GB2538877A - Passive NOx adsorber - Google Patents

Passive NOx adsorber Download PDF

Info

Publication number
GB2538877A
GB2538877A GB1610017.4A GB201610017A GB2538877A GB 2538877 A GB2538877 A GB 2538877A GB 201610017 A GB201610017 A GB 201610017A GB 2538877 A GB2538877 A GB 2538877A
Authority
GB
United Kingdom
Prior art keywords
adsorber
passive
molecular sieve
small pore
pore molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1610017.4A
Other versions
GB201610017D0 (en
GB2538877B (en
Inventor
Chen Haiying
Liu Dongxia
Rao Rajaram Raj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Priority to GB1610017.4A priority Critical patent/GB2538877B/en
Priority claimed from GB1421741.8A external-priority patent/GB2522977B/en
Publication of GB201610017D0 publication Critical patent/GB201610017D0/en
Publication of GB2538877A publication Critical patent/GB2538877A/en
Application granted granted Critical
Publication of GB2538877B publication Critical patent/GB2538877B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0354Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/52Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
    • B01J29/54Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/62Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1028Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Use of a NOx adsorber comprising a noble metal, such as platinum, palladium, rhodium, gold, silver, iridium, ruthenium, osmium, and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms, such as aluminosilicate sieves, aluninophosphate molecular sieves and metal-substituted aluminophosphate molecular sieves, to adsorb NOx at or below 200oC and release the adsorbed NOx at temperatures above 200oC. Also disclosed, is an exhaust system for internal combustion engines comprising the NOx adsorber and a method of reducing NOx in an exhaust gas using the NOx adsorber.

Description

PASSIVE NO ADSORBER
FIELD OF THE INVENTION
The invention relates to a passive NO adsorber and its use in an exhaust system for internal combustion engines.
BACKGROUND OF THE INVENTION
Internal combustion engines produce exhaust gases containing a variety of pollutants, including nitrogen oxides ("NO."), carbon monoxide, and uncombusted hydrocarbons, which are the subject of governmental legislation.
Emission control systems are widely utilized to reduce the amount of these pollutants emitted to atmosphere, and typically achieve very high efficiencies once they reach their operating temperature (typically, 200°C and higher). However, these systems are relatively inefficient below their operating temperature (the "cold start" period).
For instance, current urea based selective catalytic reduction (SCR) applications implemented for meeting Euro 6b emissions require that the temperature at the urea dosing position be above about 180°C before urea can be dosed and used to convert NO.. NO conversion below 180°C is difficult to address using the current systems, and future European and US legislation will stress the low temperature NO storage and conversion. Currently this is achieved by heating strategies but this has a detrimental effect of CO2 emissions.
As even more stringent national and regional legislation lowers the amount of pollutants that can be emitted from diesel or gasoline engines, reducing emissions during the cold start period is becoming a major challenge. Thus, methods for reducing the level of NO emitted during cold start condition continue to be explored.
For instance, PCT Intl. Appl. WO 2008/047170 discloses a system wherein NO from a lean exhaust gas is adsorbed at temperatures below 200°C and is 30 subsequently thermally desorbed above 200°C. The NO adsorbent is taught to consist of palladium and a cerium oxide or a mixed oxide or composite oxide containing cerium and at least one other transition metal.
U.S. Appl. Pub. No. 2011/0005200 teaches a catalyst system that simultaneously removes ammonia and enhances net NO conversion by placing an ammonia-selective catalytic reduction ("NH3-SCR") catalyst formulation downstream of a lean NO trap. The NH3-SCR catalyst is taught to adsorb the ammonia that is generated during the rich pulses in the lean NO trap. The stored ammonia then reacts with the NO emitted from the upstream lean NO trap, which increases NO, conversion rate while depleting the stored ammonia.
PCT Intl. Appl. WO 2004/076829 discloses an exhaust-gas purification system which includes a NO, storage catalyst arranged upstream of an SCR catalyst. The NO storage catalyst includes at least one alkali, alkaline earth, or rare earth metal which is coated or activated with at least one platinum group metal (Pt, Pd, Rh, or Ir). A particularly preferred NO, storage catalyst is taught to include cerium oxide coated with platinum and additionally platinum as an oxidizing catalyst on a support based on aluminum oxide. EP 1027919 discloses a NO adsorbent material that comprises a porous support material, such as alumina, zeolite, zirconia, titania, and/or lanthana, and at least 0.1 wt% precious metal (Pt, Pd, and/or Rh). Platinum carried on alumina is exemplified. U.S. Appl.
Pub. No. 2012/0308439 Al teaches a cold start catalyst that comprises (1) a zeolite catalyst comprising a base metal, a noble metal, and a zeolite, and (2) a supported platinum group metal catalyst comprising one or more platinum group metals and one or more inorganic oxide carriers.
As with any automotive system and process, it is desirable to attain still further improvements in exhaust gas treatment systems, particularly under cold start conditions. We have discovered a new passive NO adsorber that provides enhanced cleaning of the exhaust gases from internal combustion engines. The new passive NO adsorber also exhibits improved sulfur tolerance.
SUMMARY OF THE INVENTION
The invention is a passive NO adsorber that is effective to adsorb NO at or below a low temperature and release the adsorbed NO at temperatures above the low temperature. The passive NO adsorber comprises a noble metal and a small pore molecular sieve. The small pore molecular sieve has a maximum ring size of eight tetrahedral atoms. The invention also includes an exhaust system comprising the passive NO adsorber, and a method for treating exhaust gas from an internal combustion engine utilizing the passive NO adsorber.
DETAILED DESCRIPTION OF THE INVENTION
The passive NO adsorber of the invention is effective to adsorb NO at or below a low temperature and release the adsorbed NO at temperatures above the low temperature. Preferably, the low temperature is about 200°C. The passive NO adsorber comprises a noble metal and a small pore molecular sieve. The noble metal is preferably palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, or mixtures thereof; more preferably, palladium, platinum, rhodium, or mixtures thereof. Palladium is particularly preferred.
The small pore molecular sieve has a maximum ring size of eight tetrahedral atoms. The small pore molecular sieve may be any natural or a synthetic molecular sieve, including zeolites, and is preferably composed of aluminum, silicon, and/or phosphorus. The molecular sieves typically have a three-dimensional arrangement of 5iO4, Alat, and/or Pat that are joined by the sharing of oxygen atoms, but may also be two-dimensional structures as well.
The molecular sieve frameworks are typically anionic, which are counterbalanced by charge compensating cations, typically alkali and alkaline earth elements (e.g., Na, K, Mg, Ca, Sr, and Ba), ammonium ions, and also protons. Other metals (e.g., Fe, Ti, and Ga) may be incorporated into the framework of the small pore molecular sieve to produce a metal-incorporated molecular sieve.
Preferably, the small pore molecular sieve is selected from an aluminosilicate molecular sieve, a metal-substituted aluminosilicate molecular sieve, an aluminophosphate molecular sieve, or a metal-substituted aluminophosphate molecular sieve. More preferably, the small pore molecular sieve is a molecular sieve having the Framework Type of AGO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, Sly, THO, TSC, UEI, UFI, VNI, YUG, and ZON, as well as mixtures or intergrowths of any two or more. Particularly preferred intergrowths of the small pore molecular sieves include KFI-SIV, ITE-RTH, AEW-UEI, AEICHA, and AEI-SAV. Most preferably, the small pore molecular sieve is AEI or CHA, or an AEI-CHA intergrowth.
The passive NO adsorber may be prepared by any known means. For instance, the noble metal may be added to the small pore molecular sieve to form the passive NO adsorber by any known means, the manner of addition is not considered to be particularly critical. For example, a noble metal compound (such as palladium nitrate) may be supported on the molecular sieve by impregnation, adsorption, ion-exchange, incipient wetness, precipitation, or the like. Other metals may also be added to the passive NOx adsorber.
Preferably, some of the noble metal (more than 1 percent of the total noble metal added) in the passive NO adsorber is located inside the pores of the small pore molecular sieve. More preferably, more than 5 percent of the total amount of noble metal is located inside the pores of the small pore molecular sieve; and even more preferably may be greater than 10 percent or greater than 25% or greater than 50 percent of the total amount of noble metal that is located inside the pores of the small pore molecular sieve.
Preferably, the passive NO adsorber further comprises a flow-through substrate or filter substrate. In one embodiment, the passive NO adsorber is coated onto the flow-through or filter substrate, and preferably deposited on the flow-through or filter substrate using a washcoat procedure to produce a passive NO adsorber system.
The flow-through or filter substrate is a substrate that is capable of containing catalyst components. The substrate is preferably a ceramic substrate or a metallic substrate. The ceramic substrate may be made of any suitable refractory material, e.g., alumina, silica, titania, ceria, zirconia, magnesia, zeolites, silicon nitride, silicon carbide, zirconium silicates, magnesium silicates, aluminosilicates, metallo aluminosilicates (such as cordierite and spudomene), or a mixture or mixed oxide of any two or more thereof. Cordierite, a magnesium aluminosilicate, and silicon carbide are particularly preferred.
The metallic substrates may be made of any suitable metal, and in particular heat-resistant metals and metal alloys such as titanium and stainless steel as well as ferritic alloys containing iron, nickel, chromium, and/or aluminum in addition to other trace metals.
The flow-through substrate is preferably a flow-through monolith having a honeycomb structure with many small, parallel thin-walled channels running axially through the substrate and extending throughout from an inlet or an outlet of the substrate. The channel cross-section of the substrate may be any shape, but is preferably square, sinusoidal, triangular, rectangular, hexagonal, trapezoidal, circular, or oval.
The filter substrate is preferably a wall-flow monolith filter. The channels of a wall-flow filter are alternately blocked, which allow the exhaust gas stream to enter a channel from the inlet, then flow through the channel walls, and exit the filter from a different channel leading to the outlet. Particulates in the exhaust gas stream are thus trapped in the filter.
The passive NO adsorber may be added to the flow-through or filter substrate by any known means. A representative process for preparing the passive NO adsorber using a washcoat procedure is set forth below. It will be understood that the process below can be varied according to different embodiments of the invention.
The pre-formed passive NO adsorber may be added to the flow-through or filter substrate by a washcoating step. Alternatively, the passive NO adsorber may be formed on the flow-through or filter substrate by first washcoating unmodified small pore molecular sieve onto the substrate to produce a molecular sieve-coated substrate. Noble metal may then be added to the molecular sieve-coated substrate, which may be accomplished by an impregnation procedure, or the like.
The washcoating procedure is preferably performed by first slurrying finely divided particles of the passive NO adsorber (or unmodified small pore molecular sieve) in an appropriate solvent, preferably water, to form the slurry.
Additional components, such as transition metal oxides, binders, stabilizers, or promoters may also be incorporated in the slurry as a mixture of water soluble or water-dispersible compounds. The slurry preferably contains between 10 to 70 weight percent solids, more preferably between 20 to 50 weight percent. Prior to forming the slurry, the passive NO adsorber (or unmodified small pore molecular sieve) particles are preferably subject to a size reduction treatment (e.g., milling) such that the average particle size of the solid particles is less than 20 microns in diameter.
The flow-through or filter substrate may then be dipped one or more times into the slurry or the slurry may be coated on the substrate such that there will be deposited on the substrate the desired loading of catalytic materials. If noble metal is not incorporated into the molecular sieve prior to washcoating the flow-through or filter substrate, the molecular sieve-coated substrate is typically dried and calcined and then, the noble metal may be added to the molecular sieve-coated substrate by any known means, including impregnation, adsorption, or ion-exchange, for example, with a noble metal compound (such as palladium nitrate). Preferably, the entire length of the flow-through or filter substrate is coated with the slurry so that a washcoat of the passive NO adsorber covers the entire surface of the substrate.
After the flow-through or filter substrate has been coated with the passive NO adsorber, and impregnated with noble metal if necessary, the coated substrate is preferably dried and then calcined by heating at an elevated temperature to form the passive NO adsorber-coated substrate. Preferably, the calcination occurs at 400 to 600°C for approximately 1 to 8 hours.
In an alternative embodiment, the flow-through or filter substrate is comprised of the passive NO adsorber. In this case, the passive NO adsorber is extruded to form the flow-through or filter substrate. The passive NO adsorber extruded substrate is preferably a honeycomb flow-through monolith. Extruded molecular sieve substrates and honeycomb bodies, and processes for making them, are known in the art. See, for example, U.S. Pat. Nos. 5,492,883, 5,565,394, and 5,633,217 and U.S. Pat. No. Re. 34,804.
Typically, the molecular sieve material is mixed with a permanent binder such as silicone resin and a temporary binder such as methylcellulose, and the mixture is extruded to form a green honeycomb body, which is then calcined and sintered to form the final small pore molecular sieve flow-through monolith. The molecular sieve may contain the noble metal prior to extruding such that a passive NO adsorber monolith is produced by the extrusion procedure. Alternatively, the noble metal may be added to a pre-formed molecular sieve monolith in order to produce the passive NO adsorber monolith.
The invention also includes an exhaust system for internal combustion engines comprising the passive NO adsorber. The exhaust system preferably comprises one or more additional after-treatment devices capable of removing pollutants from internal combustion engine exhaust gases at normal operating temperatures. Preferably, the exhaust system comprises the passive NO adsorber and one or more other catalyst components selected from: (1) a selective catalytic reduction (SCR) catalyst, (2) a particulate filter, (3) a SCR filter, (4) a NO adsorber catalyst, (5) a three-way catalyst, (6) an oxidation catalyst, or any combination thereof The passive NO adsorber is preferably a separate component from any of the above after-treatment devices. Alternatively, the passive NO adsorber can be incorporated as a component into any of the above after-treatment devices.
These after-treatment devices are well known in the art. Selective catalytic reduction (SCR) catalysts are catalysts that reduce NO to N2 by reaction with nitrogen compounds (such as ammonia or urea) or hydrocarbons (lean NO reduction). A typical SCR catalyst is comprised of a vanadia-titania catalyst, a vanadia-tungsta-titania catalyst, or a metal/zeolite catalyst such as iron/beta zeolite, copper/beta zeolite, copper/SSZ-13, copper/SAPO-34, Fe/ZSM5, or copper/ZSM-5.
Particulate filters are devices that reduce particulates from the exhaust of internal combustion engines. Particulate filters include catalyzed particulate filters and bare (non-catalyzed) particulate filters. Catalyzed particulate filters (for diesel and gasoline applications) include metal and metal oxide components (such as Pt, Pd, Fe, Mn, Cu, and ceria) to oxidize hydrocarbons and carbon monoxide in addition to destroying soot trapped by the filter.
Selective catalytic reduction filters (SORE) are single-substrate devices that combine the functionality of an SCR and a particulate filter. They are used to reduce NO and particulate emissions from internal combustion engines. In addition to the SCR catalyst coating, the particulate filter may also include other metal and metal oxide components (such as Pt, Pd, Fe, Mn, Cu, and ceria) to oxidize hydrocarbons and carbon monoxide in addition to destroying soot trapped by the filter.
NO adsorber catalysts (NACs) are designed to adsorb NOx under lean exhaust conditions, release the adsorbed NO under rich conditions, and reduce the released NOx to form N2. NACs typically include a NOrstorage component (e.g., Ba, Ca, Sr, Mg, K, Na, Li, Cs, La, Y, Pr, and Nd), an oxidation component (preferably Pt) and a reduction component (preferably Rh). These components are contained on one or more supports.
Three-way catalysts (TWCs) are typically used in gasoline engines under stoichiometric conditions in order to convert NO to N2, carbon monoxide to 002, and hydrocarbons to CO2 and H20 on a single device.
Oxidation catalysts, and in particular diesel oxidation catalysts (DOCs), are well-known in the art. Oxidation catalysts are designed to oxidize CO to CO2 and gas phase hydrocarbons (HC) and an organic fraction of diesel particulates (soluble organic fraction) to CO2 and H20. Typical oxidation catalysts include platinum and optionally also palladium on a high surface area inorganic oxide support, such as alumina, silica-alumina and a zeolite.
The exhaust system can be configured so that the passive NO adsorber is located close to the engine and the additional after-treatment device(s) are located downstream of the passive NO adsorber. Thus, under normal operating conditions, engine exhaust gas first flows through the passive NO adsorber prior to contacting the after-treatment device(s). Alternatively, the exhaust system may contain valves or other gas-directing means such that during the low temperature period (below a temperature ranging from about 150 to 220°C, preferably 200°C, about as measured at the after-treatment device(s)), the exhaust gas is directed to contact the after-treatment device(s) before flowing to the passive NO adsorber. Once the after-treatment device(s) reaches the operating temperature (about 150 to 220°C, preferably 200°C, as measured at the after-treatment device(s)), the exhaust gas flow is then redirected to contact the passive NO adsorber prior to contacting the after-treatment device(s). This ensures that the temperature of the passive NO adsorber remains low for a longer period of time, and thus improves efficiency of the passive NO adsorber, while simultaneously allowing the after-treatment device(s) to more quickly reach operating temperature. U.S. Pat. No. 5,656,244, the teachings of which are incorporated herein by reference, for example, teaches means for controlling the flow of the exhaust gas during cold-start and normal operating conditions.
The invention also includes a method for treating exhaust gas from an internal combustion engine. The method comprises adsorbing NO onto the passive NO adsorber at temperatures at or below a low temperature, thermally desorbing NO from the passive NO adsorber at a temperature above the low temperature, and catalytically removing the desorbed NO on a catalyst component downstream of the passive NO adsorber. Preferably, the low temperature is about 200°C.
The catalyst component downstream of the passive NO adsorber is a SCR catalyst, a particulate filter, a SCR filter, a NO adsorber catalyst, a three-way catalyst, an oxidation catalyst, or combinations thereof The following examples merely illustrate the invention. Those skilled in the art will recognize many variations that are within the spirit of the invention and scope of the claims EXAMPLE 1: PREPARATION OF PASSIVE NO, ADSORBERS (PNAs) Palladium is added to a small pore chabazite (CHA) zeolite with a silica -to-alumina ratio (SAP) of 26, a medium pore ZSM-5 (MEI) zeolite with a SAR=23 and a large pore beta (BEA) zeolite with an SAR=26 to produce PNA 1A (Pd/CHA), Comparative PNA 1B (Pd/MFI) and Comparative PNA 1C (Pd/BEA) according to the following general procedure: The powder catalyst is prepared by wet impregnation of the zeolite using palladium nitrate as the precursor. After drying at 100°C, the samples are calcined at 500°C. The samples are then hydrothermally aged at 750°C in an air atmosphere containing 10% H20. The Pd loading for all the three samples is 1 wt.%.
Comparative PNA 1D (Pd/Ce02) is prepared following the procedures reported in WO 2008/047170. The Pd loading is 1 wt.%. The sample is hydrothermally aged at 750°C in an air atmosphere containing 10% H2O.
EXAMPLE 2: NO, STORAGE CAPACITY TESTING PROCEDURES The PNA (0.4 g) is held at an adsorption temperature about 80°C for 2 minutes in an NO-containing gas mixture flowing at 2 liters per minute at a MHSV of 300 L * hr-1 * g1. This adsorption stage is followed by Temperature Programmed Desorption (TPD) at a ramping rate of 10°C/minute in the presence of the NO-containing gas until the bed temperature reaches about 400°C in order to purge the catalyst of all stored NO for further testing. The test is then repeated starting from an adsorption temperature of 170°C, instead of 80°C.
The NO-containing gas mixture during both the adsorption and desorption comprises 12 vol.% 02, 200 ppm NO, 5 vol.% CO2, 200 ppm CO, 50 ppm C10h122, and 5 vol.% H2O.
The NO storage is calculated as the amount of NO2 stored per liter of catalyst with reference to a monolith containing a catalyst loading of about 3 g/in3. The results at the different temperatures are shown in Table 1.
The results at Table 1 show that the PNA of the invention (PNA 1A) demonstrates comparable NO, storage capacity both at 80 and 170°C as compared to Comparative PNA 1D. Although Comparative PNAs 1B and 1C exhibit higher NO storage capacity at 80°C, their NO storage capacity at 170°C is lower. For applications require high NO storage capacity at temperatures above about 170°C, PNA 1A and Comparative PNA 1D show advantages over Comparative PNAs 1B and 1C.
EXAMPLE 3: NO" STORAGE CAPACITY AFTER SULFUR EXPOSURE TESTING PROCEDURES PNA 1A and Comparative PNA 1D were subjected to a high level of sulfation by contacting them with a SO2 containing gas (100 ppm SO2, 10% 02, 5% CO2 and H20, balance N2) at 300°C to add about 64 mg S per gram of catalyst. The NO storage capacity of the catalysts before and after sulfation is measured at 100°C following the procedures of Example 2. The results are listed
in Table 2.
The results shown in Table 2 indicate that the PNA of the invention (PNA 1A) retains a significant amount of the NO storage capacity even after high a level of sulfur exposure. In contrast, Comparative PNA 1D loses almost all of its NO adsorption ability under the same sulfation conditions. The PNA of the invention exhibits much improved sulfur tolerance.
EXAMPLE 4: PREPARATION OF SMALL PORE MOLECULAR SIEVE SUPPORTED PASSIVE NO ADSORBERS (PNAs) Palladium is added to a series of small pore molecular sieves following the procedure of Example 1. The Pd loading is kept at 1 wt.% for all the samples. The samples are hydrothermally aged at 750°C in an air atmosphere containing 10% H20. The aged samples are then tested for their NO storage capacities following the procedure of Example 2.
These PNAs and their NO storage capacity at 80 and 170°C are listed in Table 3.
The results in Table 3 show that a wide range of small pore molecular sieve supported PNAs have high NO storage capacity.
EXAMPLE 5: PREPARATION OF SMALL PORE MOLECULAR SIEVE SUPPORTED PASSIVE NO, ADSORBERS (PNAS) WITH DIFFERENT
PALLADIUM LOADINGS
Palladium is added to a small pore molecular sieve CHA following the procedure of Example 1. The Pd loading is increased to 2 wt.% for the sample. The sample is hydrothermally aged at 750°C in an air atmosphere containing 10% H2O. The aged sample is tested for its NO, storage capacities following the procedure of Example 2. The NO storage capacities at 80 and 170°C on the sample are listed in Table 4.
The results in Table 4 show that increasing Pd loading increases the NO storage capacity.
TABLE 1: NO storage capacity (g NO2/L) Catalyst NO storage capacity NO storage capacity (80°C) (170°C) 1A 0.28 0.45 1B * 0.35 0.28 1C* 0.68 0.07 1D* 0.29 0.38
*Comparative Example
TABLE 2: NO storage capacity (g NO2/L) Catalyst NO storage capacity at 100°C Before Sulfation After Sulfation 1A 0.41 0.28 1 0 * 0.31 0.01 * Comparative Example TABLE 3 NO storage capacity (g NO2/L) Catalyst Small pore molecular sieve NO storage. capacity (170°C) capacity (80°C) NO storage PNA 1A CHA (SAR=26) 0.28 0.45 PNA 4A CHA (SAR=12) 0.42 0.60 PNA 4B CHA (SAR=13) 0.34 0.51 PNA 4C CHA (SAR=17) 0.20 0.42 PNA 40 CHA (SAR=22) 0.28 0.42 PNA 4E AEI (SAR=20) 0.33 0.57 PNA 4F ERI (SAR=12) 0.08 0.2 PNA 4G CHA (SAPO-34) 0.29 0.41 PNA 4H AEI-CHA Intergrowth (SAPO) 0.22 0.23 TABLE 4: NO storage capacity (g NO2/L) Catalyst Molecular Pd loading NO storage NO storage sieve (m cy.) capacity (80°C) capacity (170°C) PNA 1A CHA 1 0.28 0.45 (SAR=26) PNA 5A CHA 2 0.43 0.66 (SAR=26) Some further aspects of the invention are described below.
A passive NO adsorber effective to adsorb NO at or below a low temperature and release the adsorbed NO at temperatures above the low temperature, said passive NO adsorber comprising a noble metal and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms.
The passive NO adsorber as hereinbefore described wherein the noble metal is selected from the group consisting of platinum, palladium; rhodium, gold, silver, iridium, ruthenium, osmium, and mixtures thereof.
The passive NO adsorber as hereinbefore described wherein the noble metal is palladium.
The passive NO adsorber as hereinbefore described wherein the small pore molecular sieve is selected from the group consisting of aluminosilicate molecular sieves, metal-substituted aluminosilicate molecular sieves, aluminophosphate molecular sieves and metal-substituted aluminophosphate molecular sieves.
The passive NO adsorber as hereinbefore described wherein the small pore molecular sieve is selected from the group of Framework Type consisting of: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, Sly, THO, TSC, UEI, UFI, VNI, YUG, ZON, and mixtures or intergrowths thereof.
The passive NO adsorber as hereinbefore described wherein the small pore molecular sieve is selected from the group Framework Type consisting of AEI and CHA.
The passive NO adsorber as hereinbefore described wherein the intergrowths of the small pore molecular sieves include KFI-SIV, ITE-RTH, AEWUEI, AEI-CHA, and AEI-SAV.
The passive NO adsorber as hereinbefore described wherein the passive NO adsorber is coated onto a flow-through or filter substrate.
The passive NO adsorber as hereinbefore described wherein the flow-through substrate is a honeycomb monolith.
The passive NO adsorber as hereinbefore described wherein the passive NO adsorber is extruded to form a flow-through or filter substrate.
The passive NO adsorber as hereinbefore described wherein greater than 5 percent of the total amount of noble metal is located inside pores of the small pore molecular sieve.
The passive NO adsorber as hereinbefore described wherein the low temperature is 200°C.
An exhaust system for internal combustion engines comprising the passive NO, adsorber as hereinbefore described and a catalyst component selected from the group consisting a selective catalytic reduction (SCR) catalyst, a particulate filter, a SCR filter, a NO adsorber catalyst, a three-way catalyst, an oxidation catalyst, and combinations thereof.
A method for reducing NO in an exhaust gas, said method comprising adsorbing NO onto the passive NO adsorber as hereinbefore described at or below a low temperature, thermally desorbing NO from the passive NO adsorber at a temperature above the low temperature, and catalytically removing the desorbed NO on a catalyst component downstream of the passive NO adsorber.
The method as hereinbefore described wherein the catalyst component is selected from the group consisting a selective catalytic reduction (SCR) catalyst, a particulate filter, a SCR filter, a NO adsorber catalyst, a three-way catalyst, an oxidation catalyst, and combinations thereof.
The method as hereinbefore described wherein the low temperature is 200°C.

Claims (11)

  1. We claim: 1. Use of a passive NO adsorber comprising a noble metal and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms to adsorb NO at or below a low temperature and release the adsorbed 5 NO at temperatures above the low temperature.
  2. 2 The use of claim 1, wherein the low temperature is 200°C.
  3. 3. The use of claim 1 or claim 2 wherein the noble metal is selected from the group consisting of platinum, palladium, rhodium, gold, silver, iridium, ruthenium, osmium, and mixtures thereof.
  4. 4. The use of any of claims 1 to 3 wherein the noble metal is palladium.
  5. 5. The use of any of claims 1 to 4 wherein the small pore molecular sieve is selected from the group consisting of aluminosilicate molecular sieves, metal-substituted aluminosilicate molecular sieves, aluminophosphate molecular sieves and metal-substituted aluminophosphate molecular sieves.
  6. 6. The use of any of claims 1 to 5 wherein the small pore molecular sieve is selected from the group of Framework Type consisting of: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, Sly, THO, TSC, UEI, UFI, VNI, YUG, ZON, and mixtures or intergrowths thereof.
  7. 7. The use of claim 6 wherein the small pore molecular sieve is selected from the group Framework Type consisting of AEI and CHA.
  8. 8. The use of claim 6 wherein the intergrowths of the small pore molecular sieves include KFI-SIV, ITE-RTH, AEW-UEI, AEI-CHA, and AEI-SAV.
  9. 9. The use of any of claims 1 to 8 wherein the passive NO adsorber is coated onto a flow-through or filter substrate.
  10. 10. The use of claim 9 wherein the flow-through substrate is a honeycomb monolith.
  11. 11. The use of any of claims 1 to 8 wherein the passive NO adsorber is extruded to form a flow-through or filter substrate.
    12 The use of any of claims 1 to 11 wherein greater than 5 percent of the total amount of noble metal is located inside pores of the small pore molecular sieve.
GB1610017.4A 2014-12-08 2014-12-08 Passive NOx adsorber Active GB2538877B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1610017.4A GB2538877B (en) 2014-12-08 2014-12-08 Passive NOx adsorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1610017.4A GB2538877B (en) 2014-12-08 2014-12-08 Passive NOx adsorber
GB1421741.8A GB2522977B (en) 2013-12-06 2014-12-08 Passive NOx adsorber

Publications (3)

Publication Number Publication Date
GB201610017D0 GB201610017D0 (en) 2016-07-20
GB2538877A true GB2538877A (en) 2016-11-30
GB2538877B GB2538877B (en) 2017-04-26

Family

ID=56508267

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1610017.4A Active GB2538877B (en) 2014-12-08 2014-12-08 Passive NOx adsorber

Country Status (1)

Country Link
GB (1) GB2538877B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121503A1 (en) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Exhaust gas purification with NO oxidation catalyst and SCR-active particle filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159936A1 (en) * 2006-12-27 2008-07-03 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
WO2008132452A2 (en) * 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US20100267548A1 (en) * 2009-04-17 2010-10-21 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
WO2011112949A1 (en) * 2010-03-11 2011-09-15 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx
WO2012166868A1 (en) * 2011-06-01 2012-12-06 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems
WO2012170421A1 (en) * 2011-06-05 2012-12-13 Johnson Matthey Public Limited Company Platinum group metal (pgm) catalyst for treating exhaust gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US189518A (en) * 1877-04-10 Improvement in suction and force pumps
US159936A (en) * 1875-02-16 Improvement in harvester-rakes
US267548A (en) * 1882-11-14 Fence

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159936A1 (en) * 2006-12-27 2008-07-03 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
WO2008132452A2 (en) * 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US20100267548A1 (en) * 2009-04-17 2010-10-21 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
WO2011112949A1 (en) * 2010-03-11 2011-09-15 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx
US20120189518A1 (en) * 2010-03-11 2012-07-26 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx
WO2012166868A1 (en) * 2011-06-01 2012-12-06 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems
WO2012170421A1 (en) * 2011-06-05 2012-12-13 Johnson Matthey Public Limited Company Platinum group metal (pgm) catalyst for treating exhaust gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microporous and Mesoporous Materials, 2007, Vol.104 (1-3), Altwasser S. et. al., pages 281-288, note particularly page 287, disclosing ruthenium particles in 8-membered ring zeolites with various framework types, viz., LTA, KFI, MER and RHO, which are suitable for use as NOx adsorber. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121503A1 (en) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Exhaust gas purification with NO oxidation catalyst and SCR-active particle filter

Also Published As

Publication number Publication date
GB201610017D0 (en) 2016-07-20
GB2538877B (en) 2017-04-26

Similar Documents

Publication Publication Date Title
US11571679B2 (en) Passive NOx adsorber
JP7179697B2 (en) Passive NOx Adsorber Containing Noble Metals and Small Pore Molecular Sieves
EP3274077B1 (en) Passive nox adsorber comprising a noble metal and a molecular sieve having an off framework type
EP3485964B1 (en) Cold start catalyst and its use in exhaust systems
US10618003B2 (en) Noble metal-molecular sieve catalysts
US20160250594A1 (en) PASSIVE NOx ADSORBER
Rajaram et al. Passive nox adsorber
GB2538877A (en) Passive NOx adsorber