GB2529884A - Reconfigurable multi-band antenna with independent control - Google Patents

Reconfigurable multi-band antenna with independent control Download PDF

Info

Publication number
GB2529884A
GB2529884A GB1415780.4A GB201415780A GB2529884A GB 2529884 A GB2529884 A GB 2529884A GB 201415780 A GB201415780 A GB 201415780A GB 2529884 A GB2529884 A GB 2529884A
Authority
GB
United Kingdom
Prior art keywords
pass filter
low pass
high pass
matching circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1415780.4A
Other versions
GB201415780D0 (en
GB2529884B (en
Inventor
Sampson Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart Antenna Technologies Ltd
Original Assignee
Smart Antenna Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Antenna Technologies Ltd filed Critical Smart Antenna Technologies Ltd
Priority to GB1415780.4A priority Critical patent/GB2529884B/en
Publication of GB201415780D0 publication Critical patent/GB201415780D0/en
Priority to US15/508,788 priority patent/US10581166B2/en
Priority to PCT/GB2015/052549 priority patent/WO2016034885A1/en
Priority to EP15762680.5A priority patent/EP3189558A1/en
Publication of GB2529884A publication Critical patent/GB2529884A/en
Application granted granted Critical
Publication of GB2529884B publication Critical patent/GB2529884B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/383Impedance-matching networks comprising distributed impedance elements together with lumped impedance elements

Abstract

A multi-band antenna device has at least one radiating element 5 which is connected to a single port 10 by at least first and second matching circuits 8,9 arranged in parallel. A high pass filter 6 is provided between the first matching circuit 8 and the radiating element to allow passage of a first, higher frequency RF signal. A low pass filter 7 is provided between the second matching circuit and the at least one radiating element to allow passage of a second, lower frequency RF signal. The high pass filter blocks the lower frequency RF signal, and the low pass filter blocks the higher frequency RF signal. The matching circuits are adjustable to allow the first and second RF signals to be tuned independently. The geometry of the matching circuit and the ground plane are such that the first and second simultaneous resonances comprise circuit currents distributed over different regions of the ground plane so as to reduce interaction. The filters may be cascaded such that each of the first high pass filter and the low pass filter is connected to a further high pass filter and a further low pass filter.

Description

RECONFIGURABLE MULTI-BAND ANTENNA WITH INDEPENDENT CONTROL
[0001] This invention relates a multi-band antenna. Particularly, but not exclusively, the invention relates to a multi-band antenna for use in a portable electronic device such as a mobile phone handset, laptop, tablet, femtocell, wireless router or other radio communications device.
BACKGROUND
[0002] Today's mobile devices require integration of an ever increasing number of radio functions and frequencies (Bluetooth, WiFi, GNSS, GSM, 3G, LTE) over a proliferating number of bands (40+ for LTE alone). Most antennas that are designed to cover a very wide frequency range are generally referred to as broadband antennas. Broadband antennas are generally inefficient due to their wide frequency coverage, whilst higher efficiency narrow band antenna do not cover the required frequency range. Size is a further constraint which diminishes efficiency due to the drive to more compact antennas, and this also introduces severe isolation issues especially for MIMO. Mobile device antennas need to be efficient in order to conserve battery life and maintain coverage.
Current implementations use up to six antennas to overcome this trade-off with the penalty of cost, size and lack of flexibility.
[0003] There are many proposals for reconfigurable antenna designs which would help to alleviate this problem. It is known to provide a reconfigurable antenna such as described in WO 20111048357 (the content of which is incorporated into the present disclosure by reference) which has an extremely wide tuning range. However, this antenna is only able to access two services simultaneously. For example, the antenna can only support DVB-H (470MHz) and GSM (900MHz) signals or DVB-H (470MHz) and WiFi (2400MHz) or GSM (900 MHz) and GPS (1500MHz) but it cannot support more than two of these services simultaneously, as required by current mobile devices which can require simultaneous access to GSM, GPS and WiFi. Furthermore, this particular antenna is unlikely to be adequate for future Cognitive Radio systems which will require multi-resolution spectrum sensing.
[0004] If multi-services or multi-spectrum sensing is required in the future then one solution would be to use more reconfigurable antennas. However, as mentioned above, providing multiple antennas in a small device is impracticable and so the system designers still need to address the problem concerning the small amount of space available to provide such services.
[0005] It is known from WO 2013/014458 (the content of which is incorporated into the present disclosure by reference) to provide a multi-output antenna in which each radiating element of an antenna device is connected to at least two matching circuits, and wherein each matching circuit is associated with a separate port arranged to drive a separate frequency such that each radiating element is operable to provide multiple outputs simultaneously. The separate frequencies may be adjusted independently of each other as required by adjusting the respective matching circuits, and this can be done with good isolation between the ports thereby offering very wide operating frequency range with simultaneous multi-independent output operations. Thus, the multiple outputs/ports may have independent frequency control (i.e. when the resonant frequency of port one is changed, the resonant frequency of port two will be unaffected and will remain the same).
[0006] Accordingly, a single antenna of the type disclosed in WO 2013/014458 can mimic the output from multiple separate antennas, while occupying less space than that required for such multiple separate antennas. This also allows use of fewer radiating elements, thus also reducing the problems associated with the coupling of separate radiating elements when they are placed in close proximity. Furthermore, as the matching circuits may be permanently coupled to the radiating elements so that the ports can be operated simultaneously, this can negate the need for switches and other complex circuitry required in order to select or isolate a particular output.
[0007] However, there are circumstances where it is not appropriate to provide a plurality of separate ports for each individual radiating element.
BRIEF SUMMARY OF THE DISCLOSURE
[0008] Viewed from a first aspect, there is provided a multi-band reconfigurable antenna device comprising at least one radiating element, the at least one radiating element being connected to a single port by way of at least first and second matching circuits arranged in parallel, wherein a high pass filter is provided between the first matching circuit and the at least one radiating element so as to allow passage of a first, higher frequency RE signal through the first matching circuit, wherein a low pass filter is provided between the second matching circuit and the at least one radiating element so as to allow passage of a second, lower frequency SF signal through the second matching circuit, wherein the high pass filter blocks passage of the second, lower frequency RE signal through the first matching circuit and wherein the low pass filter blocks passage of the first, higher frequency SF signal through the second matching circuit, the first and second matching circuits being adjustable independently of each other so as to allow the first and second RE signals to be tuned independently of each other.
[0009] The antenna device may further comprise a conductive groundplane, and be configured such that the first and second RF signals of different frequencies excite first and second simultaneous different resonances on the groundplane.
[0010] Importantly, the first and second SF signals, which may be at first and second resonant frequencies, can be tuned independently of each other by adjusting the matching circuits. That is, the resonant frequency of the first RE signal may be changed without affecting the resonant frequency of the second RF signal and vice versa.
[0011] The first and second resonances on the groundplane may take the form of surface current distributions, and the matching circuits and groundplane geometry may be configured so that the first and second surface currents are distributed over different regions of the groundplane so as to reduce interactions with each other. This may be because the impedances for the first and second resonances are improved by way of the first and second matching circuits. This facilitates independent tuning of the first and second resonant frequencies.
[0012] Therefore, in some embodiments, one radiating element can support two bands, and N elements can provide N x 2 band simultaneous operation.
[0013] In some embodiments, additional independently tuneable RF signals can be received and/or transmitted by incorporating additional high pass andlor low pass filters.
Eor example, one or more radiating elements may be configured to receive more than two SF signals of different frequencies, and these signals may be combined on a single carrier as a multiplexed signal. The multiplexed signal may be supplied to a first high pass filter and a first low pass filter arranged in parallel. The first high pass filter may in turn be connected to a second high pass filter and a second low pass filter arranged in parallel, each of the second high pass filter and second low pass filter being connected in series with a matching circuit as previously described. A similar arrangement may be provided for the first low pass filter. This allows the antenna device to handle as many independently tuneable RE signals as there are matching circuits, the matching circuits being arranged in parallel. This may allow a single radiating element to support more than two bands, with N elements providing N x m band simultaneous operation, where m is the number of supported bands.
[0014] Embodiments of the antenna are advantageous where a mixed signal SF module is employed, the RE module requiring one port but supporting multiple bands.
[0015] Alternatively or in addition, the first and second RE signals can be separated from each other by using a diplexer. Where more than two RF signals need to be separated, an appropriate multiplexer may be used.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Embodiments of the invention are further described hereinafter with reference to the accompanying drawings, in which: Figure 1 shows an antenna suitable for use with embodiments of the present invention; Figure 2 shows a system block of a first embodiment; Figure 3 shows a first exemplary circuit schematic for the first embodiment; Figure 4 shows a first return loss plot for the first embodiment; Figure 5 shows a second return loss plot for the first embodiment; Figure 6 shows a second exemplary circuit schematic for the first embodiment; Figure 7 shows a third exemplary circuit schematic for the first embodiment; Figure 8 shows a fourth exemplary circuit schematic for the first embodiment; Figure 9 shows a system block of a second embodiment; Figure 10 shows an exemplary circuit schematic for the second embodiment; Figure 11 shows a return loss plot for the second embodiment; Figure 12 shows a system block of a third embodiment; Figure 13 shows an exemplary circuit schematic for the third embodiment; and Figure 14 shows a return loss plot for the third embodiment.
DETAILED DESCRIPTION
[0017] Figure 1 shows an example of an antenna that may be used with the present invention. There is provided a substrate 1, for example a POB, having a conductive groundplane 2 over a majority of one surface thereof One end of the substrate 1 is free of the groundplane 2, and is provided with a radiating element 3 formed as a conductive strip.
The radiating element 3 is fed at a feed point 4, which is connected to matching circuitry and a signal port (not shown) mounted on the substrate 1. In this particular example, the radiating element 3 is an unbalanced chassis antenna that is driven against the groundplane 2, but other antennas, including balanced antennas, nionopoles, dipoles, PIFA5, PILA5, loop antennas etc. may be used with certain embodiments.
[0018] Figure 2 is a system block showing a first embodiment. An antenna 5 (for example as shown in Figure 1) is connected to a high pass filter 6 and a low pass filter 7 that are arranged in parallel. The high pass filter 6 is in turn connected to a first matching circuit 8, and the low pass filter 7 to a second matching circuit 9. The first and second matching circuits 8, 9 are arranged in parallel, and are both in turn connected to a single signal port 10. The high pass filter 6 allows passage of a first, higher frequency SF signal through the first matching circuit 8. The low pass filter 7 allows passage of a second, lower frequency SF signal through the second matching circuit 9. The high pass filter 6 blocks passage of the second, lower frequency RE signal through the first matching circuit 8, and the low pass filter 7 blocks passage of the first, higher frequency RE signal through the second matching circuit 9. The first and second matching circuits 8, 9 are adjustable independently of each other so as to allow the first and second SF signals to be tuned independently of each other.
[0019] Figure 3 is a circuit schematic showing details of one possible implementation of the system block of Figure 2. The high pass filter 6 may be configured as a capacitor 11, and the low pass filter 7 may be configured as an inductor 12. The first matching circuit 8 may comprise an inductor 13 in series with a variable capacitor 14, with a connection to ground by way of a further inductor 15 and a connection 16 to the signal port 10. The second matching circuit 9 is similarly configured, comprising an inductor 13' in series with a variable capacitor 14', with a connection to ground by way of a further inductor 15' and a connection 16' to the signal port 10.
[0020] Figure 4 shows an Si 1 return loss plot showing how the first, higher frequency SF signal can be tuned between 1500MHz and 2700MHz while the second, lower frequency SF signal is kept tuned to 700MHz. This is done by adjusting the variable capacitor 14 in the first matching circuit 8.
[0021] Figure 5 shows an 511 return loss plot showing how the second, lower frequency SF signal can be tuned between 700MHz and 960MHz while the first, higher frequency SF signal is kept tuned to 1500MHz. This is done by adjusting the variable capacitor 14' in the second matching circuit 9.
[0022] Figure 6 is a circuit schematic showing an alternative implementation to that of Figure 3, where the high pass filter 6 includes an additional inductive connection 17 to ground, and the low pass filter 7 includes an additional capacitive connection 18 to ground.
[0023] Figure 7 is a circuit schematic showing a further alternative implementation to that of Figure 3, where the variable capacitor 14, 14' in each matching circuit 8, 9 is provided on one side with a connection to ground by way of an inductor 19, 19' and a variable capacitor 20, 20', and on the other side with a connection to ground by way of an inductor 21, 21' and a variable capacitor 22, 22'.
[00241 Figure 8 is a circuit schematic showing a further alternative implementation, in which the first matching circuit 8 is configured as in Figure 7, and the second matching circuit 9 is configured as in Figure 3.
[0025] Figure 9 is a system block showing a further development. Here, the mixed RF signal from the antenna 5 is split by a first high pass filter 23 and a first low pass filter 24.
The first high pass filter 23 is in turn connection to a high pass filter 6 and a low pass filter 7 that are arranged in parallel. The high pass filter 6 is connected to a first matching circuit 8, and the low pass filter 7 to a second matching circuit 9. The first and second matching circuits 8, 9 are arranged in parallel, and are both in turn connected to a single signal port 10. The first low pass filter 24 is in turn connection to a high pass filter 6' and a low pass filter 7' that are arranged in parallel. The high pass filter 6' is connected to a first matching circuit 8', and the low pass filter 7' to a second matching circuit 9'. The first and second matching circuits 8', 9' are arranged in parallel, and are both in turn connected to a single signal port 10. In this way, four separate RF signals can be independently tuned by the four matching circuits 8, 9, 8', 9'.
[00261 Figure 10 shows a circuit schematic illustrating one possible way in which the system block of Figure 9 may be implemented, which will be understood with reference to Figure 3.
[0027] Figure 11 shows a return loss plot for the embodiment of Figures 9 and 10. Four RE signals are shown, respectively at 710MHz, 1560MHz, 2360MHz and 3540MHz. Each of these RF signals is tuneable independently of the others by adjusting the variable capacitor(s) in the respective matching circuits 8, 9, 8', 9'.
[0028] Eigure 12 is a system block showing a further development. Here, the mixed RE signal from the antenna 5 is split by a first high pass filter 25 and a first low pass filter 26.
The first high pass filter 25 is in turn connection to a second high pass filter 23 and a second low pass filter 24. The first low pass filter 26 is in turn connected to a second high pass filter 23' and a second low pass filter 24'. Each of the second high pass filters 23, 23' and low pass filters 24, 24' are in turn connected to a high pass filter 6, 6', 6", 6" and a low pass filter 7, 7', 7", 7" that are arranged in parallel. Each high pass filter 6, 6', 6", 6" is connected to a respective matching circuit 8, 8', 8", 8", and each low pass filter 7, 7', 7", 7" to a respective matching circuit 9, 9', 9", 9".
[0029] It will be understood that additional high pass and low pass filters may be provided following this pattern so as to allow any given number of independent matching circuits to be implemented.
[0030] Figure 13 shows a circuit schematic illustrating one possible way in which the system block of Figure 12 may be implemented, which will be understood with reference to Figures Sand 10.
[0031] Figure 14 shows a return loss plot for the embodiment of Figures 12 and 13.
Eight RE signals are shown, respectively at 700MHz, 1270MHz, 1540MHz, 2080MHz, 2930MHz, 3440MHz, 3810MHz and 4360MHz. Each of these RE signals is tuneable independently of the others by adjusting the variable capacitor(s) in the respective matching circuits 8, 9, 8', 9', 8", 9", 8", 9".
[0032] Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of them mean "including but not limited to", and they are not intended to (and do not) exclude other moieties, additives, components, integers or steps.
Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
[0033] Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments.
The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
[0034] The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.

Claims (8)

  1. CLAIMS: 1. A multi-band reconfigurable antenna device comprising at least one radiating element, the at least one radiating element being connected to a single port by way of at least first and second matching circuits arranged in parallel, wherein a high pass filter is provided between the first matching circuit and the at least one radiating element so as to allow passage of a first, higher frequency RF signal through the first matching circuit, wherein a low pass filter is provided between the second matching circuit and the at least one radiating element so as to allow passage of a second, lower frequency RF signal through the second matching circuit, wherein the high pass filter blocks passage of the second, lower frequency RF signal through the first matching circuit and wherein the low pass filter blocks passage of the first, higher frequency RF signal through the second matching circuit, the first and second matching circuits being adjustable independently of each other so as to allow the first and second RF signals to be tuned independently of each other.
  2. 2. A device as claimed in claim 1, further comprising a conductive groundplane.
  3. 3. A device as claimed in claim 2, wherein the first and second RF signals of different frequencies excite first and second simultaneous different iesonances on the groundplane.
  4. 4. A device as claimed in claim 3, wherein the matching circuit and groundplane geometry are configured such that the first and second simultaneous resonances comprise surface currents distributed over different regions of the groundplane so as to reduce interactions with each other.
  5. 5. A device as claimed in any preceding claim, wherein the at least one radiating element is connected to a first high pass filter and first low pass filter arranged in parallel, and wherein each of the first high pass filter and first low pass filter is respectively connected to a second high pass filter and a second low pass filter, each of which is connected to an independent matching circuit.
  6. 6. A device as claimed in any one of claims 1 to 4, wherein the at least one radiating element is connected to a first high pass filter and first low pass filter arranged in parallel, wherein each of the first high pass filter and first low pass filter is respectively connected to a second high pass filter and a second low pass filter, and wherein each of the second high pass filters and second low pass filters is respectively connected to a third high pass filter and a third low pass filter, each of which is connected to an independent matching circuit.
  7. 7. A device as claimed in any preceding claim, in combination with a mixed signal SF module connected to the port.
  8. 8. A multi-band reconfigurable antenna device substantially as hereinbefore described with reference to or as shown in the accompanying drawings.Amendments to the claims have been filed as follows CLAIMS: 1. A multi-band reconfigurable antenna device comprising at least one radiating element having a single feed, the single feed of the at least one radiating element being connected to a single port by way of at least first and second matching circuits arranged in parallel, wherein a high pass filter is provided between the first matching circuit and the single feed so as to allow passage of a first, higher frequency RF signal through the first matching circuit, wherein a low pass filter is provided between the second matching circuit and the single feed so as to allow passage of a second, lower frequency RE signal through the second matching circuit, wherein the high pass filter blocks passage of the second, lower frequency RF signal through the first matching circuit and wherein the low pass filter blocks passage of the first, higher frequency RF signal through the second matching circuit, the first and second matching circuits being adjustable independently of each other so as to allow the first and second RF signals to be simultaneously tuned independently of each other.2. A device as claimed in claim 1, further comprising a conductive groundplane.3. A device as claimed in claim 2, wherein the first and second RF signals of different frequencies excite first and second simultaneous different iesonances on the CO groundplane.4. A device as claimed in claim 3, wherein the matching circuit and groundplane geometry are configured such that the first and second simultaneous resonances comprise surface currents distributed over different regions of the groundplane so as to reduce interactions with each other.5. A device as claimed in any preceding claim, wherein the at least one radiating element is connected to a first high pass filter and first low pass filter arranged in parallel, and wherein each of the first high pass filter and first low pass filter is respectively connected to said high pass filter taking the form of a second high pass filter and said low pass filter taking the form of a second low pass filter, each of which is connected to an independent matching circuit.6. A device as claimed in any one of claims 1 to 4, wherein the at least one radiating element is connected to a first high pass filter and first low pass filter arranged in parallel, wherein each of the first high pass filter and first low pass filter is respectively connected to a second high pass filter and a second low pass filter, and wherein each of the second high pass filters and second low pass filters is respectively connected to said high pass filter taking the form of a third high pass filter and said low pass filter taking the form of a third low pass filter, each of which is connected to an independent matching circuit.7. A device as claimed in any preceding claim, in combination with a mixed signal RF module connected to the port.8. A multi-band reconfigurable antenna device substantially as hereinbefore described with reference to oras shown in the accompanying drawings. IC) Co r
GB1415780.4A 2014-09-05 2014-09-05 Reconfigurable multi-band antenna with independent control Active GB2529884B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1415780.4A GB2529884B (en) 2014-09-05 2014-09-05 Reconfigurable multi-band antenna with independent control
US15/508,788 US10581166B2 (en) 2014-09-05 2015-09-04 Reconfigurable multi-band antenna with independent control
PCT/GB2015/052549 WO2016034885A1 (en) 2014-09-05 2015-09-04 Reconfigurable multi-band antenna with independent control
EP15762680.5A EP3189558A1 (en) 2014-09-05 2015-09-04 Reconfigurable multi-band antenna with independent control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1415780.4A GB2529884B (en) 2014-09-05 2014-09-05 Reconfigurable multi-band antenna with independent control

Publications (3)

Publication Number Publication Date
GB201415780D0 GB201415780D0 (en) 2014-10-22
GB2529884A true GB2529884A (en) 2016-03-09
GB2529884B GB2529884B (en) 2017-09-13

Family

ID=51796292

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1415780.4A Active GB2529884B (en) 2014-09-05 2014-09-05 Reconfigurable multi-band antenna with independent control

Country Status (4)

Country Link
US (1) US10581166B2 (en)
EP (1) EP3189558A1 (en)
GB (1) GB2529884B (en)
WO (1) WO2016034885A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640774B2 (en) * 2017-03-15 2020-02-05 株式会社東芝 Power transmission device and power transmission system
CN107887702B (en) * 2017-10-11 2020-01-14 电子科技大学 Multi-frequency left-right-handed circular polarization reconfigurable antenna
CN108428995B (en) * 2018-03-30 2022-07-26 联想(北京)有限公司 Electronic device
US11688930B2 (en) * 2018-05-08 2023-06-27 Huawei Technologies Co., Ltd. Antenna apparatus and mobile terminal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241985A1 (en) * 2006-04-13 2007-10-18 Kabushiki Kaisha Toshiba Unbalanced power feeding antenna device for making radio communications
US20080062335A1 (en) * 2006-09-12 2008-03-13 Himax Technologies Limited Tv tuner and the manufacturing method thereof
US20080238789A1 (en) * 2007-03-30 2008-10-02 Sony Ericsson Mobile Communications Ab Antenna interface circuits including multiple impedance matching networks that are respectively associated with multiple frequency bands and electronic devices incorporating the same
KR20100026646A (en) * 2008-09-01 2010-03-10 엘지이노텍 주식회사 Ultra wide band communication module
US20140055209A1 (en) * 2011-05-09 2014-02-27 Murata Manufacturing Co., Ltd. Front-end circuit and communication terminal apparatus
US20140085160A1 (en) * 2012-09-21 2014-03-27 Aalto University Foundation Multi-band antenna for wireless communication

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9813130D0 (en) 1998-06-17 1998-08-19 Harada Ind Europ Limited Antenna assembly
JP2001053518A (en) 1999-08-06 2001-02-23 Sony Corp Antenna system and portable radio device
WO2001048860A1 (en) 1999-12-24 2001-07-05 Matsushita Electric Industrial Co., Ltd. Built-in antenna of wireless communication terminal
SE0004724D0 (en) 2000-07-10 2000-12-20 Allgon Ab Antenna device
KR100757915B1 (en) * 2000-11-01 2007-09-11 히타치 긴조쿠 가부시키가이샤 High-frequency switch module
US6426723B1 (en) 2001-01-19 2002-07-30 Nortel Networks Limited Antenna arrangement for multiple input multiple output communications systems
WO2003049227A1 (en) 2001-12-04 2003-06-12 Matsushita Electric Industrial Co., Ltd. Antenna and apparatus comprising this antenna
JP2003249811A (en) * 2001-12-20 2003-09-05 Murata Mfg Co Ltd Double-resonance antenna apparatus
JP2005124126A (en) * 2003-09-24 2005-05-12 Seiko Epson Corp Impedance circuit network, and filter circuit, amplifier circuit, semiconductor integrated circuit, electronic component and wireless communications device using the same
US7546091B2 (en) * 2004-03-16 2009-06-09 Hitachi Metals, Ltd. High-frequency circuit and high-frequency device
WO2006011659A1 (en) 2004-07-29 2006-02-02 Matsushita Electric Industrial Co., Ltd. Composite antenna device
CN103022704B (en) 2005-01-27 2015-09-02 株式会社村田制作所 Antenna and Wireless Telecom Equipment
JP2007013643A (en) 2005-06-30 2007-01-18 Lenovo Singapore Pte Ltd Integrally formed flat-plate multi-element antenna and electronic apparatus
JP4384102B2 (en) 2005-09-13 2009-12-16 株式会社東芝 Portable radio device and antenna device
DE102005046452B4 (en) * 2005-09-28 2021-02-25 Snaptrack, Inc. Multiband circuit
JP2007221344A (en) 2006-02-15 2007-08-30 Toshiba Corp Antenna system, ic loaded with same and portable terminal loaded with antenna system
US7761115B2 (en) 2006-05-30 2010-07-20 Broadcom Corporation Multiple mode RF transceiver and antenna structure
KR100735319B1 (en) 2006-06-20 2007-07-04 삼성전자주식회사 Method and apparatus for correcting snr in mobile terminal
US8081123B2 (en) 2006-10-02 2011-12-20 Airgain, Inc. Compact multi-element antenna with phase shift
US8781522B2 (en) 2006-11-02 2014-07-15 Qualcomm Incorporated Adaptable antenna system
US7733276B2 (en) 2006-11-09 2010-06-08 Intel Corporation Antenna system for notebook computer and method for communicating in multiple wireless systems
US7889139B2 (en) 2007-06-21 2011-02-15 Apple Inc. Handheld electronic device with cable grounding
CN101573831B (en) 2007-01-19 2012-11-21 株式会社村田制作所 Antenna unit and wireless communication apparatus
CA2693560C (en) * 2007-04-10 2013-09-24 Nokia Corporation An antenna arrangement and antenna housing
DE102007021581B4 (en) * 2007-05-08 2018-09-27 Snaptrack Inc. Electrical component with a front-end circuit
US8648756B1 (en) 2007-08-20 2014-02-11 Ethertronics, Inc. Multi-feed antenna for path optimization
US8059046B2 (en) * 2007-09-04 2011-11-15 Sierra Wireless, Inc. Antenna configurations for compact device wireless communication
KR101464510B1 (en) 2007-10-17 2014-11-26 삼성전자주식회사 MIMO antenna apparatus
US7724201B2 (en) 2008-02-15 2010-05-25 Sierra Wireless, Inc. Compact diversity antenna system
TWI420741B (en) 2008-03-14 2013-12-21 Advanced Connectek Inc Multi-antenna module
TWI379457B (en) * 2008-05-05 2012-12-11 Acer Inc A coplanar coupled-fed multiband antenna for the mobile device
TWI382591B (en) 2008-08-20 2013-01-11 Asustek Comp Inc Planar antenna and wireless communication apparatus
US8570229B2 (en) 2009-01-15 2013-10-29 Broadcom Corporation Multiple antenna high isolation apparatus and application thereof
US20110287731A1 (en) 2009-02-02 2011-11-24 Kazutoshi Hase Antenna and reception apparatus provided with antenna
KR101572534B1 (en) * 2009-06-18 2015-11-30 삼성전자주식회사 Radio frequency front end module and multi band module using the radio frequency front end module
WO2012072969A1 (en) 2010-11-29 2012-06-07 The University Of Birmingham Balanced antenna system
JP5389088B2 (en) 2011-03-29 2014-01-15 株式会社東芝 Antenna device, wireless device
EP2518824A1 (en) 2011-04-27 2012-10-31 Research In Motion Limited Multiple antenna assembly utilizing electromagnetic band gap isolation structures
CN102856631B (en) 2011-06-28 2015-04-22 财团法人工业技术研究院 Antenna and communication device thereof
GB201112839D0 (en) 2011-07-26 2011-09-07 Univ Birmingham Multi-output antenna
TWI488357B (en) 2011-09-27 2015-06-11 Acer Inc Communication electronic device and antenna structure thereof
US9583824B2 (en) 2011-09-28 2017-02-28 Sony Corporation Multi-band wireless terminals with a hybrid antenna along an end portion, and related multi-band antenna systems
US9673520B2 (en) 2011-09-28 2017-06-06 Sony Corporation Multi-band wireless terminals with multiple antennas along an end portion, and related multi-band antenna systems
JP5657122B2 (en) 2012-01-31 2015-01-21 パナソニックIpマネジメント株式会社 Antenna device
US8798554B2 (en) 2012-02-08 2014-08-05 Apple Inc. Tunable antenna system with multiple feeds
US9853363B2 (en) 2012-07-06 2017-12-26 Blackberry Limited Methods and apparatus to control mutual coupling between antennas
US8907853B2 (en) 2012-07-26 2014-12-09 Sony Corporation Wireless electronic devices with multiple curved antennas along an end portion, and related antenna systems
GB201213558D0 (en) 2012-07-31 2012-09-12 Univ Birmingham Reconfigurable antenna
US20140106684A1 (en) 2012-10-15 2014-04-17 Qualcomm Mems Technologies, Inc. Transparent antennas on a display device
JP2014086949A (en) 2012-10-25 2014-05-12 Mitsubishi Electric Corp Antenna device
GB2507788A (en) 2012-11-09 2014-05-14 Univ Birmingham Vehicle roof mounted reconfigurable MIMO antenna
US9728855B2 (en) * 2014-01-14 2017-08-08 Honeywell International Inc. Broadband GNSS reference antenna
US20150303974A1 (en) * 2014-04-18 2015-10-22 Skyworks Solutions, Inc. Independent Multi-Band Tuning
US9241050B1 (en) 2014-09-05 2016-01-19 Google Technology Holdings LLC Self-healing antenna system
US9673511B2 (en) * 2014-09-22 2017-06-06 Intel Corporation Exciting dual frequency bands from an antenna component with a dual branch coupling feed

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241985A1 (en) * 2006-04-13 2007-10-18 Kabushiki Kaisha Toshiba Unbalanced power feeding antenna device for making radio communications
US20080062335A1 (en) * 2006-09-12 2008-03-13 Himax Technologies Limited Tv tuner and the manufacturing method thereof
US20080238789A1 (en) * 2007-03-30 2008-10-02 Sony Ericsson Mobile Communications Ab Antenna interface circuits including multiple impedance matching networks that are respectively associated with multiple frequency bands and electronic devices incorporating the same
KR20100026646A (en) * 2008-09-01 2010-03-10 엘지이노텍 주식회사 Ultra wide band communication module
US20140055209A1 (en) * 2011-05-09 2014-02-27 Murata Manufacturing Co., Ltd. Front-end circuit and communication terminal apparatus
US20140085160A1 (en) * 2012-09-21 2014-03-27 Aalto University Foundation Multi-band antenna for wireless communication

Also Published As

Publication number Publication date
WO2016034885A1 (en) 2016-03-10
EP3189558A1 (en) 2017-07-12
US20170264018A1 (en) 2017-09-14
US10581166B2 (en) 2020-03-03
GB201415780D0 (en) 2014-10-22
GB2529884B (en) 2017-09-13

Similar Documents

Publication Publication Date Title
US20210167500A1 (en) Antenna with Multiple Coupled Regions
US8593358B2 (en) Active antennas for multiple bands in wireless portable devices
CN102893452B (en) There is the dual-port antenna of the separate antenna branch including respective wave filter
US8711047B2 (en) Orthogonal tunable antenna array for wireless communication devices
US8421703B2 (en) Apparatus for enabling two elements to share a common feed
US8005438B2 (en) Multiple frequency band wireless transceiver device and related devices
EP2737574B1 (en) Multi-output antenna
US20070040751A1 (en) Wireless terminals
CN103650239A (en) Wideband antenna system with multiple antennas and at least one parasitic element
US10374289B2 (en) Reconfigurable 4-port multi-band multi-function antenna with a grounded dipole antenna component
EP2491613B1 (en) Reconfigurable antenna
US20090081965A1 (en) Configurable antenna structure and applications thereof
US20160006116A1 (en) Multi-band active integrated mimo antennas
GB2533358A (en) Reconfigurable multi-band multi-function antenna
US10581166B2 (en) Reconfigurable multi-band antenna with independent control
CN101465679B (en) Wireless signal transmitting/receiving device and relevant device
US20080030419A1 (en) Antenna Device
US7978023B2 (en) Apparatus and method for wireless communications
GB2529886A (en) Reconfigurable multi-band antenna with four to ten ports

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20191010 AND 20191016