GB2535622A - Rolling-element bearing and method of countering load applied to rolling-element bearing - Google Patents

Rolling-element bearing and method of countering load applied to rolling-element bearing Download PDF

Info

Publication number
GB2535622A
GB2535622A GB1600213.1A GB201600213A GB2535622A GB 2535622 A GB2535622 A GB 2535622A GB 201600213 A GB201600213 A GB 201600213A GB 2535622 A GB2535622 A GB 2535622A
Authority
GB
United Kingdom
Prior art keywords
rolling
oil
bearing ring
oil chamber
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1600213.1A
Other versions
GB2535622B (en
GB201600213D0 (en
Inventor
John Durling Christopher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of GB201600213D0 publication Critical patent/GB201600213D0/en
Publication of GB2535622A publication Critical patent/GB2535622A/en
Application granted granted Critical
Publication of GB2535622B publication Critical patent/GB2535622B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/08Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C21/00Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/04Relieving load on bearings using hydraulic or pneumatic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/28Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • F16C33/6651Retaining the liquid in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6677Details of supply of the liquid to the bearing, e.g. passages or nozzles from radial inside, e.g. via a passage through the shaft and/or inner ring

Abstract

A rolling-element bearing 10 comprises inner 11 and outer bearing rings, a plurality of rolling elements 13 and at least one oil chamber 14 located between the inner and outer rings. The or each oil chamber is defined by the inner and outer rings and an oil chamber housing 15. The housing is fixed to one of the inner and outer rings and the bearing comprises at least one duct 16 corresponding to the or each oil chamber. The at least one duct provides a supply of oil to the corresponding oil chamber. Each duct extends through the bearing ring to which the oil chamber housing is fixed. The bearing may comprise two rows of rolling elements with oil chamber/s between them. The chamber housing may include at least one hole for supplying oil to the rolling elements. The bearing may form part of a gas turbine engine.

Description

ROLLING-ELEMENT BEARING AND METHOD OF COUNTERING LOAD APPLIED TO ROLLING-ELEMENT BEARING
The present disclosure relates to a rolling-element bearing and a method of countering a load applied to a rolling-element bearing. More particularly, the rolling-element bearing may be for a mechanism included in a device such as, by way of example and not by way of limitation, a geared fan of a turbo fan aero engine.
A rolling-element bearing (sometimes called a roller bearing) might be used to support a rotating component such as a gear. The lifetime of a rolling-element bearing depends on various factors or parameters such as the load to be carried, the rotation speed, and the working temperature, etc. Rolling-element bearings can come in different sizes. The size of the rolling-element bearing can affect the lifetime of the rolling-element bearing. Hence, a rolling-element bearing can be sized to give a predicted lifetime.
In high duty environments, it can be difficult to design a rolling-element bearing that has an adequate lifetime as well as acceptable physical dimensions. Increasing the size of a rolling-element bearing may typically reduce the load on particular parts of the rolling-element bearing. However, increasing the size of a rolling-element bearing does not always result in lower loads because of other factors such as centrifugal loading. This is particularly the case when the rolling-element bearing is part of a gear set such as a planetary epicyclic gear set. Factors such as centrifugal loading can reduce or even cancel the benefits of increasing the size of the rolling-element bearing. Furthermore, the rolling-element bearing should be designed to have an acceptable size and weight.
Within a given size range, the load capacity of a rolling-element bearing may be increased by employing extra rows (sometimes called sets) of rolling elements (e.g. rollers). However, increasing the number of rolling elements presents its own problems such as increased weight, cost and oil supply requirements. Furthermore, increasing the number of rollers used may still not give the required off-load (i.e. the amount by which a load on particular parts of the rolling-element bearing is reduced).
Accordingly, it is desirable to provide a rolling-element bearing with an increased lifetime for a given size and weight.
According to an aspect, there is provided a rolling-element bearing comprising an inner bearing ring and an outer bearing ring. The inner bearing ring and the outer bearing ring define an axial direction and a circumferential direction. The rolling-element bearing comprises a plurality of rolling elements. The rolling elements are configured to roll circumferentially between the inner bearing ring and the outer bearing ring. The rolling-element bearing comprises at least one oil chamber. The oil chamber is between the inner bearing ring and the outer bearing ring. Each oil chamber is defined by the inner bearing ring, the outer bearing ring and an oil chamber housing. The oil chamber housing is fixed to one of the inner bearing ring and the outer bearing ring. The rolling-element bearing comprises at least one duct corresponding to each oil chamber. The at least one duct is for a supply of oil to the corresponding oil chamber. Each duct may extend through the bearing ring to which the oil chamber housing is fixed.
Accordingly, the lifetime of the rolling-element bearing is increased. In particular, by providing the oil chamber, oil supplied to the oil chamber acts directly against a load applied to the rolling-element bearing. For example, if the oil chamber housing is fixed to the inner bearing ring, then the oil acts directly against the inner surface of the outer bearing ring, thereby opposing a load applied radially inwards on the outer surface of the outer bearing ring. This reduces the resultant effective load applied to particular parts of the rolling-element bearing, such as the rolling elements. This improves the load capacity of the rolling-element bearing and increases its lifetime.
Furthermore, for a given load offset, the rolling-element bearing can be lighter compared to conventional rolling-element bearings in the prior art. Additionally, the rolling-element bearing is more tolerant of failure. This means that a failure such as a sudden reduction of the oil pressure would not lead to an immediate failure of the rolling-element bearing. Instead, the oil chamber would fail to offset the load, which would reduce the lifetime of the rolling-element bearing, but not prevent the rolingelement bearing from functioning.
The at least one oil chamber may be spaced from or adjacent to the rolling elements in the axial direction.
The rolling-element bearing may comprise two axially spaced sets of rolling elements, wherein each oil chamber is axially between the two sets of rolling elements.
Each oil chamber may extend circumferentially between the inner bearing ring and the outer bearing ring over an arc of less than 180°. The arc may be at least 110°.
Each oil chamber may be accommodated adjacent to the bearing ring to which it is not fixed with so narrow a clearance that the oil chamber is a self-sealed space.
The oil chamber housing comprises at least one hole for supplying oil from the oil chamber to the rolling elements.
The rolling-element bearing may comprising a plurality of oil chambers spaced from each other in the axial direction. Each of a plurality of axially spaced oil chambers may extend circumferentially between the inner bearing ring and the outer bearing ring over the same arc. The rolling-element bearing may comprise two axially spaced sets of rolling elements and three axially spaced sets of oil chambers, wherein one of the sets of oil chambers is axially between the two sets of rolling elements and each set of rolling elements is axially between two of the sets of oil chambers.
The rolling-element bearing may comprise a plurality of oil chambers that extend circumferentially between the inner bearing ring and the outer bearing ring over non-overlapping arcs.
According to an aspect, there is provided a mechanism comprising: the rolling-element bearing of any preceding claim; and a rotating object integral with, or in an interference fit with, the bearing ring to which the oil chamber is not fixed.
The mechanism may comprise a load applying component that applies a load on the rolling-element bearing in a load direction, which is radial with respect to the rolling-element bearing, wherein at least one oil chamber is between the applied load and the bearing ring to which it is fixed, such that oil supplied to the oil chamber acts on the bearing ring to which the oil chamber is not fixed so as to oppose the applied load.
The mechanism may comprise an oil supply system configured to supply oil through the at least one duct to the corresponding oil chamber.
The mechanism may be arranged such that the supply of oil for at least one of the oil chambers is controllable independently from the supply of oil for at least one other of the oil chambers.
According to an aspect, there is provided a method of countering a load applied to the rolling-element bearing. The method may comprise supplying oil to the at least one oil chamber, such that oil supplied to the at least one oil chamber acts on the bearing ring to which the oil chamber is not fixed so as to oppose the applied load.
According to an aspect, there is provided a rolling-element bearing substantially as described herein and/or with reference to the accompanying drawings.
According to an aspect, there is provided a method of countering a load applied to a rolling-element bearing substantially as described herein and/or with reference to the accompanying drawings.
Embodiments of the invention will now be described by way of non-limitative examples with reference to the accompanying drawings in which: Figure 1 shows a rolling-element bearing; Figure 2 shows the rolling-element bearing of Figure 1 without the outer bearing ring; Figure 3 shows the rolling-element bearing of Figure 2 from a different angle; Figure 4 shows the distribution of a load applied to the rolling-element bearing of Figure 1; Figure 5 shows the oil pressure distribution opposing the applied load; Figure 6 shows an axial section of the rolling-element bearing of Figure 1; Figure 7 shows the axial section of Figure 6 shown from a different angle; and Figure 8 shows a radial section of the rolling-element bearing of Figure 1. Figure 9 shows a rolling element bearing having axially separated oil chambers.
With reference to Figure 1, a rolling-element bearing generally indicated at 10 comprises an inner bearing ring 11 (sometimes called an inner race) and an outer bearing ring 12 (sometimes called an outer race). The inner bearing ring 11 and the outer bearing ring 12 define an axial direction and a circumferential direction. The axial direction extends through the middle of the inner bearing ring 11 and the outer bearing ring 12. In Figure 7, the axial direction is the direction extending into and out of the paper in the centre of the rolling-element bearing 10.
The rolling-element bearing 10 further comprises a plurality of rolling elements 13. The rolling elements 13 are configured to roll circumferentially between the inner bearing ring 11 and the outer bearing ring 12. The rolling elements 13 may be rollers or balls. In the Figures, the rolling elements 13 are rollers, which may be substantially cylindrical. The rolling elements 13 may be accommodated in a roller cage 17, as shown in Figure 1. The roller cage 17 may help to keep the rolling elements 13 evenly and accurately positioned.
Although not shown in the Figures, the rolling elements 13 may be balls. Balls have a small elliptical contact with the inner surface of the outer bearing ring 12 and with the outer surface of the inner bearing ring 11. The relatively small contact area provides relatively low friction and smooth running characteristics.
As shown in the Figures, the rolling elements 13 may be rollers. Rollers have larger contact areas, which is better for heavy loads and shock loads, for example.
The inner bearing ring 11 and/or the outer bearing ring 12 may have a groove for accommodating the rolling elements 13. A groove helps the rolling-element bearing 10 to bear axial loads in addition to radial loads. The inner bearing ring 11 and the outer bearing ring 12 may not have such a groove. Figure 8 shows a construction in which the inner bearing ring 11 has a groove 112 for accommodating the rolling elements 13. Figure 8 also shows that the outer bearing ring 12 does not have any groove.
The rolling-element bearing 10 may comprise a single row of rolling elements 13. For example, a rolling-element bearing 10 comprising a single row of balls as the rolling elements 13 may be suitable for use in devices such as a small electric motor, electrical appliances and light gearboxes.
The rolling-element bearing 10 may comprise multiple rows of rolling elements 13. For example, as shown in the Figures, the rolling-element bearing 10 may comprise two rows 131, 132 of rolling elements 13. The rolling elements 13 in one row 131 may be misaligned with the rolling elements 13 in the other row 132. Alternatively, as shown in the Figures, the rolling elements 13 in the rows 131, 132 may be aligned with each other.
The rolling-element bearing 10 may be tapered in the axial direction. For example, the rolling-element bearing 10 may be tapered in the axial direction and comprise a single row of rollers as the rolling element 13. Such a rolling-element bearing 10 combines radial and axial loads in one direction only. In another example, the rolling-element bearing 10 is a so-called spherical roller bearing comprising two rows 131, 132 of rollers as the rolling elements 13. Each half of the bearing corresponds to one row of rollers. Each half tapers in the axial direction such that each roller is closer to the axis at the axial ends of the bearing compared to in the middle of the bearing. Such a spherical roller bearing combines radial and axial loads in either direction.
The size of the rolling-element bearing 10 is not particularly limited. The rolling-element bearing may be a tiny, high precision rolling-element bearing 10, which would be suitable for use in applications such as cameras and office equipment. Alternatively, the rolling-element bearing 10 may be larger, suitable for more rugged and hostile environments. For example, the rolling-element bearing 10 may have a diameter in the range of from about 100 mm to about 220 mm. The rolling-element bearing 10 may have a diameter of about 150 mm. The rolling-element bearing 10 may have an axial length in the range of from about 100 mm to about 220 mm. The rolling-element bearing 10 may have an axial length of about 150 mm.
As shown in Figures 2 and 3, the rolling-element bearing 10 may comprise at least one oil chamber 14. The oil chamber 14 is between the inner bearing ring 11 and the outer bearing ring 12.
The oil chamber 14 is a space or a volume in which oil may be held or accommodated. The oil chamber 14 may be defined by the inner bearing ring 11, the outer bearing ring 12 and an oil chamber housing 15. The oil chamber 14 is substantially enclosed by walls. The wall that is most radially inward (with respect to the rolling-element bearing 10) is provided by part of the outer surface of the inner bearing ring 11. The wall that is most radially outward is provided by part of the inner surface of the outer bearing ring 12. The side walls of the oil chamber 14 are provided by the oil chamber housing 15.
The oil chamber housing 15 may be fixed to one of the inner bearing ring 11 and the outer bearing ring 12. In Figures 2 and 3, the oil chamber housing 15 is shown as being fixed to the inner bearing ring 11. The oil chamber housing 15 may be formed integrally with the inner bearing ring 11 as shown in Figure 8, or may be formed as a separate component that is subsequently fixed to the inner bearing ring 11 during manufacture. The oil chamber housing 15 can move relative to the bearing ring that it is not fixed to. For example, in the construction depicted in the Figures, the oil chamber housing 15 can move relative to the outer bearing ring 12. Accordingly, a clearance may be provided between the oil chamber housing 15 and the inner surface of the outer bearing ring 12.
The rolling-element bearing 10 may comprise at least one duct 16 corresponding to each oil chamber 14. For example, Figure 3 shows three ducts 16 corresponding to the single oil chamber 14. The ducts 16 are for a supply of oil to the oil chamber 14. Each duct 16 extends through the bearing ring to which the oil chamber housing 15 is fixed. For example, as depicted in Figure 3, when the oil chamber housing 15 is fixed to the inner bearing ring 11, each duct 16 extends through the inner bearing ring 11. The number and arrangement of ducts 16 provided for each oil chamber 14 is not particularly limited. For example, the number of ducts 16 may be one, two, three, four or more.
In the construction depicted in the Figures, the outer bearing ring 12 may be integral with a rotating object, or may be in an interference fit with the rotating object. The rotating object may be, for example, a gear. The inner bearing ring 11 may not rotate in use. However, the roles of the inner bearing ring 11 and the outer bearing ring 12 may be reversed in some applications. For example, the inner bearing ring 11 may be integral with, or in an interference fit with, the rotating object, and the outer bearing ring 12 may not rotate in use.
In use, a load is applied to the rolling-element bearing 10. The direction and distribution of such an applied load is shown in Figure 4. The direction of the applied load, namely the load direction X is shown by the arrow in Figure 4. The distribution of the applied load is shown by the curved line external to the rolling-element bearing 10. As shown in Figure 4, the load may be greatest along a plane that passes through the centre of the rolling-element bearing 10.
As shown in Figure 4, the load direction X may be radial with respect to the rolling-element bearing 10. The direction of applied load may not be precisely radial. For example, the direction of applied load may be angled or oblique relative to the radial direction, but may include a radial element. In use of the rolling-element bearing 10, the applied load can limit the lifetime of the rolling-element bearing 10. In particular, as shown in Figure 4, the applied load is distributed such that it is greatest at a particular position of the rolling-element bearing 10. This can cause the section of the rolling-element bearing 10 that is under the highest load to fail, thereby ending the life of the rolling-element bearing 10.
In use of the rolling-element bearing 10 described above, a fluid such as oil is supplied to the oil chamber 14. The oil, which may be pressurised, acts directly on the inner surface (which may be called the inner diameter) of the outer bearing ring 12. The oil exerts a pressure on the inner surface of the outer bearing ring 12. The pressure exerted on the inner surface of the outer bearing ring 12 acts in a direction opposite to the load direction X. The distribution of the pressure exerted by the oil is distributed as shown in Figure 5. The pressure exerted by the oil counters the applied load. In Figure 5, the distribution of the pressure exerted by the oil in the inner surface of the outer bearing ring 12 is shown by the curved line that is mainly external to the rolling-element bearing 10. As shown in Figure 5, the pressure distribution resulting from the oil in the oil chamber 14 may closely follow in form the pressure distribution of the applied load. This can be seen from a comparison between Figure 4 and Figure 5.
The pressure curve generated by the pressurised oil in the oil chamber 14 relates to a particular radial direction. In the construction depicted in the Figures, the pressure curve generated by the pressurised oil in the oil chamber 14 relates to the radial direction opposite to the applied radial load in load direction X. The pressure curve generated by the pressurised oil in the oil chamber 14 acts purely radially over the entire span of the oil chamber 14.
Accordingly, the pressure exerted by the oil reduces the resultant load experienced by the rolling-element bearing 10, and in particular by the rolling elements 13. This allows the rolling-element bearing 10 to be used for longer because the overall load on the rolling elements 13 during use is reduced.
The oil chamber 14 may extend between the inner bearing ring 11 and the outer bearing ring 12 such that oil supplied to the oil chamber 14 acts hydrostatically on the bearing ring to which the oil chamber 14 is not affixed. For example, the oil chamber housing 15 may be accommodated adjacent to the outer bearing ring 12 (i.e. the bearing ring to which it is not fixed) with so narrow a clearance that the oil chamber 14 is a substantially self-sealed space.
Of course, the oil chamber 14 cannot be completely sealed because some clearance between the oil chamber housing 15 and the outer bearing ring 12 is required so that the oil chamber housing 15 and the outer bearing ring 12 can rotate relative to each other. However, the clearance may be as narrow as possible, such that when oil is supplied into the oil chamber 14, substantially no oil flows through the gap that is the clearance between the oil chamber housing 15 and the outer bearing ring 12. This allows the oil to act on the inner surface of the outer bearing ring 12 hydrostatically, rather than hydrodynamically.
By providing the oil chamber 14 between the inner bearing ring 11 and the outer bearing ring 12, a load applied to the rolling-element bearing 10 can be at least partially off-loaded. As an example of the off-loading possibilities, for a rolling-element bearing 10 having a diameter in the region of 150 mm, an axial length in the region of 150 mm and an oil supply pressurised at about 3.5 x 106 Pa, approximately 5,200 kg can be off-loaded from the rolling elements 13 in the direction opposite to the load direction X. The oil pressure is not particularly limited. However, the oil pressure may typically be in the region of from about 1.4 x 106 Pa to about 2.8 x 107 Pa. Assuming that the oil chamberl4 is effectively sealed, the flow requirement from an oil pump may be relatively small.
By providing that the oil chamber housing 15 is fixed to the inner bearing ring 11 (or alternatively to the outer bearing ring 12), the oil chamber 14 can be used to apply pressure in a fixed direction (i.e. opposite to the load direction X) when the rolling-element bearing 10 is being used. If the oil chamber housing 15 were not fixed to either bearing ring, then the position of the oil chamber 14 relative to the load direction X would vary, such that the oil chamber 14 would be able to apply oil pressure in the correction direction only some of the time.
By providing the oil chamber 14 for the specific purpose of applying the counterpressure to the applied load, oil supplied to the oil chamber 14 can be controlled, e.g. such that it is confined to the oil chamber 14 and does not undesirably reach other sections of the rolling-element bearing 10, such as the regions in and around the rolling elements 13.
The at least one oil chamber 14 may be spaced from or adjacent to the rolling elements 13 in the axial direction. For example, Figures 2 and 3 show that the oil chamber 14 has a different axial position from the rows 131, 132 of rolling elements 13. This allows the rolling elements 13 to roll circumferentially between the inner bearing ring 11 and the outer bearing ring 12, while the oil chamber 14 has a fixed position relative to the inner bearing ring 11 (or alternatively to the outer bearing ring 12). This means that in order to apply the oil counter-pressure, oil may be supplied only to the oil chamber 14, and not to other sections of the rolling-element bearing 10.
As depicted in the Figures, the rolling-element bearing 10 may comprise two axially spaced rows 131, 132 of rolling elements 13. The rolling-element bearing 10 may be called a double row rolling-element bearing. The oil chamber 14 is axially between the two rows 131, 132 of rolling elements 13. The oil chamber 14 may be disposed symmetrically between the two rows 131, 132 of rollers (or any other type of rolling element 13). The oil chamber 14 can be supplied, and possibly filled, with oil, which may be at high pressure.
By providing the oil chamber 14, the load capacity of the rolling-element bearing 10 can be increased, without employing extra rows (e.g. four rows in total) of rollers. For a given required lifetime of the rolling-element bearing 10, the weight and cost of the rolling-element bearing 10 is reduced.
The rolling-element bearing 10 may comprise only one single row of rolling-elements 13, or may comprise more than two axially spaced rows of rolling elements 13. For example, the rolling-element bearing may comprise three or four rows of rolling elements 13. The oil chamber 14 (or plural oil chambers 14) takes up a different axial position from the rows of rolling-elements 13. This allows the rolling-elements 13 to roll circumferentially between the inner bearing ring 11 and the outer bearing ring 12, while the oil chamber 14 retains a fixed position relative to the inner bearing ring 11 (or alternatively the outer bearing ring 12).
Figures 6 and 7 show an axial section of the rolling-element bearing 10. As shown most clearly in Figure 7, the oil chamber 14 may extend circumferentially between the inner bearing ring 11 and the outer bearing ring 12 over an arc subtending an angle 0 of less than 180°. The orientation of the oil chamber 14 and the arc over which it extends may be chosen to increase or maximise the pressure distribution in the direction opposite to the load direction X. The off-load provided by the oil pressure from the oil chamber 14 is more useful if the angle of the arc is less than 180°.
The angle 0 subtended by the arc over which the oil chamber 14 extends is not particularly limited. The angle may be at least 110°. The arc may be about 140°. This can provide a working area of about 70° either side of the load direction X. The arc of the working area may be symmetrical with respect to the load direction X. This helps the distribution of the oil pressure in the oil chamber 14 to match more closely the distribution of the load applied in the load direction X. As mentioned above, and as shown in the Figures, the oil chamber housing 15 may be accommodated adjacent to the outer bearing ring 12 with so narrow a clearance that the oil chamber is a self-sealed space. However, depending on the closeness of this fit, the pressure of the oil supply, the available flow of the oil supply and the importance or otherwise of the oil leakage from the oil chamber 14, oil may be allowed to leak out of the oil chamber 14.
For example, the oil chamber housing 15 may comprise at least one hole 18 for supplying oil from the oil chamber 14 to the rolling-elements 13. Depending on the environment in which the rolling-element bearing 10 is used, some leakage from the oil chamber 14 may be beneficial in that the leakage would be directly over the adjacent rolling-elements 13. Therefore, the leakage could act to lubricate and/or cool the adjacent rolling-elements 13.
The oil chamber 14 may be equipped with holes near the base of the oil chamber 14 to feed oil to the inside surface of the roller cage 17 that accommodates the rolling-elements 13. Oil may be supplied such that an oil film is provided to the inside surface of the roller cage 17. The oil film may have a thickness in the region of from about 0.1 pm to about 1 pm. Accordingly, the oil chamber 14 may contribute to the lubrication system for the rolling-element bearing 10.
The rolling-element bearing 10 may comprise oil supply features for lubrication and sometimes for cooling. The oil supply features may be integral to the rolling-element bearing 10, or may be supplied externally by, for example, an oil jet. The oil chamber 14 may be supplied with oil from the same oil supply that is used to supply oil for lubrication and possibly cooling. Hence, no extra oil supply may be required to be provided for the oil chamber 14. Alternatively, a separate oil supply specific for use with the oil chamber 14 may be provided either integrally with the rolling-element bearing 10 or externally.
The oil chamber housing 15 may comprise a set of seals 151 around the periphery of the oil chamber housing 15. The seals 151 may not be necessary depending on the closeness of the fit between the oil chamber housing 15 and the outer bearing ring 12. The seals 151 are provided between the main body of the oil chamber housing 15 and the outer bearing ring 12. The seals 151 help to seal the oil chamber 14 such that the oil chamber 14 may form a substantially self-sealed space.
The seals 151 may be carbon seals. The seals 151 may be activated by a wavy spring. Other types of seals and forms of activation are possible. Carbon seals activated by a wavy spring are particularly suitable if the rolling-element bearing 10 is to be used in an environment in which the rotating bearing ring (e.g. the outer bearing ring 12) rotates at a relatively high speed relative to the non-rotating bearing ring (e.g. the inner bearing ring 11).
The edges of the seals 151 may be chamfered from the inside out. This may help to achieve an element of pressure balancing which can help to reduce the load on the inner surface of the outer bearing ring 12. By reducing the load on the inner surface of the outer bearing ring 12, the friction and wear rate may also be reduced.
The depth and extent of the seals 151 of the oil chamber 14 may not be particularly important. However, they should be chosen such that the oil within the oil chamber 14 acts hydrostatically as opposed to hydrodynamically on the inner surface of the outer bearing ring 12.
Any rolling-element bearing 10 having an axial space between rows 131, 132 of rolling elements 13 may be provided with the oil chamber 14 so as to off-load an externally applied load in a direction opposite to the load direction X. This can reduce the load acting on the rolling elements 13. In turn, this can increase the lifetime of the rolling-element bearing 10. A source of fluid, e.g. a high pressure source of oil, provides fluid such as oil to the oil chamber 14. A high pressure source of oil is often available as part of a bearing lubrication system. The oil chamber 14 can make use of this bearing lubrication system.
The rolling-element bearing 10 may comprise a plurality of oil chambers 14 spaced from each other in the axial direction. Any number of oil chambers 14 can be added along the axis of the rolling-element bearing. For example, if the rolling-element bearing 10 depicted in the Figures were lengthened axially each end of the rows 131, 132 of rolling elements 13, then an additional two oil chambers 14 may be added. Hence, the rolling-element bearing 10 may comprise three oil chambers 14 spaced from each other in the axial direction. One of the oil chambers 14 is positioned axially between the two rows 131, 132 of rolling-elements 13. The two rows 131, 132 of rolling elements 13 are each positioned axially between two oil chambers 14. By providing additional oil chambers 14, the pressure applied to the inner surface of the outer bearing ring 12 may be increased, without increasing the pressure of oil supplied to the oil chamber 14. Accordingly, a higher off-load can be achieved.
The axially-spaced oil chambers 14 may extend circumferentially between the inner bearing ring 11 and the outer bearing ring 12 over the same arc subtending the same angle a Accordingly, the oil pressure supplied by each oil chamber 14 on the outer bearing ring 12 add together, all opposing the applied load in the direction opposite to the load direction X. As shown in Figure 9, the rolling-element bearing 10 may comprise two axially spaced rows 131, 132 of rolling elements 13 and three axially spaced sets of oil chambers 14. One of the sets of oil chambers 14 may be axially between the two rows 131, 132 of rolling elements. Each row 131, 132 of rolling elements 13 may be axially between two of the sets of oil chambers 14.
As also shown in Figure 9, the rolling-element bearing 10 may comprise a plurality of oil chambers 14 that extend circumferentially between the inner bearing ring 11 and the outer bearing ring 12 over non-overlapping arcs. Multiple oil chambers 14 may be incorporated around all or some of the circumference of the rolling-element bearing 10. The oil supply to these oil chambers 14 may be modulated such that the active oil chambers 14 act in the direction opposite to the load direction X as shown in Figure 4. This can be useful for example where the applied external load does not always act in the same radial direction.
in another example, a set of three oil chambers 14 may be provided in the same axial position. The three oil chambers 14 extend circumferentially over non-overlapping arcs. For example, each oil chamber 14 within the set may extend over an arc subtending about 120°, or just less than 120°. Depending on the direction of the applied load, oil can be supplied to one of the set of three oil chambers 14 so as to counter the applied load.
The rolling-element bearing 10 may be comprised in a mechanism, for example a mechanism of a device such as a fan. The mechanism may comprise a load applying component (e.g. a gear) that applies a load on the rolling-element bearing in the load direction X. The load direction X may be radial with respect to the rolling-element bearing 10.
The oil chamber 14 is positioned between the applied load and the inner bearing ring 11 to which the oil chamber housing 15 is fixed. Oil supplied to the oil chamber 14 acts on the outer bearing ring 12 so as to oppose the applied load. The mechanism, or the rolling-element bearing 10 itself, may comprise an oil supply system configured to supply oil through the ducts 16 to the corresponding oil chamber 14.
The mechanism, or the rolling-element bearing 10 itself, may be arranged such that the supply of oil to at least one of the oil chambers 14 is controllable independently from the supply of oil to at least one other of the oil chambers 14. As mentioned above, this can be useful in the instance where the applied external load does not always act in the same direction.
In the construction shown in the Figures, the oil chamber housing 15 is fixed to the inner bearing ring 11. However, the oil chamber housing 15 may alternatively be fixed to the outer bearing ring 12.
While aspects of the disclosure relate to providing a rolling-element bearing 10 comprising rollers as the rolling elements 13, it will be appreciated that the rolling elements 13 could be balls. Where the disclosure relates to the exemplary arrangements/methods described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary arrangements/methods set fourth above are considered to be illustrative and not limiting. Various changes to the described arrangements/methods may be made without departing from the scope of the invention as defined by the appended claims.
Where reference is made herein to a mechanical device such as a fan, it will be appreciated that the rolling-element bearing 10 may be used in any type of mechanical device, including, but not limited to, an electrical appliance and a gear box. Aspects of the disclosure may be applicable, for example, to any mechanical device comprising a rolling-element bearing. Any future described and/or claimed herein may be combined with any other compatible feature described in relation to the same or another embodiment.

Claims (17)

  1. CLAIMS1. A rolling-element bearing (10) comprising: an inner bearing ring (11) and an outer bearing ring (12) defining an axial direction and a circumferential direction; a plurality of rolling elements (13) configured to roll circumferentially between the inner bearing ring (11) and the outer bearing ring (12); at least one oil chamber (14) between the inner bearing ring (11) and the outer bearing ring (12), each oil chamber (14) being defined by the inner bearing ring (11), the outer bearing ring (12) and an oil chamber housing (15) fixed to one of the inner bearing ring (11) and the outer bearing ring (12); and at least one duct (16) connected to each oil chamber (14) for a supply of oil to the connected oil chamber (14).
  2. 2. The rolling-element bearing (10) of claim 1, wherein the at least one oil chamber (14) is spaced from or adjacent to the rolling elements (13) in the axial direction.
  3. 3. The rolling-element bearing (10) of any preceding claim, comprising two axially spaced rows (131, 132) of rolling elements (13), wherein each oil chamber (14) is axially between the two rows (131, 132) of rolling elements (13).
  4. 4. The rolling-element bearing (10) of any preceding claim, wherein each oil chamber (14) extends circumferentially between the inner bearing ring (11) and the outer bearing ring (12) over an arc subtending an angle (6) of less than 180°.
  5. 5. The rolling-element bearing (10) of claim 4, wherein the angle (8) is at least 110°.
  6. 6. The rolling-element bearing (10) of any preceding claim, wherein the oil chamber housing (15) is accommodated adjacent to the bearing ring (12; 11) to which it is not fixed with so narrow a clearance that the oil chamber (14) is a self-sealed space.
  7. 7. The rolling-element (10) bearing of any of claims 1 to 5, wherein the oil chamber housing (15) comprises at least one hole (18) for supplying oil from the oil chamber (14) to the rolling elements (13).
  8. 8. The rolling-element bearing (10) of any preceding claim, comprising a plurality of oil chambers (14) spaced from each other in the axial direction.
  9. 9. The rolling-element bearing (10) of claim 8, wherein a plurality of axially spaced oil chambers (14) extend circumferentially between the inner bearing ring (11) and the outer bearing ring (12) over the same arc subtending the same angle.
  10. 10. The rolling-element bearing (10) of claim 8 or 9, comprising two axially spaced rows (131, 132) of rolling elements (13) and three axially spaced sets of oil chambers (14), wherein one of the sets of oil chambers (14) is axially between the two rows (131, 132) of rolling elements (13) and each row (131, 132) of rolling elements (13) is axially between two of the sets of oil chambers (14).
  11. 11 The rolling-element bearing (10) of any preceding claim, comprising a plurality of oil chambers (14) that extend circumferentially between the inner bearing ring (11) and the outer bearing ring (12) over non-overlapping arcs.
  12. 12.A gas turbine engine comprising: the rolling-element bearing (10) of any preceding claim; and a rotating object integral with, or in an interference fit with, the bearing ring to which the oil chamber is not fixed; and a load applying component that applies a load on the rolling-element bearing (10) in a load direction (X), which is radial with respect to the rolling-element bearing (10), wherein at least one oil chamber (14) is between the applied load and the bearing ring (11; 12) to which the corresponding oil chamber housing (15) is fixed, such that oil supplied to the oil chamber (14) acts on the bearing ring (12; 11) to which the oil chamber housing (15) is not fixed so as to oppose the applied load.
  13. 13. The gas turbine engine of claim 12, comprising an oil supply system configured to supply oil through the at least one duct (16) to the connected oil chamber (14).
  14. 14.The gas turbine engine of claim 13, arranged such that the supply of oil to at least one of the oil chambers (14) is controllable independently from the supply of oil to at least one other of the oil chambers (14).
  15. 15. A method of countering a load applied to a rolling-element bearing (10) that comprises: an inner bearing ring (11) and an outer bearing ring (12) defining an axial direction and a circumferential direction; a plurality of rolling elements (13) configured to roll circumferentially between the inner bearing ring (11) and the outer bearing ring (12); at least one oil chamber (14) between the inner bearing ring (11) and the outer bearing ring (12), each oil chamber (14) being defined by the inner bearing ring (11), the outer bearing ring (12) and an oil chamber housing (15) fixed to one of the inner bearing ring (11) and the outer bearing ring (12); and at least one duct (16) corresponding to each oil chamber (14) for a supply of oil to the corresponding oil chamber (14); wherein the method comprises supplying oil to the at least one oil chamber (14), such that oil supplied to the at least one oil chamber (14) acts on the bearing ring (12; 11) to which the oil chamber is not fixed so as to oppose the applied load.
  16. 16.A rolling-element bearing (10) substantially as described herein and/or with reference to the accompanying drawings.
  17. 17.A method of countering a load applied to a rolling-element bearing (10), the method being substantially as described herein and/or with reference to the accompanying drawings.
GB1600213.1A 2015-01-16 2016-01-06 Rolling-element bearing and method of countering load applied to rolling-element bearing Active GB2535622B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB1500700.8A GB201500700D0 (en) 2015-01-16 2015-01-16 Rolling-element bearing and method of countering load applied to rolling-element bearing

Publications (3)

Publication Number Publication Date
GB201600213D0 GB201600213D0 (en) 2016-02-17
GB2535622A true GB2535622A (en) 2016-08-24
GB2535622B GB2535622B (en) 2018-05-02

Family

ID=52630662

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB1500700.8A Ceased GB201500700D0 (en) 2015-01-16 2015-01-16 Rolling-element bearing and method of countering load applied to rolling-element bearing
GB1600213.1A Active GB2535622B (en) 2015-01-16 2016-01-06 Rolling-element bearing and method of countering load applied to rolling-element bearing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GBGB1500700.8A Ceased GB201500700D0 (en) 2015-01-16 2015-01-16 Rolling-element bearing and method of countering load applied to rolling-element bearing

Country Status (2)

Country Link
US (1) US9951809B2 (en)
GB (2) GB201500700D0 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10641332B2 (en) * 2016-12-06 2020-05-05 General Electric Company Roller element bearing with preloaded hydrodynamic cage guides
DE102017105576A1 (en) * 2017-03-15 2018-09-20 Thyssenkrupp Ag Bearing arrangement and wind turbine
US11060605B2 (en) 2018-07-09 2021-07-13 Textron Innovations Inc. Spherical mounted cylindrical roller bearing system
CN111022488B (en) * 2019-12-17 2021-07-16 山东福马轴承有限公司 Wear-resistant firm type rotating bearing for mounting rotating base
CN111140638A (en) * 2019-12-26 2020-05-12 酒泉市四方装备制造有限公司 Transmission device convenient to install and resistant to wear

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807763A1 (en) * 1996-05-14 1997-11-19 SKF Industrial Trading & Development Company, B.V. Taper roller bearing with grease retainer as well as grease retainer
WO2006064858A1 (en) * 2004-12-14 2006-06-22 Jtekt Corporation Rolling bearing device
JP2008106900A (en) * 2006-10-27 2008-05-08 Jtekt Corp Rolling bearing device
JP2008240896A (en) * 2007-03-27 2008-10-09 Ntn Corp Double row roller bearing
DE102008032922A1 (en) * 2008-07-12 2010-01-14 Schaeffler Kg Roller bearing i.e. double-row swivel-joint roller bearing, has guide ring formed from single-piece thin-walled material strip that is formed on profile in cross-section and bent to ring
EP2835546A2 (en) * 2013-08-08 2015-02-11 Jtekt Corporation Rolling bearing unit with grease reservoir

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164420A (en) * 1959-12-04 1965-01-05 North American Aviation Inc Bearing and seal
US3305280A (en) * 1964-02-13 1967-02-21 Bunting Brass & Bronze Co Combination bearing
US3301611A (en) * 1965-09-07 1967-01-31 Minster Machine Co Compound bearing
US3408123A (en) * 1965-11-11 1968-10-29 Zwicky Alfred Jakob Radial roller bearing
SE362126B (en) * 1972-04-27 1973-11-26 Skf Co
DE2448785C3 (en) * 1974-10-12 1980-08-21 Fag Kugelfischer Georg Schaefer & Co, 8720 Schweinfurt Axial bearing of a shaft
EP0110001B1 (en) * 1982-11-24 1987-11-19 Francesco Bonaccorso Combination of a hydrostatic bearing and a roller bearing
US4927274A (en) * 1989-06-23 1990-05-22 Smith Robert S Slip ring air bearing
US5348401A (en) * 1993-01-27 1994-09-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hybrid bearings for turbopumps
DE29620323U1 (en) * 1996-11-22 1997-01-23 Kronseder Maschf Krones Rotary distributor for rotating vessel filling machines
FI104122B (en) * 1998-04-20 1999-11-15 Valmet Corp Bearing relief
JP4091874B2 (en) * 2003-05-21 2008-05-28 本田技研工業株式会社 Secondary air supply device for gas turbine engine
US8016554B2 (en) * 2006-02-01 2011-09-13 Borgwarner Inc. Combination hydrodynamic and rolling bearing system
JP5018334B2 (en) 2007-08-21 2012-09-05 株式会社ジェイテクト Rolling bearing device
FR2921455B1 (en) 2007-09-25 2010-01-01 Hispano Suiza Sa GEAR SYSTEM WITH LUBRICATION.
GB201114188D0 (en) * 2011-08-18 2011-10-05 Rolls Royce Plc A clamping assembly
WO2015070141A1 (en) 2013-11-11 2015-05-14 The Timken Company Bearing cage and assembly with directed flow
US9982771B2 (en) * 2014-12-01 2018-05-29 United Technologies Corporation Lightweight and compliant journal pin
US9945424B2 (en) * 2015-03-04 2018-04-17 United Technologies Corporation Bearing thermal relief fan drive gear system assembly method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807763A1 (en) * 1996-05-14 1997-11-19 SKF Industrial Trading & Development Company, B.V. Taper roller bearing with grease retainer as well as grease retainer
WO2006064858A1 (en) * 2004-12-14 2006-06-22 Jtekt Corporation Rolling bearing device
JP2008106900A (en) * 2006-10-27 2008-05-08 Jtekt Corp Rolling bearing device
JP2008240896A (en) * 2007-03-27 2008-10-09 Ntn Corp Double row roller bearing
DE102008032922A1 (en) * 2008-07-12 2010-01-14 Schaeffler Kg Roller bearing i.e. double-row swivel-joint roller bearing, has guide ring formed from single-piece thin-walled material strip that is formed on profile in cross-section and bent to ring
EP2835546A2 (en) * 2013-08-08 2015-02-11 Jtekt Corporation Rolling bearing unit with grease reservoir

Also Published As

Publication number Publication date
GB2535622B (en) 2018-05-02
US20160208850A1 (en) 2016-07-21
US9951809B2 (en) 2018-04-24
GB201600213D0 (en) 2016-02-17
GB201500700D0 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
US9951809B2 (en) Rolling-element bearing and method of countering load applied to rolling-element bearing
EP2224103B1 (en) Bearing support apparatus with squeeze film damper
US8956048B2 (en) Squeeze film damper
EP3112714B1 (en) Spindle device
EP2386772B1 (en) Rolling bearing with internal lubrication
KR20180080133A (en) A planet wheel carrier for a planetary gear
WO2011025484A1 (en) Hydrodynamic circumferential seal system for large translations
WO2014045934A1 (en) Wind/tidal power generation bearing
KR102442871B1 (en) Unit type wave gear device
EP2383482B1 (en) Rolling bearing device with fluid bypass passage-ways.
JP2017009016A (en) Angular ball bearing
JP2007321950A (en) Cylindrical roller bearing
WO2018025922A1 (en) Ball bearing and main shaft device for machine tool
JP6690462B2 (en) Ball bearings, spindle devices and machine tools
JP2011208662A (en) Rolling bearing
US9611891B2 (en) Rolling bearing
US20130149141A1 (en) Bearing arrangement
JP2018123846A (en) Cam Follower
JP2009203846A (en) Ball bearing arrangement for turbocharger
JP2013174359A (en) Rolling bearing with sealing device
US10001171B2 (en) Rolling bearing
US20140286602A1 (en) Rolling bearing unit
JP2013024354A (en) Rotary shaft device
WO2017043425A1 (en) Rolling bearing
JP2013167346A (en) Rolling bearing