GB2538228A - Signal processing - Google Patents

Signal processing Download PDF

Info

Publication number
GB2538228A
GB2538228A GB1507657.3A GB201507657A GB2538228A GB 2538228 A GB2538228 A GB 2538228A GB 201507657 A GB201507657 A GB 201507657A GB 2538228 A GB2538228 A GB 2538228A
Authority
GB
United Kingdom
Prior art keywords
image
signal
stochastic
input signal
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1507657.3A
Other versions
GB2538228B (en
GB201507657D0 (en
Inventor
Charles Rawlinson Jones Christopher
Smith Leanne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems PLC
Original Assignee
BAE Systems PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAE Systems PLC filed Critical BAE Systems PLC
Priority to GB1507657.3A priority Critical patent/GB2538228B/en
Publication of GB201507657D0 publication Critical patent/GB201507657D0/en
Publication of GB2538228A publication Critical patent/GB2538228A/en
Application granted granted Critical
Publication of GB2538228B publication Critical patent/GB2538228B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • G06T5/70
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Abstract

An input signal (20), e.g. an image comprising pixels (22), is processed by adding stochastic noise signals (24, fig. 6) to produce an output signal (28, fig. 7). The stochastic noise signals may be pseudorandom signals that may be successively added. A value of a function of the signal to noise ratio of the input signal may be determined, and the number of stochastic noise signals may equal the determined value. The stochastic noise signals may be generated by generating a pseudorandom initial stochastic signal having length greater than or equal to the length of the input signal multiplied by the number of noise signals. The initial stochastic signal may then be segmented. The stochastic noise signals may be a further image comprising a second number of pixels, that number may be greater than or equal to the number of pixels in the input image. Adding a stochastic noise signal to the input signal may comprise superimposing a noise image onto the input signal image, and may comprise adding a common noise value to each channel (e.g. R, G & B) value of each pixel. Apparatus performing the method may be used in aircraft.

Description

SIGNAL PROCESSING
FIELD OF THE INVENTION
The present invention relates to processing signals.
BACKGROUND
Aircraft, for example unmanned air vehicles (UAVs), are commonly used to perform a variety of tasks. Such tasks include capturing images of areas of terrain for, for example, the purpose of performing a wide area search, to performing a surveillance operation, etc. Signal measured by an aircraft typically suffer unwanted modification often referred to as noise. Noise may be introduced into a signal, for example, during capture, storage, transmission, processing, and/or conversion.
SUMMARY OF THE INVENTION
In a first aspect, the present invention provides a method of processing an input signal. The method comprises adding, to the input signal, a plurality of stochastic noise signals so as to produce an output signal.
The method may further comprise measuring a parameter of a system, thereby providing the input signal.
The stochastic noise signals may be successively added to the input signal, i.e. one after the other.
The method may further comprise determining a value of a function of a signal to noise ratio of the input signal. The number of stochastic noise signals in the plurality may be equal to the determined value. For example, the number of stochastic noise signals may be inversely proportional to the signal to noise ratio of the input signal. For example, the higher the signal to noise ratio of the input signal, the fewer stochastic noise signals are added to the input signal. -2 -
One or more of the stochastic noise signals may be pseudorandom signals. For example, one or more of the pseudorandom signals may be based on an irrational number, such as -rr or e.
The method may further comprise generating the plurality of stochastic noise signals.
Generating the plurality of stochastic noise signals may comprises generating a stochastic signal having a length greater than or equal to a length of the input signal multiplied by the number of stochastic noise signals in the plurality, and segmenting the stochastic signal into a plurality of segments, 1 thereby providing the plurality of stochastic noise signals. For example, in some aspects the input signal has length N, and generating the plurality of stochastic noise signals comprises generating a stochastic signal having length C x N, (where C is an integer value, preferably 2 or greater), and segmenting that stochastic signal of length C x N into C segments, each segment having length N. The segments of length N may then be sequentially added to the length N input signal. In other words, the plurality of stochastic noise signals may be generated by generating a pseudorandom initial stochastic signal having length equal to the length of the input signal multiplied by an integer which is preferably greater than or equal to two. The initial stochastic signal may then be segmented into a plurality of segments. The number of segments may be equal to the integer value. The length of each segment may be equal to the length of the input signal.
One or more of the stochastic noise signals may be bipolar stochastic signals. One or more of the stochastic noise signals may have zero mean.
The input signal may comprise an image having a first plurality of pixels.
Each stochastic noise signal may be an image comprising a second plurality of pixels. The number of pixels in the second plurality may be greater or equal to the number of pixels in the first plurality. Preferably, the number of pixels in the second plurality is equal to the number of pixels in the first plurality. Adding a stochastic noise signal to the input signal may comprise superimposing a noise image onto the input signal image. An image may be, for example, a camera -3 -image (e.g. a visible light, infrared, or ultraviolet image), or a range image (e.g. a LIDAR or radar images such as a ground penetrating radar image).
The input signal may comprise an image including image data from a plurality of independent channels. For example, the input signal may include image data from red (R), green (G), and blue (B) channels of one or more cameras. Adding a stochastic noise signal to the input signal may comprise, for a pixel in the image, adding a common noise value to each channel value of that pixel.
In a further aspect, the present invention provides apparatus for processing an input signal. The apparatus comprises a signal processor configured to add, to the input signal, a plurality of stochastic noise signals so as to produce an output signal.
In a further aspect, the present invention provides an aircraft comprising apparatus according to the receding aspect.
In a further aspect, the present invention provides a program or plurality of programs arranged such that when executed by a computer system or one or more processors it/they cause the computer system or the one or more processors to operate in accordance with the method of any preceding aspect.
In a further aspect, the present invention provides a machine readable 20 storage medium storing a program or at least one of the plurality of programs according to the preceding aspect.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic illustration (not to scale) of a scenario in which an 25 aircraft implements an embodiment of a method of capturing and processing images; Figure 2 is a schematic illustration (not to scale) of the aircraft; Figure 3 is a process flow chart showing certain steps of a process in which the embodiment of the method of capturing and processing images is 30 performed; -4 -Figure 4 is a process flow chart showing certain steps of an example image processing method; Figure 5 is a schematic illustration (not to scale) showing an image by a camera on the aircraft; Figure 6 is a schematic illustration (not to scale) showing a noise image produced by a processor on the aircraft; and Figure 7 is a schematic illustration (not to scale) of a processed image.
DETAILED DESCRIPTION
to Figure 1 is a schematic illustration (not to scale) of a scenario 1 in which an aircraft 2 is used to implement an embodiment of a method of capturing and processing images.
In this embodiment, the aircraft 2 is an unmanned aircraft.
In this scenario 1, the aircraft 2 flies over an area of terrain 4. As the aircraft 2 flies over the area of terrain 4, the aircraft 2 captures images of a region of interest 6 as described in more detail later below with reference to Figure 2. An object of interest 8 is located within the region of interest 6.
Figure 2 is a schematic illustration (not to scale) of the aircraft 2.
In this embodiment, the aircraft 2 comprises a camera 10, a processor 12, and a transceiver 14.
The camera 10 is arranged to capture an image of the region of interest 6 of the area of terrain 4 as the aircraft 2 flies above the area of terrain 4. The camera 10 is configured to capture 2-dimensional image data. The camera 10 is configured to capture video image and/or single still images. The camera 10 measures an intensity of electromagnetic radiation reflected by or emitted from objects/terrain features in the area of terrain 4. Example sensors for the camera 10 include, but are not limited to, a visible light detecting camera configured to detect, for example, sunlight reflected by objects/terrain features in the area of terrain 4, an infrared camera configured to capture infrared radiation reflected or -5 -emitted by objects/terrain features in the area of terrain 4, and an ultraviolet camera.
In this embodiment, the camera 10 is connected to the processor 12 such that, in operation, images captured by the camera 10 are sent to the processor 12.
In this embodiment, the processor 12 is configured to process image data received from the camera 10 as described in more detail later below with reference to Figure 3. The processor 12 is connected to the transceiver 14 such that, in operation, the processor 12 sends an output to the transceiver 14.
The transceiver 14 is configured to send the information received from the processor 12, from the aircraft 2, to an entity remote from the aircraft 2, for example, a different aircraft or a ground station.
Apparatus, including the processor 12, for implementing the above arrangement, and performing the method steps to be described later below, may be provided by configuring or adapting any suitable apparatus, for example one or more computers or other processing apparatus or processors, and/or providing additional modules. The apparatus may comprise a computer, a network of computers, or one or more processors, for implementing instructions and using data, including instructions and data in the form of a computer program or plurality of computer programs stored in or on a machine readable storage medium such as computer memory, a computer disk, ROM, PROM etc., or any combination of these or other storage media.
Figure 3 is a process flow chart showing certain steps of a process in which an embodiment of a method of capturing and processing images is 25 performed.
At step s2, the aircraft 2 takes-off or launches, for example, from a ground station.
At step s4, as the aircraft 2 flies over the area of terrain 4, the camera 10 captures an image of the region of interest 6. -6 -
In this embodiment, measurements taken by the camera 10 are subject to noise. Thus, the image captured by the camera 10 contains noise, i.e. the image is noisy. The noise within the captured image may be stochastic noise. Noise within the captured image may be a result of any appropriate noise cause. For example, the noise may be an artefact of the system used to capture the image, store the image, and/or transfer the image from the camera 10 to the processor 12. Noise within the image may include, but is not limited to, image blur, glare, and/or the presence of objects/features in the images that are of no interest (e.g. rocks and boulders, foliage, etc.).
In this embodiment, underlying structure within the captured images (e.g. the structure of the object of interest 8) is, at least to some extent, hidden within image noise.
The image captured at step s4 is sent from the camera 10 to the processor 12.
At step s6, the processor 12 processes the image captured by the camera 10.
The processor 10 repeatedly adds a stochastic signal (i.e. random noise) to the image. An example way in which the processor 12 may add random noise, again and again, to the image is described in more detail later below with reference to Figures 4 to 6.
The repeated addition of random noise to the image advantageously tends to increase the visibility of the object of interest 8 in the image.
After processing the image, the processor 12 sends the processed image to the transceiver 14.
At step s8, the transceiver 14 transmits, from the aircraft 2, for use by an entity remote from the aircraft 2, the processed image.
Thus, a method of capturing and processing images is provided.
Returning now to the description of step s6, Figure 4 is a process flow chart showing certain steps of an example image processing method performed by the processor 12. -7 -
At step s10, the image is provided.
Figure 5 is a schematic illustration (not to scale) showing the image 20 captured by the camera 10 at step s4.
In this embodiment, the image 20 comprises a plurality of pixels 22 5 arranged as an m x n matrix of pixels 22.
In this embodiment, the image 20 is in a red-green-blue (RGB) format, i.e. each pixel 22 in the image 20 is assigned a coordinate [R, G, B] representative of its colour in the RGB colour space. In particular, the pixel 22 in the ith row and jth column of the image 20 has the coordinate [rd, gd, bu] in the 10 RGB colour space.
At step s12, the processor 12 generates a stochastic signal S (for example, a pseudorandom signal) of length m x n x C, where C is a predetermined constant value. In this embodiment, the signal S is a random (e.g. pseudorandom) sequence comprising m x n x C values. Preferably, C is greater than or equal to 20. The constant C is the number of noise signals that are to be added to the image 20.
Pseudo-random sequences random sequences that tend to be capable of being computed with the certainty of randomness, for example, if they are used in the following manner: if 100 random sequences of 100 random bits are to be generated, then a pseudo-random sequence of 10,000 bits is generated and subsequently divided into 100 sequences of 100 bits.
In some embodiments, the value of -rr is used to produce a pseudorandom signal. For example, the stochastic signal S generated at step s12 may comprise the first m x n x C digits of Tr.
In this embodiment, the generated signal S is an amplitude modulated signal. Also, the signal S is a bipolar random signal. Also, the signal S has an average value (e.g. average amplitude over time) of zero.
The signal S may be expressed as a sequence of random (e.g. pseudorandom) values Sibk, where i = 1, j = 1, n; and k = 1, C, i.e.: -8 -S = [511,1, S12,11-, Smn,1, 511,2, 512,2,..., Smn,2,--* S11,C, 512,C,**-, Smn,C1 At step s14, the processor 12 segments the generated signal S into C sequential segments, each segment containing m x n values. For example, the signal S may be segmented as follows: [S11,1, 512,1,..., Smn,1]; [S11,2, S12,2,**-, Smn,2]; [Sii,C, S12,C,*** ,Smn,d* At step 516, using the segmented signal S, the processor 12 constructs C "noise images".
In this embodiment, each of the C segments of the signal S comprises m x n random or pseudorandom values Silk For each of the C segments of the signal S, a noise image is constructed by assigning each of the m x n values Silk to a respective pixel of an m x n (noise) image. The value Silk assigned to a pixel of the noise image defines the red, green, and blue (RGB) coordinate of that pixel.
Figure 6 is a schematic illustration (not to scale) showing a noise image 24 produced by the processor 12 at step s16.
The noise image 24 shown in Figure 6 is the kth noise image 24, i.e. the noise image corresponding to the kth segment of the signal S. The noise image 24 comprises a plurality of further pixels 26 arranged as an m x n matrix of pixels 26. The noise image 24 is in a red-green-blue (RGB) format, i.e. each further pixel 26 in the noise image 24 is assigned an [R, G, B] coordinate. In particular, the further pixel 26 in the ith row and jth column of the kth noise image 24 has the RGB coordinate [Silk, Silk, Silk] in the RGB colour space.
Thus, the processor 12 generates C noise images, i.e. a noise image for each k =1,..., C -9 -At step s18, the processor repeatedly adds (i.e. one after the other) the C noise images 24 to the image 20.
In this embodiment, a noise image 24 is added to the image 20 by, for each pixel 22 in the image 20, adding, to the RGB coordinates of that pixel 22, the RGB coordinates of corresponding further pixel 26 in that noise image 24.
Thus, if the kth noise image 24 was added to the image 20, the RGB coordinates of the pixel 22 in the ith row and jth column of the image 20 would be [rij + Sij,k, gil + Sij,k, bij The repeated addition of the C noise images 24, one after the other, to 10 the image 20 produces the processed image.
Figure 7 is a schematic illustration (not to scale) of the processed image 28. Advantageously, the repeated addition of the C noise images 24 tends to cancel out, at least to some extent, the noise present within the original image 20. Thus, the object of interest 8 tends to be more prominent (i.e. visible or discernible) in the processed image 28 compared to in the original image 20.
Thus, an example image processing method is provided.
The above described method and apparatus advantageously tends to improve the signal to noise ratio of a measured signal. The above described method and apparatus advantageously tends to allow for improved object detection, object identification, object classification, object tracking, and the like.
The above described method tends to be relatively quick and efficient (e.g. in terms of computing power) compared to many conventional processes.
Advantageously, pseudorandom signals tend to be easy to generate. Furthermore, as mentioned above, pseudorandom signals tend to provide certainty of randomness.
Advantageously, the above described system and method tends to be useable to facilitate information transfer (e.g. two-way communication) in "busy" bandwidths, by reducing undesirable noise in a measured signal.
A further advantage of using pseudorandom signals is that they tend to be reproducible. This tends to allow the process to be repeated and checked. This also tends to provide a degree of process validation.
It should be noted that certain of the process steps depicted in the flowchart of Figures 3 and 4 and described above may be omitted or such process steps may be performed in differing order to that presented above and shown in Figures 3 and 4. Furthermore, although all the process steps have, for convenience and ease of understanding, been depicted as discrete temporally-sequential steps, nevertheless some of the process steps may in fact be performed simultaneously or at least overlapping to some extent temporally.
In this embodiment, the data processing method is implemented in the scenario described in more detail earlier above with reference to Figure 1. However, in other embodiments, the data processing method is implemented in a different scenario, which may include one or more entities instead of or in addition to one or more of the entities described above and shown in Figure 1.
In the above embodiments, images are captured by an aircraft. Also, the image are processed on the aircraft. However, in other embodiments, images may be captured by a different entity, for example, a different type of vehicle such as a land-based or water-based vehicle. In some embodiments, the images may be processed remotely from the vehicle, for example at a ground station. In some embodiments, processing of the image data may be distributed across multiple remote entities.
In the above embodiments, the camera is a sensor configured to measure electromagnetic radiation. However, in other embodiments, a different type of sensor is used, for example, a range sensor (such as LIDAR), a radar system (such as a ground penetrating radar), or an acoustic sensor. In some embodiments, multiple sensors may be used. Image data from multiple sensors may be processed independently, or may be combined before or after the above described noise addition process is performed.
In the above embodiments, the data captured by the camera is 2-dimensional image data. However, in other embodiments the data may be a different type of data. For example, in some embodiments, the data is 1-dimensional or 3-dimensional. In some embodiments, data other than image data is captured and processed.
In the above embodiments, the random signal S comprises a plurality of discrete random values. The signal S may be a digital signal. The signal S may be generated digitally, or may be a digital representation of an analogue signal. However, in other embodiments the random signal S may be a continuous signal. In such embodiments, the signal S may be an analogue representation of digital data.
In the above embodiments, the random or pseudorandom signal is a bipolar random signal that has a mean of zero. However, in other embodiments, the signal S has a different form. For example, the signal S may be a positive signal (i.e. define positive noise). In such embodiments, the image processing method may further comprises subtracting an average value of the added noise from each of the pixels in the image, e.g. after the random noise images have been added.
In the above embodiments, in each noise image, the values of the R, G, and B coordinates of a given further pixel in that noise image are equal to each other. The R, G, and B channels for the image data are independent from each other. Thus, having values of the R, G, and B coordinates of a further pixel in the noise image be equal to each other tends not to be detrimental to the noise reducing effect of the process. Having values of the R, G, and B coordinates of a further pixel in the noise image tends to provide for reduced computing power compared to if those R, G, and B coordinates were not equal, for example, as a shorter random signal S may be generated. Nevertheless, in some embodiments the R, G, and B coordinates of one or more of the further pixels in one or more of the noise images are not all equal. For example, in some embodiments, a further random signal S' of length 3x m x n x C may be generated. This signal S' may be segmented into C segments, each containing 3x m x n values. Each further pixel of each in x n noise image may then be assigned 3 random values, which may define the RGB coordinates of that further pixel.
In the above embodiments, the noise images are added to the original captured image repeatedly, i.e. one after the other. However, in other embodiments the noise images may be added to the image in a different way.
In the above embodiments, C noise images are added to the captured image. Preferably, C is greater than or equal to twenty. In some embodiments, the value of C may be determined based upon a signal to noise ratio of the measured signal/image, i.e. C = f(SNR). For example, the higher the signal to noise ratio of the measured signal, the lower the value of C. In some embodiments, the value of C may be determined based upon a desired level of signal-noise differentiation.
In this embodiment, random noise is added to the captured image as a plurality of noise images. However, in other embodiments, random noise may be added to the image in a different way. For example, in some embodiments, random noise is added to the image in a raster scanning pattern, e.g. line by line moving from left to right in the image, or column by column moving from top to bottom in the image.

Claims (15)

  1. CLAIMS1. A method of processing an input signal (20), the method comprising adding, to the input signal (20), a plurality of stochastic noise signals (24) so as to produce an output signal (28).
  2. 2. A method according to claim 1, further comprising measuring a parameter of a system, thereby providing the input signal (20).
  3. 3. A method according to claim 1 or 2, wherein the stochastic noise signals (24) are successively added to the input signal (20).
  4. 4. A method according to any of claims 1 to 3, wherein the method further comprises determining a value of a function of a signal to noise ratio of the input signal (20); and the number of stochastic noise signals (24) in the plurality is equal to the determined value.
  5. 5. A method according to any of claims 1 to 4, wherein the stochastic noise signals (24) are pseudorandom signals.
  6. 6. A method according to any of claims 1 to 5, the method further comprising generating the plurality of stochastic noise signals (24).
  7. 7. A method according to claim 6, wherein generating the plurality of stochastic noise signals (24) comprises: generating a stochastic signal having a length greater than or equal to a length of the input signal (20) multiplied by the number of stochastic noise signals (24) in the plurality; and segmenting the stochastic signal into a plurality of segments, thereby providing the plurality of stochastic noise signals (24).
  8. 8. A method according to any of claims 1 to 7, wherein the stochastic noise signals (24) are bipolar stochastic signals having zero means.
  9. 9. A method according to any of claims 1 to 8, wherein the input signal (20) comprises an image (20) having a first plurality of pixels (22); each stochastic noise signal (24) is a further image (24) comprising a second plurality of pixels (26); and the number of pixels (26) in the second plurality is greater or equal to the number of pixels (22) in the first plurality.
  10. 10. A method according to claim 9, wherein adding a stochastic noise signal (24) to the input signal (20) comprises superimposing a noise image (24) onto the input signal image (20).
  11. 11. A method according to and of claims 1 to 10, wherein: the input signal (20) comprises an image (20) including image data from a plurality of independent channels (R, G, B); and adding a stochastic noise signal (24) to the input signal (20) comprises, for a pixel (22) in the image (20), adding a common noise value to each channel value of that pixel (22).
  12. 12. Apparatus for processing an input signal (20), the apparatus comprising a signal processor (12) configured to add, to the input signal (20), a plurality of stochastic noise signals (24) so as to produce an output signal (28).
  13. 13. An aircraft (2) comprising apparatus according to claim 12.
  14. 14. A program or plurality of programs arranged such that when executed by a computer system or one or more processors it/they cause the computer system or the one or more processors to operate in accordance with the method of any of claims 1 to 11.
  15. 15. A machine readable storage medium storing a program or at least one of the plurality of programs according to claim 14.
GB1507657.3A 2015-05-05 2015-05-05 Signal processing Active GB2538228B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1507657.3A GB2538228B (en) 2015-05-05 2015-05-05 Signal processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1507657.3A GB2538228B (en) 2015-05-05 2015-05-05 Signal processing

Publications (3)

Publication Number Publication Date
GB201507657D0 GB201507657D0 (en) 2015-06-17
GB2538228A true GB2538228A (en) 2016-11-16
GB2538228B GB2538228B (en) 2021-08-25

Family

ID=53489140

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1507657.3A Active GB2538228B (en) 2015-05-05 2015-05-05 Signal processing

Country Status (1)

Country Link
GB (1) GB2538228B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171964A1 (en) * 2005-10-20 2007-07-26 Syracuse University Optimized Stochastic Resonance Method for Signal Detection and Image Processing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2408951A1 (en) * 1977-11-09 1979-06-08 Aerospatiale DEVICE FOR THE TRANSMISSION OF STOCHASTIC INFORMATION
US5144308A (en) * 1991-05-21 1992-09-01 At&T Bell Laboratories Idle channel tone and periodic noise suppression for sigma-delta modulators using high-level dither
JP3234202B2 (en) * 1999-08-19 2001-12-04 独立行政法人通信総合研究所 Pseudo noise sequence output device, transmission device, reception device, communication system, pseudo noise sequence output method, transmission method, reception method, and information recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171964A1 (en) * 2005-10-20 2007-07-26 Syracuse University Optimized Stochastic Resonance Method for Signal Detection and Image Processing

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chouhan R. et al., "Contrast Enhancement of Dark Images using Stochastic Resonance in Wavelet Domain", 2012, Int. J. of Machine Learning and Computing, vol. 2, No. 5, pages 711-715, October 2012, available at http://www.ijmlc.org/papers/220-L477.pdf (accessed 26 October 2015) *
https://en.wikipedia.org/wiki/Stochastic_resonance (accessed 26 October 2015) *
Ye Q. et al., "Image Enhancement using Stochastic Resonance", 2004, Int. Conf. on Image Processing, 24-27 Oct 2004, vol. 1, pages 263-266, available at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1418740 (accessed 26 October 2015) *

Also Published As

Publication number Publication date
GB2538228B (en) 2021-08-25
GB201507657D0 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
DE102016107959B4 (en) Structured light-based multipath erasure in ToF imaging
US11624835B2 (en) Processing of LIDAR images
JP3091807B2 (en) System and method for processing optical signals
CN111965626B (en) Echo detection and correction method and device for laser radar and environment sensing system
EP2329453B1 (en) Image processing device using selective neighboring voxel removal and related methods
CN110992298A (en) Genetic algorithm-based radiation source target identification and information analysis method
US20190391255A1 (en) Method and Device for Geo-Referencing Aerial Image Data with the Aid of SAR Image Data
CN111047650B (en) Parameter calibration method for time-of-flight camera
GB2330717A (en) Global information system
US10302551B2 (en) Intelligent sensor pointing for remote sensing applications
WO2012038705A1 (en) Method and system for processing synthetic aperture radar images
Kekre et al. Image fusion using Kekre's hybrid wavelet transform
CN105139432B (en) Infrared DIM-small Target Image emulation mode based on Gauss model
CN111091508B (en) Color point cloud filtering method based on color three-dimensional scanning laser radar
CN114503550A (en) Information processing system, information processing method, image capturing apparatus, and information processing apparatus
GB2538228A (en) Signal processing
EP3091503A1 (en) Signal processing
WO2016005738A1 (en) Method and system for surveillance using synthetic aperture radar images
CN111489398B (en) Imaging equipment calibration method and device
JP6200821B2 (en) Forest phase analysis apparatus, forest phase analysis method and program
CN107038706A (en) Infrared image confidence level estimation device and method based on adaptive mesh
CN103197773A (en) Method and system for detecting three-dimensional positional information of input device
CN102667853A (en) Filter setup learning for binary sensor
CA3125793A1 (en) Harvest confirmation system and method
KR102404771B1 (en) Automated wild animal detection method and device by drone-mounted thermal camera shoot image