Nb. The noble metal can be platinum (Pt), palladium (Pd), gold (Au) silver (Ag), ruthenium (Ru) or rhodium (Rh), or a mixture thereof. These catalysts may contain other inorganic materials such as S1O2 and ZrC>2 acting as binders and promoters.
When the SCR catalyst is a base metal, the catalyst article can further comprise at least one base metal promoter. As used herein, a "promoter" is understood to mean a substance that when added into a catalyst, increases the activity of the catalyst.
The base metal promoter can be in the form of a metal, an oxide of the metal, or a mixture thereof. The at least one base metal promoter or base metal catalyst promoter may be selected from neodymium (Nd), barium (Ba), cerium (Ce), lanthanum (La), praseodymium (Pr), magnesium (Mg), calcium (Ca), manganese (Mn), zinc (Zn), niobium (Nb), zirconium (Zr), molybdenum (Mo), tin (Sn), tantalum (Ta), strontium (Sr) and oxides thereof.
The at least one base metal promoter or the base metal catalyst promoter can preferably be MnCL, Mn203, Fe2C>3, SnC>2, CuO, CoO, CeC>2 and mixtures thereof.
The at least one base metal catalyst promoter may be added to the catalyst in the form of a salt in an aqueous solution, such as a nitrate or an acetate. The at least one base metal catalyst promoter and at least one base metal catalyst, e.g., copper, may be impregnated from an aqueous solution onto the oxide support material(s), may be added into a washcoat comprising the oxide support material(s), or may be impregnated into a support previously coated with the washcoat.
The SCR catalyst can comprise a molecular sieve or a metal exchanged molecular sieve. As is used herein "molecular sieve" is understood to mean a metastable material containing tiny pores of a precise and uniform size that may be used as an adsorbent for gases or liquids. The molecules which are small enough to pass through the pores are adsorbed while the larger molecules are not. The molecular sieve can be a zeolitic molecular sieve, a non-zeolitic molecular sieve, or a mixture thereof. A zeolitic molecular sieve is a microporous aluminosilicate having any one of the framework structures listed in the Database of Zeolite Structures published by the International Zeolite Association (IZA). The framework structures include, but are not limited to those of the CHA, FAU, BEA, MFI, MOR types. Non-limiting examples of zeolites having these structures include chabazite, faujasite, zeolite Y, ultrastable zeolite Y, beta zeolite, mordenite, silicalite, zeolite X, and ZSM-5. Aluminosilicate zeolites can have a silica/alumina molar ratio (SAR) defined as S1O2/AI2O3) from at least about 5, preferably at least about 20, with useful ranges of from about 10 to 200.
Any of the SCR catalysts can comprise a small pore, a medium pore or a large pore molecular sieve, or a mixture thereof. A "small pore molecular sieve" is a molecular sieve containing a maximum ring size of 8 tetrahedral atoms. A "medium pore molecular sieve" is a molecular sieve containing a maximum ring size of 10 tetrahedral atoms. A "large pore molecular sieve" is a molecular sieve having a maximum ring size of 12 tetrahedral atoms.
Each of the second SCR catalyst and the third SCR catalyst may independently comprise a small pore molecular sieve selected from the group consisting of an aluminosilicate molecular sieve, a metal-substituted aluminosilicate molecular sieve, an aluminophosphate (A1PO) molecular sieve, a metal-substituted aluminophosphate (MeAlPO) molecular sieve, a silico-aluminophosphate (SAPO) molecular sieve, and a metal substituted silico-aluminophosphate (MeAPSO) molecular sieve, and a mixture thereof.
Any of the SCR catalysts can comprise a small pore molecular sieve selected from the group of Framework Types consisting of ACO, ΑΕΙ, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and a mixture and/or an intergrowth thereof.
Preferably the small pore molecular sieve is selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
Any of the SCR catalysts can comprise a medium pore molecular sieve selected from the group of Framework Types consisting of AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, -SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, and WEN, and a mixture and/or an intergrowth thereof. Preferably, the medium pore molecular sieve selected from the group of Framework Types consisting of MFI, FER and STT.
Any of the SCR catalysts can comprise a large pore molecular sieve selected from the group of Framework Types consisting of AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY, and VET, and a mixture and/or an intergrowth thereof. Preferably, the large pore molecular sieve is selected from the group of Framework Types consisting of MOR, OFF and BEA.
The molecular sieve in each of the Cu-SCR catalyst and the Fe-SCR catalyst is preferably selected from the group consisting of ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON, BEA, MFI and FER and a mixture and/or an intergrowth thereof. More preferably, the molecular sieve in each of the Cu-SCR catalyst and the Fe-SCR catalyst is selected from the group consisting of AEI, AFX, BEA, CHA, DDR, ERI, FER, ITE, KFI, LEV, MFI and SFW, and a mixture and/or an intergrowth thereof. A metal exchanged molecular sieve can have at least one metal from one of the groups VB, VIB, VIIB, VIIIB, IB, or IIB of the periodic table deposited onto extra-framework sites on the external surface or within the channels, cavities, or cages of the molecular sieves. Metals may be in one of several forms, including, but not limited to, zero valent metal atoms or clusters, isolated cations, mononuclear or polynuclear oxycations, or as extended metal oxides. Preferably, the metals can be iron, copper, and mixtures or combinations thereof.
The metal can be combined with the zeolite using a mixture or a solution of the metal precursor in a suitable solvent. The term "metal precursor" means any compound or complex that can be dispersed on the zeolite to give a catalytically-active metal component. Preferably the solvent is water due to both economics and environmental aspects of using other solvents. When copper, a preferred metal is used, suitable complexes or compounds include, but are not limited to, anhydrous and hydrated copper sulfate, copper nitrate, copper acetate, copper acetylacetonate, copper oxide, copper hydroxide, and salts of copper ammines (e.g. [Cu(NH3)4] ). This invention is not restricted to metal precursors of a particular type, composition, or purity. The molecular sieve can be added to the solution of the metal component to form a suspension, which is then allowed to react so that the metal component is distributed on the zeolite. The metal can be distributed in the pore channels as well as on the outer surface of the molecular sieve. The metal can be distributed in ionic form or as a metal oxide. For example, copper may be distributed as copper (II) ions, copper (I) ions, or as copper oxide. The molecular sieve containing the metal can be separated from the liquid phase of the suspension, washed, and dried. The resulting metal-containing molecular sieve can then be calcined to fix the metal in the molecular sieve. Preferably, the second and third catalysts comprise a Cu-SCR catalyst comprising copper and a molecular sieve, an Fe-SCR catalyst comprising iron and a molecular sieve, a vanadium based catalyst, a promoted Ce-Zr or a promoted MnCb. A metal exchanged molecular sieve can contain in the range of about 0.10% and about 10% by weight of a group VB, VIB, VIIB, VIIIB, IB, or IIB metal located on extra framework sites on the external surface or within the channels, cavities, or cages of the molecular sieve. Preferably, the extra framework metal can be present in an amount of in the range of about 0.2% and about 5% by weight.
The metal exchanged molecular sieve can be a copper (Cu) or iron (Fe) supported small pore molecular sieve having from about 0.1 to about 20.0 wt. % copper or iron of the total weight of the catalyst. More preferably copper or iron is present from about 0.5 wt. % to about 15 wt. % of the total weight of the catalyst. Most preferably copper or iron is present from about 1 wt. % to about 9 wt. % of the total weight of the catalyst.
The first SCR catalyst can be a Cu-SCR catalyst comprising copper and a small pore molecular sieve or an Fe-SCR catalyst comprising iron and a small pore molecular sieve.
The small pore molecular sieve can be an aluminosilicate, an aluminophosphate (A1PO), a silico-aluminophosphate (SAPO), or mixtures thereof. The small pore molecular sieve can be selected from the group of Framework Types consisting of ACO, ΑΕΙ, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and a mixture and/or an intergrowth thereof.
Preferably, the small pore molecular sieve can be selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
The ratio of the amount of the first SCR catalyst to the amount of platinum on the support with low ammonia storage can be in the range of at least one of: (a) 0:1 to 300:1, (b) 3:1 to 300:1, (c) 7:1 to 100:1; and (d) 10:1 to 50:1, inclusive, based on the weight of these components.
Platinum can be present from at least one of: (a) 0.01-0.3 wt. %, (b) 0.03-0.2 wt. %, (c) 0.05-0.17 wt. %, and (d) 0.07-0.15 wt. %, inclusive, relative to the weight of the support of platinum + the weight of platinum + the weight of the first SCR catalyst in the blend.
The second SCR catalyst and the third SCR catalyst can, independent of each other, be a base metal, an oxide of a base metal, a molecular sieve, a metal exchanged molecular sieve or a mixture thereof.
The base metal can be selected from the group consisting of vanadium (V), molybdenum (Mo), tungsten (W), chromium (Cr), cerium (Ce), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), and mixtures thereof.
The catalyst article can further comprise at least one base metal promoter. The molecular sieve or the metal exchanged molecular sieve can be small pore, medium pore, large pore or a mixture thereof.
The second and/or third SCR catalyst can comprise a small pore molecular sieve selected from the group consisting of an aluminosilicate molecular sieve, a metal-substituted aluminosilicate molecular sieve, an aluminophosphate (A1PO) molecular sieve, a metal-substituted aluminophosphate (MeAlPO) molecular sieve, a silico-aluminophosphate (SAPO) molecular sieve, and a metal substituted silico-aluminophosphate (MeAPSO) molecular sieve, and a mixture thereof.
The second and/or third SCR catalyst can comprise a small pore molecular sieve selected from the group of Framework Types consisting of ACO, ΑΕΙ, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and a mixture and/or an intergrowth thereof.
The second and/or third SCR catalyst can preferably comprise a small pore molecular sieve selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
The second and/or third SCR catalyst can comprise a medium pore molecular sieve selected from the group of Framework Types consisting of AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, -PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, -SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, and WEN, and a mixture and/or an intergrowth thereof.
The second and/or third SCR catalyst preferably comprise a large pore molecular sieve selected from the group of Framework Types consisting of AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, -RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY, and VET, and a mixture and/or an intergrowth thereof.
The third SCR catalyst preferably comprises vanadium, an Fe zeolite, a Cu zeolite, or a Ce-Zr based catalyst doped with Fe, W or Nb.
The catalysts described herein can be used in the SCR treatment of exhaust gases from various engines. The engines can be on a vehicle, a stationary engine, an engine in a power plant, or a gas turbine. One of the properties of a catalyst comprising a blend of platinum on a siliceous support with a first SCR catalyst, where the first SCR catalyst is a Cu-SCR or Fe-SCR catalyst, is that it can provide an improvement in N2 yield from ammonia at a temperature from about 250 °C to about 350 °C compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and platinum is supported on a layer that stores ammonia is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer. Another property of a catalyst comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst, where the first SCR catalyst is a Cu-SCR catalyst or an Fe-SCR catalyst, is that it can provide reduced N2O formation from NH3 compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and platinum supported on a support that stores ammonia is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer.
The substrate for the catalyst may be any material typically used for preparing automotive catalysts that comprises a flow-through or filter structure, such as a honeycomb structure, an extruded support, a metallic substrate, or a SCRF.
Preferably the substrate has a plurality of fine, parallel gas flow passages extending from an inlet to an outlet face of the substrate, such that passages are open to fluid flow.
Such monolithic carriers may contain up to about 700 or more flow passages (or "cells") per square inch of cross section, although far fewer may be used. For example, the carrier may have from about 7 to 600, more usually from about 100 to 400, cells per square inch ("cpsi").
The passages, which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by walls onto which the SCR catalyst is coated as a "washcoat" so that the gases flowing through the passages contact the catalytic material. The flow passages of the monolithic substrate are thin-walled channels which can be of any suitable cross-sectional shape such as trapezoidal, rectangular, square, triangular, sinusoidal, hexagonal, oval, circular, etc. The invention is not limited to a particular substrate type, material, or geometry.
Ceramic substrates may be made of any suitable refractory material, such as cordierite, cordierite-α alumina, α-alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica magnesia, zirconium silicate, sillimanite, magnesium silicates, zircon, petalite, aluminosilicates and mixtures thereof.
Wall flow substrates may also be formed of ceramic fiber composite materials, such as those formed from cordierite and silicon carbide. Such materials are able to withstand the environment, particularly high temperatures, encountered in treating the exhaust streams.
The substrates can be a high porosity substrate. The term “high porosity substrate” refers to a substrate having a porosity of between about 40% and about 80%. The high porosity substrate can have a porosity preferably of at least about 45%, more preferably of at least about 50%. The high porosity substrate can have a porosity preferably of less than about 75%, more preferably of less than about 70%. The term porosity, as used herein, refers to the total porosity, preferably as measured with mercury porosimetry.
Preferably, the substrate can be cordierite, a high porosity cordierite, a metallic substrate, an extruded SCR, a filter or an SCRF. A washcoat comprising a blend of platinum on a siliceous support and a first SCR catalyst, where the first SCR catalyst is preferably a Cu-SCR catalyst or an Fe-SCR catalyst, can be applied to the inlet side of the substrate using a method known in the art. After application of the washcoat, the composition can be dried and calcined. When the composition comprises a second SCR, the second SCR can be applied in a separate washcoat to a calcined article having the bottom layer, as described above. After the second washcoat is applied, it can be dried and calcined as performed for the first layer.
The substrate with the platinum containing layer can be dried and calcined at a temperature within the range of 300°C to 1200°C, preferably 400°C to 700 C, and more _ o preferably 450 C to 650 C. The calcination is preferably done under dry conditions, but it can also be performed hydrothermally, i.e., in the presence of some moisture content. Calcination can be performed for a time of between about 30 minutes and about 4 hours, preferably between about 30 minutes and about 2 hours, more preferably between about 30 minutes and about 1 hour.
An exhaust system can comprise a catalyst of the first aspect of the invention and a means for forming NH3 in the exhaust gas. An exhaust system can further comprise a second catalyst selected from the group consisting of a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC), a selective catalytic reduction on filter (SCRF) or a catalyzed soot filter (CSF), where the second catalyst is located downstream of the catalyst of the first aspect of the invention. An exhaust system can further comprise a second catalyst selected from the group consisting of an SCR catalyst, a selective catalytic reduction on filter (SCRF), a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC), a NOx adsorber catalyst (NAC) (such as a lean NOx trap (LNT), a NAC, a passive NOx adsorber (PNA), a catalyzed soot filter (CSF), or a Cold Start Concept (CSC) catalyst, where the second catalyst is located upstream of the catalyst of the first aspect of the invention.
An exhaust system can comprise a catalyst of the first aspect of the invention, an SCR catalyst and DOC catalyst, where the SCR catalyst is located between the catalyst of the first aspect of the invention and the DOC catalyst. The exhaust system can comprise a platinum group metal before an SCR catalyst where the amount of the platinum group metal is sufficient to generate an exotherm. The exhaust system can further comprise a promoted-Ce-Zr or a promoted-Mn02 located downstream of the catalyst of the first aspect of the invention.
An engine can comprise an exhaust system as described above. The engine can be an engine on a vehicle, a stationary engine, an engine in a power plant, or a gas turbine. A vehicle can comprise an exhaust system comprising a catalyst of the first aspect of the invention and a means for forming NH3 in the exhaust gas. The vehicle can be a car, a light truck, a heavy duty truck or a boat. A method of improving the N2 yield from ammonia in an exhaust gas at a temperature from about 250 °C to about 300 °C comprises contacting an exhaust gas comprising ammonia with a catalyst of the first aspect of the invention. The improvement in yield can be about 10% to about 20% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer. A method of reducing N2O formation from NH3 in an exhaust gas comprises contacting an exhaust gas comprising ammonia with a catalyst of the first aspect of the invention. The reduction in N2O formation can be about 20% to about 40% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer.
The following examples merely illustrate the invention; the skilled person will recognize many variations that are within the spirit of the invention and scope of the claims.
EXAMPLES
Example 1: A Selective ASC on an Extruded SCR catalyst
An extruded SCR catalyst containing vanadium is coated from the outlet side with a washcoat comprising a blend of platinum on a support with low ammonia storage with Cu-CHA.
Example 2: A Selective ASC on an Extruded SCR catalyst
An extruded SCR catalyst containing an Fe-zeolite is coated from the outlet side with a washcoat comprising a blend of platinum on a support with low ammonia storage with Cu-CHA.
Compared with a conventional single layer ASC, where the single layer coating comprises platinum on a support, such as an alumina, without any SCR catalyst in the coating, the ASC described herein provides reduced selectivity of both N2O and NOx. This results in increased selectivity towards N2 over the full temperature range.
Example 3: A Selective ASC on an Extruded SCR catalyst
An extruded SCR catalyst containing vanadium is coated from the outlet side with a washcoat comprising platinum on a support with low ammonia storage to form a bottom layer. A second washcoat comprising Cu-CHA is placed over the bottom layer to form a top layer.
Example 4: A Selective ASC on an Extruded SCR catalyst
An extruded SCR catalyst containing an Fe-zeolite is coated from the outlet side with a washcoat comprising platinum on a support with low ammonia storage to form a bottom layer. A second washcoat comprising Cu-CHA is placed over the bottom layer to form a top layer.
Compared with a conventional dual layer ASC, where the bottom coating comprises platinum on e.g. alumina, and the top coating comprises an SCR catalyst, the ASC described herein provides reduced selectivity of both N2O and NOx. This results in increased selectivity towards N2 over the full temperature range. In addition, the back pressure will be reduced because of an overall thinner coating layer.
In the above examples, platinum is on a support with low ammonia storage. The use of the support with low ammonia storage helps protect the platinum from exposure to materials, such as vanadium, that can poison, or negatively affect the platinum.
Example 5: SCRF with ASC
An SCRF filter is coated on the outlet face of the filter with a washcoat comprising platinum on a support with low ammonia storage to form a bottom layer. A second washcoat comprising Cu-CHA is placed over the bottom layer to form a top layer.
Example 6: SCRF with ASC
An SCRF filter is coated on the outlet face of the filter with a washcoat comprising a blend of platinum on a support with low ammonia storage and Cu-CHA.
The SCRF with ASC of Examples 5 and 6 provides the same results and benefits as described for Examples 1-4.
The preceding examples are intended only as illustrations; the following claims define the scope of the invention.

Claims (47)

Claims
1. A catalyst article comprising: (a) an extruded support having an inlet, an outlet and a plurality of channels through which exhaust gas flows during operation of an engine, and (b) either: (i) a single layer coating on the support comprising a blend of platinum on a support, preferably a support with low ammonia storage, with a first SCR catalyst; or (ii) a bi-layer coating on the support comprising a bottom layer and a top layer, where the bottom layer is located between the top layer and the extruded support, the bottom layer comprises a blend of platinum on a support, preferably a support with low ammonia storage, with a first SCR catalyst, and the top layer comprises a second SCR catalyst.
2. The catalyst article of claim 1, wherein the extruded support comprises an SCR catalyst, such as a third SCR catalyst.
3. The catalyst article of claim 1 or claim 2, where the support with low ammonia storage is a siliceous support.
4. The catalyst article of claim 3, where the siliceous support comprises a silica or a zeolite with silica-to-alumina ratio of at least one of: (a) at least 100, (b) at least 200, (c) at least 250, at least 300, (d) at least 400, (e) at least 500, (f) at least 750 and (g) at least 1000.
5. The catalyst article of claim 3 or claim 4, wherein the siliceous support comprises BEA, CDO, CON, FAU, MEL, MFI or MWW.
6. The catalyst article according to any one of the preceding claims, where the ratio of the amount of the first SCR catalyst to the amount of platinum on the support with low ammonia storage is in the range of atleast one of: (a) 0:1 to 300:1, (b) 3:1 to 300:1, (c) 7:1 to 100:1; and (d) 10:1 to 50:1, inclusive, based on the weight of these components.
7. The catalyst article according to any one of the preceding claims, where the first SCR catalyst is a Cu-SCR catalyst comprising copper and a small pore molecular sieve, an Fe-SCR catalyst comprising iron and a small pore molecular sieve, or a mixed oxide.
8. The catalyst article of claim 7, where the small pore molecular sieve is an aluminosilicate, an aluminophosphate (A1PO), a silico-aluminophosphate (SAPO), or a mixture thereof.
9. The catalyst article of claim 7 or claim 8, where the small pore molecular sieve is selected from the group of Framework Types consisting of ACO, ΑΕΙ, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and a mixture and/or an intergrowth thereof.
10. The catalyst article according to any one of claims 7 to 9, where the small pore molecular sieve is selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
11. The catalyst according to any one of the preceding claims, where platinum is present from at least one of: (a) 0.01-0.3 wt. %, (b) 0.03-0.2 wt. %, (c) 0.05-0.17 wt. %, and (d) 0.07-0.15 wt. %, inclusive, relative to the weight of the support of platinum + the weight of platinum + the weight of the first SCR catalyst in the blend.
12. The catalyst article according to any one of the preceding claims, where the second SCR catalyst is a base metal, an oxide of a base metal, a molecular sieve, a metal exchanged molecular sieve or a mixture thereof.
13. The catalyst article of claim 12, where the base metal is selected from the group consisting of vanadium (V), molybdenum (Mo), tungsten (W), chromium (Cr), cerium (Ce), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), and a mixture thereof.
14. The catalyst article of claim 12 or claim 13, further comprising at least one base metal promoter.
15. The catalyst article of any one of claims 12 to 14, where the molecular sieve or the metal exchanged molecular sieve is small pore, medium pore, large pore or a mixture thereof.
16. The catalyst article according to any one of claims 12 to 15, where the second SCR catalyst comprises a small pore molecular sieve selected from the group consisting of an aluminosilicate molecular sieve, a metal-substituted aluminosilicate molecular sieve, an aluminophosphate (A1PO) molecular sieve, a metal-substituted aluminophosphate (MeAlPO) molecular sieve, a silico-aluminophosphate (SAPO) molecular sieve, and a metal substituted silico-aluminophosphate (MeAPSO) molecular sieve, and a mixture thereof.
17. The catalyst article according to any one of claims 12 to 15, where the second SCR catalyst comprises a small pore molecular sieve selected from the group of Framework Types consisting of ACO, ΑΕΙ, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and a mixture and/or an intergrowth thereof.
18. The catalyst article according to any one of claims 12 to 15, where the second SCR catalyst comprises a small pore molecular sieve selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
19. The catalyst article according to any one of claims 12 to 15, where the second SCR catalyst comprises a medium pore molecular sieve selected from the group of Framework Types consisting of AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, -SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, and WEN, and a mixture and/or an intergrowth thereof.
20. The catalyst article according to any one of claims 12 to 15, where the second SCR catalyst comprises a large pore molecular sieve selected from the group of Framework Types consisting of AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY, and VET, and a mixture and/or an intergrowth thereof.
21. The catalyst article according to any one of the preceding claims, wherein the extruded support comprises an SCR catalyst, such as a third SCR catalyst, which comprises vanadium, an Fe zeolite, a Cu zeolite, or a Ce-Zr based catalyst doped with Fe, WorNb.
22. The catalyst article according to claim 21, where the SCR catalyst, such as the third SCR catalyst, is a base metal, an oxide of a base metal, a molecular sieve, a metal exchanged molecular sieve or a mixture thereof.
23. The catalyst article according to claim 22, where the base metal is selected from the group consisting of vanadium (V), molybdenum (Mo), tungsten (W), chromium (Cr), cerium (Ce), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), and a mixture thereof.
24. The catalyst article of claim 22 or claim 23, further comprising at least one base metal promoter.
25. The catalyst article of any one of claims 22 to 24, where the molecular sieve or the metal exchanged molecular sieve is small pore, medium pore, large pore or a mixture thereof.
26. The catalyst article according to any one of claims 22 to 25, where the third SCR catalyst comprises a small pore molecular sieve selected from the group consisting of an aluminosilicate molecular sieve, a metal-substituted aluminosilicate molecular sieve, an aluminophosphate (A1PO) molecular sieve, a metal-substituted aluminophosphate (MeAlPO) molecular sieve, a silico-aluminophosphate (SAPO) molecular sieve, and a metal substituted silico-aluminophosphate (MeAPSO) molecular sieve, and a mixture thereof.
27. The catalyst article according to any one of claims 22 to 25, where the third SCR catalyst comprises a small pore molecular sieve selected from the group of Framework Types consisting of ACO, ΑΕΙ, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and a mixture and/or an intergrowth thereof.
28. The catalyst article according to any one of claims 22 to 25, where the third SCR catalyst comprises a small pore molecular sieve selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
29. The catalyst article according to any one of claims 22 to 25, where the third SCR catalyst comprises a medium pore molecular sieve selected from the group of Framework Types consisting of AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, -SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, and WEN, and a mixture and/or an intergrowth thereof.
30. The catalyst article according to any one of claims 22 to 25, where the third SCR catalyst comprises a large pore molecular sieve selected from the group of Framework Types consisting of AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY, and VET, and a mixture and/or an intergrowth thereof.
31. The catalyst article according to any one of the preceding claims, where the catalyst provides an improvement in N2 yield from ammonia at a temperature from about 250 °C to about 300 °C compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer.
32. The catalyst article according to any one of the preceding claims, where, when the first SCR catalyst comprises vanadium, the catalyst article provides reduced deactivation compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising MR passes through the first layer before passing through the second layer.
33. The catalyst article according to any one of the preceding claims, where the platinum is protected from poisoning from one or more substances present in the catalyst that can poison the platinum, and optionally wherein the substance that can poison platinum is vanadium.
34. An exhaust system comprising the catalyst article of any one of the preceding claims and optionally a means for forming MR in the exhaust gas.
35. An exhaust system of claim 34, further comprising a second catalyst selected from the group consisting of a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC), a selective catalytic reduction on filter (SCRF), or a catalyzed soot filter (CSF), where the second catalyst is located downstream of the catalyst article according to any one of claims 1 to 33.
36. An exhaust system of claim 34, further comprising a second catalyst selected from the group consisting of an SCR catalyst,, a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC), a NOx adsorber catalyst (NAC) (such as a lean NOx trap (LNT), a NAC, a passive NOx adsorber (PNA), a catalyzed soot filter (CSF), a selective catalytic reduction on filter (SCRF), or a Cold Start Concept (CSC) catalyst, where the second catalyst is located upstream of the catalyst article according to any one of claims 1 to 33.
37. An exhaust system according to claim 34 further comprising an SCR catalyst and a DOC catalyst, where the SCR catalyst is located between the catalyst article according to any one of claims 1 to 33 and the DOC catalyst.
38. The exhaust system according to any one of claims 34 to 37, where the exhaust system comprises a platinum group metal before an SCR catalyst and the amount of the platinum group metal is sufficient to generate an exotherm.
39. The exhaust system according to any one of claims 34 to 38, further comprising a promoted-Ce-Zr or a promoted-Mn02 located downstream of the catalyst article according to any one of claims 1 to 33.
40. An engine comprising an exhaust system according to any one of claims 34 to 39.
41. The engine of claim 40, where the engine is an engine on a vehicle, a stationary engine, an engine in a power plant, or a gas turbine.
42. A vehicle comprising an exhaust system according to any one of claims 34 to 39.
43. The vehicle of claim 42, where the vehicle is a car, a light truck, a heavy duty truck or a boat.
44. A method of improving the N2 yield from ammonia in an exhaust gas at a temperature from about 250 °C to about 300 °C, the method comprising contacting an exhaust gas comprising ammonia with a catalyst article according to any one of claims 1 to 33.
45. The method of claim 44, where the improvement in yield is about 10% to about 20% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer.
46. A method of reducing N2O formation from NH3 in an exhaust gas, the method comprising contacting an exhaust gas comprising ammonia with a catalyst article according to any one of claims 1 to 33.
47. The method of claim 46, where the reduction in N2O formation is about 20% to about 40% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH3 passes through the first layer before passing through the second layer.
GB1610559.5A 2015-06-18 2016-06-17 Single or dual layer ammonia slip catalyst Active GB2542231B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562181303P 2015-06-18 2015-06-18

Publications (3)

Publication Number Publication Date
GB201610559D0 GB201610559D0 (en) 2016-08-03
GB2542231A true GB2542231A (en) 2017-03-15
GB2542231B GB2542231B (en) 2019-08-14

Family

ID=56292930

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1610559.5A Active GB2542231B (en) 2015-06-18 2016-06-17 Single or dual layer ammonia slip catalyst

Country Status (9)

Country Link
US (1) US9789441B2 (en)
EP (1) EP3310477A1 (en)
JP (1) JP6787935B2 (en)
KR (1) KR20180020215A (en)
CN (2) CN107847918A (en)
DE (1) DE102016111151A1 (en)
GB (1) GB2542231B (en)
RU (1) RU2743125C2 (en)
WO (1) WO2016205506A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562879A (en) * 2017-03-29 2018-11-28 Johnson Matthey Plc ASC with platinum group metal in multiple layers

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130424B2 (en) 2015-03-27 2017-05-17 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP6130423B2 (en) * 2015-03-27 2017-05-17 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP6243371B2 (en) * 2015-03-27 2017-12-06 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP6219871B2 (en) 2015-03-27 2017-10-25 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP6219872B2 (en) * 2015-03-27 2017-10-25 トヨタ自動車株式会社 Exhaust gas purification catalyst
CA2981054A1 (en) * 2015-03-30 2016-10-06 Basf Corporation Multifunctional filters for diesel emission control
US10105692B2 (en) * 2015-09-29 2018-10-23 Johnson Matthey Public Limited Company Zoned ammonia slip catalyst for use in combustion turbines
WO2017134585A1 (en) * 2016-02-03 2017-08-10 Basf Corporation Multi-layer catalyst composition for internal combustion engines
GB2557673A (en) * 2016-12-15 2018-06-27 Johnson Matthey Plc NOx adsorber catalyst
JP6693406B2 (en) * 2016-12-20 2020-05-13 三菱自動車工業株式会社 Exhaust gas purification device
GB201705158D0 (en) 2017-03-30 2017-05-17 Johnson Matthey Plc Catalyst article for use in a emission treatment system
BR112019020349B1 (en) * 2017-03-30 2023-01-10 Johnson Matthey Public Limited Company CATALYST ARTICLE
EP3765190A1 (en) * 2018-03-14 2021-01-20 Johnson Matthey Public Limited Company Ammonia slip catalyst with in-situ pt fixing
GB2572396A (en) * 2018-03-28 2019-10-02 Johnson Matthey Plc Passive NOx adsorber
GB201805312D0 (en) * 2018-03-29 2018-05-16 Johnson Matthey Plc Catalyst article for use in emission treatment system
CN109306886A (en) * 2018-11-22 2019-02-05 江苏海事职业技术学院 A kind of marine ship engine cycle combustion system
KR20210137451A (en) 2019-03-27 2021-11-17 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Catalyzed Filter Systems for Treating Particulate-Containing Exhaust Gases from Fixed Emission Sources
EP3782726A1 (en) 2019-08-20 2021-02-24 Umicore Ag & Co. Kg Catalyst for the abatement of ammonia and nitrogen oxide emissions from the exhaust gases of combustion engines
EP3782727A1 (en) 2019-08-20 2021-02-24 Umicore Ag & Co. Kg Ammonia emissions reduction catalyst
CN111082094B (en) * 2019-12-31 2021-10-29 潍柴动力股份有限公司 Cold start device, fuel cell engine and cold start method
EP3915679A1 (en) 2020-05-26 2021-12-01 UMICORE AG & Co. KG Ammonia emissions reduction catalyst, catalyst system, and exhaust gas purification system
EP3957386A1 (en) 2020-08-18 2022-02-23 UMICORE AG & Co. KG Catalyst for reducing ammonia emissions
KR102364271B1 (en) 2020-09-22 2022-02-18 한국전력공사 Exhaust gas purification device including combined catalyst filter and a control method of the same
EP3974059A1 (en) 2020-09-24 2022-03-30 UMICORE AG & Co. KG Method for the preparation of a catalyst for the oxidation of ammonia
KR20220131688A (en) 2021-03-22 2022-09-29 한국전력공사 Operating method of reactor for bypass integrated exhaust gas purifying device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773057A1 (en) * 1995-11-09 1997-05-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JPH09253453A (en) * 1996-03-19 1997-09-30 Nissan Motor Co Ltd Cleaning of exhaust gas
WO2008106523A2 (en) * 2007-02-27 2008-09-04 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
US20110271664A1 (en) * 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
WO2014080220A1 (en) * 2012-11-22 2014-05-30 Johnson Matthey Public Limited Company Zoned catalyst on monolithic substrate
US20140219879A1 (en) * 2007-02-27 2014-08-07 Basf Corporation Copper CHA Zeolite Catalysts
US20140219880A1 (en) * 2011-03-29 2014-08-07 Basf Corporation Multi-Component Filters For Emissions Control

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523086B2 (en) 1973-03-26 1980-06-20
US4085193A (en) 1973-12-12 1978-04-18 Mitsubishi Petrochemical Co. Ltd. Catalytic process for reducing nitrogen oxides to nitrogen
US4104154A (en) * 1977-04-18 1978-08-01 Uop Inc. Reforming of a naphtha fraction in contact with an alumina-supported catalyst
DE10226461A1 (en) * 2002-06-13 2004-01-22 Uhde Gmbh Method and apparatus for reducing the content of NOx and N2O in gases
JP5156173B2 (en) * 2004-05-11 2013-03-06 バブコック日立株式会社 Method for producing catalyst for removing nitrogen oxides
US20060029534A1 (en) * 2004-08-04 2006-02-09 General Electric Company Process for treating ammonia-containing exhaust gases
GB2457651A (en) * 2008-01-23 2009-08-26 Johnson Matthey Plc Catalysed wall-flow filter
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
KR102180723B1 (en) * 2009-04-17 2020-11-20 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
JP5847094B2 (en) * 2010-02-01 2016-01-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Three-way catalyst containing extruded solid
GB201002378D0 (en) * 2010-02-12 2010-03-31 Johnson Matthey Plc Catalyst structures
US20110286900A1 (en) * 2010-05-21 2011-11-24 Basf Corporation PGM-Zoned Catalyst for Selective Oxidation of Ammonia in Diesel Systems
US9011809B2 (en) * 2011-03-31 2015-04-21 N.E. Chemcat Corporation Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
RU2637510C2 (en) * 2011-08-03 2017-12-05 Джонсон Мэтти Плс Extruded honeycomb catalyst
KR101336597B1 (en) * 2012-06-12 2013-12-16 희성촉매 주식회사 A catalyst structure having active materials to be buried in pores of catalyst carrier
JP2016511684A (en) * 2013-01-29 2016-04-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Ammonia oxidation catalyst
EP3027309B1 (en) * 2013-07-30 2020-05-27 Johnson Matthey Public Limited Company Ammonia slip catalyst
US9789468B2 (en) * 2014-02-18 2017-10-17 Korea Institute Of Industrial Technology SCR catalyst containing carbon material loaded with vanadium and tungsten and method of preparing same
EP3310479A1 (en) * 2015-06-18 2018-04-25 Johnson Matthey Public Limited Company Ammonia slip catalyst with low n2o formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773057A1 (en) * 1995-11-09 1997-05-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JPH09253453A (en) * 1996-03-19 1997-09-30 Nissan Motor Co Ltd Cleaning of exhaust gas
WO2008106523A2 (en) * 2007-02-27 2008-09-04 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
US20140219879A1 (en) * 2007-02-27 2014-08-07 Basf Corporation Copper CHA Zeolite Catalysts
US20110271664A1 (en) * 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
US20140219880A1 (en) * 2011-03-29 2014-08-07 Basf Corporation Multi-Component Filters For Emissions Control
WO2014080220A1 (en) * 2012-11-22 2014-05-30 Johnson Matthey Public Limited Company Zoned catalyst on monolithic substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562879A (en) * 2017-03-29 2018-11-28 Johnson Matthey Plc ASC with platinum group metal in multiple layers
US10500571B2 (en) 2017-03-29 2019-12-10 Johnson Matthey Public Limited Company ASC with platinum group metal in multiple layers
US11000838B2 (en) 2017-03-29 2021-05-11 Johnson Matthey Public Limited Company ASC with platinum group metal in multiple layers
GB2595989A (en) * 2017-03-29 2021-12-15 Johnson Matthey Plc ASC with platinum group metal in multiple layers
GB2595990A (en) * 2017-03-29 2021-12-15 Johnson Matthey Plc ASC with platinum group metal in multiple layers
GB2595988A (en) * 2017-03-29 2021-12-15 Johnson Matthey Plc ASC with platinum group metal in multiple layers
GB2562879B (en) * 2017-03-29 2021-12-22 Johnson Matthey Plc ASC with platinum group metal in multiple layers
GB2595989B (en) * 2017-03-29 2022-05-18 Johnson Matthey Plc ASC with platinum group metal in multiple layers
GB2595988B (en) * 2017-03-29 2022-05-25 Johnson Matthey Plc ASC with platinum group metal in multiple layers
GB2595990B (en) * 2017-03-29 2022-05-25 Johnson Matthey Plc ASC with platinum group metal in multiple layers

Also Published As

Publication number Publication date
KR20180020215A (en) 2018-02-27
RU2743125C2 (en) 2021-02-15
CN117065794A (en) 2023-11-17
RU2018101715A3 (en) 2019-10-09
EP3310477A1 (en) 2018-04-25
DE102016111151A1 (en) 2016-12-22
GB201610559D0 (en) 2016-08-03
JP6787935B2 (en) 2020-11-18
WO2016205506A1 (en) 2016-12-22
GB2542231B (en) 2019-08-14
CN107847918A (en) 2018-03-27
US9789441B2 (en) 2017-10-17
RU2018101715A (en) 2019-07-18
US20160367938A1 (en) 2016-12-22
JP2018526193A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US9789441B2 (en) Single or dual layer ammonia slip catalyst
US10807081B2 (en) Ammonia slip catalyst designed to be first in an SCR system
US10589261B2 (en) Exhaust system without a DOC having an ASC acting as a DOC in a system with an SCR catalyst before the ASC
US10322372B2 (en) NH3 overdosing-tolerant SCR catalyst
US9993772B2 (en) Zoned exhaust system
GB2543601A (en) Ammonia slip catalyst with low N2O formation
US20180111086A1 (en) Hydrocarbon injection through small pore cu-zeolite catalyst
US20230035318A1 (en) Zoned ammonia slip catalyst for improved selectivity, activity and poison tolerance
BR112017027160B1 (en) CATALYST ITEM, EXHAUST SYSTEM, ENGINE, VEHICLE, METHODS TO IMPROVE N2 PERFORMANCE FROM AMMONIA IN AN EXHAUST GAS AND TO REDUCE N2O FORMATION FROM NH3 IN AN EXHAUST GAS