GB2524811A - Accessory device for a quench valve of a cryostat - Google Patents

Accessory device for a quench valve of a cryostat Download PDF

Info

Publication number
GB2524811A
GB2524811A GB1406040.4A GB201406040A GB2524811A GB 2524811 A GB2524811 A GB 2524811A GB 201406040 A GB201406040 A GB 201406040A GB 2524811 A GB2524811 A GB 2524811A
Authority
GB
United Kingdom
Prior art keywords
valve
cryostat
quench
pressure
cryogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1406040.4A
Other versions
GB2524811B (en
GB201406040D0 (en
Inventor
Patrick William Retz
Neil Charles Tigwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens PLC
Original Assignee
Siemens PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens PLC filed Critical Siemens PLC
Priority to GB1406040.4A priority Critical patent/GB2524811B/en
Publication of GB201406040D0 publication Critical patent/GB201406040D0/en
Priority to PCT/EP2015/054537 priority patent/WO2015150009A1/en
Priority to US15/301,015 priority patent/US10113658B2/en
Priority to CN201580017315.XA priority patent/CN106164551B/en
Publication of GB2524811A publication Critical patent/GB2524811A/en
Application granted granted Critical
Publication of GB2524811B publication Critical patent/GB2524811B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/0413Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded in the form of closure plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/044Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with more than one spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/08Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for providing a large discharge passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/08Guiding yokes for spindles; Means for closing housings; Dust caps, e.g. for tyre valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • F17C13/007Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats used for superconducting phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/02Applications for medical applications

Abstract

A cracking pressure raising device 14, features a main body 15, a spring arrangement 24, a number of spring elements 26, and attachments means 22. The device 14 in use is attached to a container valve 9, the spring elements 26 bearing down upon the valve 9, thereby raising a cracking pressure of the valve 9. The container 2 may be a cryostat container 2 of liquid helium for the superconducting magnets of an MRI scanner. Placing the device 14 on the container 2 before air transport of the cryostat container 2, may reduce the chance of the valve 9, opening or bursting, under the reduced pressure transport conditions of an aircraft storage hold.

Description

Description
Accessory device for a quench vaive of a cryostat This invention relates to an aocessory devioe for a quenoh valve of a cryostat, in particular for use in a magnetic resonance imaging (MRI) system. Furthermore, this invention reiates to a method of enabling a cryostat containing a cryogen to be safely transported by air transportation.
Superconducting magnet systems are used for medical diagnosis, for example in magnetic resonance imaging systems. A requirement of an MRI magnet is that it produces a stable, homogeneous, magnetic field. In order to achieve the required stability, it is common to use a superconducting magnet system which operates at very low temperature. The temperature is typically maintained by cooling the superconductor by immersion in a low temperature cryogenic fluid, also known as a cryogen, such as liquid helium.
The superconducting magnet system typically comprises a set of superconductor windings for producing a magnetic field, the windings being immersed in a cryogenic fluid to keep the windings at a superconducting temperature, the superconductor windings and the cryogen being contained within a cryogen vessel.
Superconducting magnets are susceptible to quench events, in which, for one of a number of reasons, part of the superconducting -magnet ceases to be superconducting. The resulting resistance in part of the magnet causes heat due to the current flowing through ft. This rapd1y causes further parts of the supercorductftg magnet to cease superconducting. The result is that all of the energy which was stored in the magnetic field of the magnet is suddenly released as heat. In a superconducting magnet cooled by a liquid cryogen, this typically results in rapid boil-off of a large volume of the cryogen, with gaseous and liquid cryogen being expelled from the cryostat at high speed.
During a quench, it is essential that the escaping cryogen gas is allowed to exit the cryostat in a safe manner. The exit point typically opens by responding to an increase in the pressure within the cryostat. It is known to provide a quench valve to control the exit point. The quench valve is closed until a certain pressure is reached within the cryostat. Once the cryostat pressure reaches the certain value, the quench valve is opened by the pressure acting upon it.
During transportation of an already assembled system, filled with cryogen, no cooling can be provided to the cryogen, which leads to a heat input into the cryostat, leading to a boil-off of cryogen. Therefore, during air transportation, relief devices must be available in order to guarantee a pressure-relief to protect against overpressure. In other words, a significant build-up of pressure within the cryostat shall be prevented.
However, the change of atmospheric pressure during an air shipment, even in a pressurized compartment, can cause a problem with the relief devices employed. Ordinary relief valves can freeze and plug up following rapid ejection of cold gas following altitude changes. For this reason, for air transportation, each magnet system has to be fitted with an absolute pressure relief valve, which is unaffected by atmospheric pressure. Tn addition, in order to comply with safety regulations, an independent second device has to be present, which second device can be a gauge device.
It is permissible to use the existing quench valve as the gauge dev cc. However, the d fferent al pressure requ red to crack the quench valve is less than the differential between the pressure within the magnet system and the pressure within the hold of the air craft during air transportation. Therefore, the quench valve would lift and vent excessive cryogen gas. In order to overcome this, it is known to blank off the outlet of the quench valve by an air tight plate fitted with e.g. a 13 PSTG valve. Additionally, a hand valve is fitted, which may also be used to relief pressure before removing the plate. The whole assembly needs to be leak tight and fully tested, making this an expensive solution.
Furthermore, the assembly is discarded after arrival on operational site.
It is therefore an object of the present invention to provide a simple and reliable technique to ensure a safe air transportation ot a cryostat containing a cryogen.
This object is achieved according to the invention by an accessory device for a quench valve of a cryostat, said cryostat being adapted to contain a cryogen, said quench valve allowing cryogen gas to exit the cryostat in the event of a quench, wherein the accessory device is adapted to be installed to the quench valve, thereby raising the cracking pressure of the quench valve without changing the operability of the quench valve.
The object of the present invention is also achieved by a cryostat with a quench valve to which such an accessory device is installed.
The object of the present invention is also achieved by a method of enabling a cryostat containing a cryogen to be safely transported by air transportation, which method comprises the step of, prior to air transportation, installing such an accessory device to the quench valve.
A core idea of the invention is to enable the existing quench valve -of the cryostat to serve as a pressure-relief device during air transportation of the cryostat, in a way that the quench valve remains fully operable. In other words, the operating ability of the quench valve is not restricted. Merely the cracking pressure of the quench valve is temporarily raised for the purpose of air transportation. By this means, a safe air transportation of a cryostat containing a cryogen is achieved in a simple, reliable and very effective way, thereby following safety regulations.
Instead of removing parts of the existing quench valve, and installing an additional hand valve in case of air transportation, as suggest in the prior art, the invention suggests to raise the valve cracking pressure in order to improve the capabiiity of the existing quench valve. The cracking pressure of the quench valve is raised such that the expected differential pressure between the inside of the cryostat and the air craft hold is less than the raised oracking pressure. No additional valve is required. The accessory device, which is used for raising the cracking pressure of the quench valve, may be used several times.
These and other aspeots of the invention will be further elaborated on the basis of the following embodiments whioh are defined in the dependent claims.
Preferably, the accessory device comprises a main body, which is mountable on the quench valve or on the cryostat. The accessory device further comprises a spring arrangement, which employs a number of spring elements. The spring elements are adapted to directly or indirectly act upon & valve member, e.g. & valve plate, upon a burst disc or any other suited moveable part of the quench valve, by this means raising the cracking pressure of the quench valve. Thereby, the main body provides a counter bearing for the spring arrangement, more precisely for the number of spring elements of the spring arrangement. By this means, the cracking pressure of the quench valve can be raised by means of a very simple, cheep, and re-usable mechanical device. The tension of the spring elements defines the new cracking pressure -of the quench valve. For example, the cracking pressure can be raised to 13 PSIG by selecting suitable spring elements showing an appropriate spring load.
In order to realize a particular reliable functional principle, it is suggested to preferably use at least one plunger for acting upon the valve member, the burst disc or the like. Preferably, the at least one plunger is spring-loaded by at least one of said number of spring elements. In other words, the spring elements do not act directly upon the quench valve, but are employed to load the at least one plunger, which directly act on the valve.
According to a preferred embodiment of the invention, the main body of the accessory device is adapted to serve as an enclosure for the number of spring elements and/or for at least parts of the quench valve. For example, the main body is shaped in form of a cylinder, box or dome. By this means, the main body protects the rnnnber ot spring elements and/or the parts ot the quench vaive inside the enclosnre from harmfnl environmental conditions. At the same time, the main body prevent fragments of the bnrst disc escaping in the event of a disc rupture, thereby protecting the surroundings of the cryostat. Alternatively, the main body of the accessory device does not form an enclosure, but is simply a rigid plate or any other suitable counter bearing for the spring elements, which is fitted to the quench valve or the cryostat, e.g. by means of a distance piece construction.
According to a preferred embodiment of the invention, the accessory device comprises guiding elements, which are adapted to guide at least one, preferably all of the spring elements. The guiding of the spring elements is carried out such that damages to the quench valve during fitting of the accessory device are prevented. In particular, damages can be prevented, which may occur i.e. during mounting of the main body to the quench valve or the cryostat and/or during positioning the spring elements and/or the at least one plunger.
These and other aspects of the invention will be described in -detail hereinafter, by way of example, with reference to the following embodiments and the accompanying drawings; in which: 3 0 Fig. 1 shows a schematic illustration of a cryostat (prior art) Fig. 2 shows a schematic illustration of a quench valve of the
cryostat in a sectional view prior art)
Fig. 3 shows a schematic illustration of a quench valve of the cryostat, according to the present invention, in a sectional view.
A cross-section of a superconducting magnet system for use in an MRT system is illustrated in Fig. 1. Superconductive magnet coils (not shown) are provided in a cryogen vessel 2 of a cryostat 1.
The coils are immersed in a liquid cryogen 3, e.g. liquid helium.
A central bore 4 is provided to accommodate a patient for examination. An access neck S with vent tube 6 is provided at the top of the cryostat 1 to allow access to the cryogen vessel 2.
For clarity reasons, other parts of the cryostat 1, e.g. the refrigerator for providing active refrigeration to cool the cryogen 3, the outer vacuum chamber, or the thermal radiation shields, are not shown.
As illustrated in Fig. 2 in more detail, a turret outer assembly 7 encloses upper extremities of the access neck 5, and provides a normal exit path for cryogen gas from cryogen vessel 2. Turret outer assembly 7 is joined to the cryogen vessel 2 in a leak-tight manner and defines an interior volume which is separated from atmosphere by a protective valve and/or burst disc, in this case by a guench valve 8. The quench valve 8 is closed until a certain pressure is reached within the cryogen vessel 2. Once the cryostat pressure reaches the certain value, the quench valve 8 is opened by the pressure acting upon it.
Quench valve 8 includes a valve plate 9 which is held against valve seat 10 by a first spring arrangement 11. In case of overpressure within cryogen vessel 2, a corresponding pressure of cryogen gas -acting on the inner side 12 of the valve plate 9 will exceed the pressure acting on the outer side 13 of the valve plate 9 suffcent1y to overcome the force of the frstsprng arrangement 11 and open the quench valve 8. Cryogen gas will escape, maintaining the pressure within the cryogen vessel 2 at an acceptable level. Once the pressure in the cryogen vessel 2 drops below the pressure needed to keep the quench valve 8 open, first spring arrangement II will press the valve plate 9 back into contactwithvalve seat 10. Partofthevalveplate 9maybe formed by a burst disc, not visible in Fig. 2 as it lies in the plane of the valve plate 9. In case the differential pressure across the valve plate 9 becomes much higher than the pressure at which the quench valve 8 should open, for example if the quench valve 8 sticks, or the pressure increase within the cryogen vessel 2 is extremely rapid or severe, the burst disc will rupture and cryogen gas will then escape through a hole left by the burst disc and out of the cryogen vessel 2. This burst disc is typically a declared regulatory pressure relict satety device, provided to rupture in the event of quench valve failure.
An embodiment of the invention is depicted in Fig. 3. The existing quench valve 8, as shown in Fig. 2, is modified prior to air shipment, withoilt thereby loosing the valve operability of the quench valve 8. During modifying no part is removed from the quench valve 8. Instead, an accessory device 14 is installed to the quench valve 8, which temporarily raises the cracking pressure of the quench valve 8.
The accessory device 14 comprises a main body 15 forming a cylindrical or box-shaped container 16 with walls 17, with an open front 18 and a back plate 19. The main body 15 is provided with a number of small vent holes, which serve as openings to allow cryogen gas originating from the quench valve 8 to escape from the container 16 in case of a quench. An exemplary position of the vent holes is indicated in Fig. 3 by arrow 20. The main body 15 is fitted to the outer flange 21 of the quench valve 8 by means of removable fastening elements 22, e.g. screws. For this purpose, the front end of the main body 15 is extended to form -mounting flanges 23.
The back plate 19 is arranged parallel to the valve plate 9 of the quench valve 8, when the accessory devices 14 is mounted. A second spring arrangement 24 comprising four spring-loaded plungers 25 is provided within the container 16. In Fig. 3 only two plungers 25 are illustrated. The plungers 25 bear on the valve plate 9, by this means raising the cracking pressure of the quench valve 8. The second spring arrangement 24 comprises four spring elements 26 in the form of compression springs. The spring elements 26 are employed to act on the plungers 25, in order to provide the spring load, as reguired. The back plate 19 of the main body 15 acts as counter bearing for the spring elements 26.
For each spring element 26 an internal guiding rod 27 is provided.
All guiding rods 27 are mounted to the back plate 19 of the main body 15.
By means ot the accessory device 14, using the second spring arrangement 24, the cracking pressure of guench valve 8 may be raised for example from 6 to 13 P51G. Tn case of overpressure during air shipment, the pressure of cryogen gas acting on the inner side 12 of the valve plate 9 has to overcome the force of the second spring arrangement 24 in order to open the quench valve 8. In this event, cryogen gas exits the cryogen vessel 2 and enters the container 16, from which the gas escapes through the number of small vent holes.
When mounted, the main body 15 of the accessory device 14 is adapted to serve as a protective enclosure both for the first and second spring arrangement 11, 24, as well as for the surroundings of the cryogen vessel 2 in case of a rupture of a burst disc.
On arrival in the hospital or any other operational site, the accessory device 14 is removed, bringing the guench valve 8 back into its normal operation mode.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative -embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essent a] attHbutes thereof.
Reference numerals 1 cryostat 2 cryogen vessel 3 cryogen 4 central bore S access neck 6 vent tube 7 turret outer assembly 8 guench valve 9 valve plate valve seat 11 first spring arrangement 12 inner side 13 outer side 14 accessory device main body 16 container 17 frcnt 18 wall 19 back plate position of vent hole 21 cuter flange 22 fastening element 23 mounting flange 24 second spring arrangement plunger -26 spring element 27 guiding rod 3 0
GB1406040.4A 2014-04-03 2014-04-03 A pressure limiting valve for a cryostat containing a cryogen and a superconducting magnet Active GB2524811B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1406040.4A GB2524811B (en) 2014-04-03 2014-04-03 A pressure limiting valve for a cryostat containing a cryogen and a superconducting magnet
PCT/EP2015/054537 WO2015150009A1 (en) 2014-04-03 2015-03-04 A pressure limiting valve for a cryostat containing a cryogen and a superconducting magnet
US15/301,015 US10113658B2 (en) 2014-04-03 2015-03-04 Pressure limiting valve for a cryostat containing a cryogen and a superconducting magnet
CN201580017315.XA CN106164551B (en) 2014-04-03 2015-03-04 To contain the pressure limiting valve and superconducting magnet of the cryostat of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1406040.4A GB2524811B (en) 2014-04-03 2014-04-03 A pressure limiting valve for a cryostat containing a cryogen and a superconducting magnet

Publications (3)

Publication Number Publication Date
GB201406040D0 GB201406040D0 (en) 2014-05-21
GB2524811A true GB2524811A (en) 2015-10-07
GB2524811B GB2524811B (en) 2017-01-18

Family

ID=50776789

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1406040.4A Active GB2524811B (en) 2014-04-03 2014-04-03 A pressure limiting valve for a cryostat containing a cryogen and a superconducting magnet

Country Status (4)

Country Link
US (1) US10113658B2 (en)
CN (1) CN106164551B (en)
GB (1) GB2524811B (en)
WO (1) WO2015150009A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017205279B3 (en) * 2017-03-29 2018-09-20 Bruker Biospin Ag Cryostat assembly with a neck tube with a supporting structure and an outer tube surrounding the supporting structure to reduce the cryogen consumption
WO2020006167A1 (en) * 2018-06-27 2020-01-02 Premium Balloon Accessories, Inc Pressure regulators with dual safety features to avoid undesired pressures
CN108662221A (en) * 2018-07-24 2018-10-16 周玉翔 A kind of metallurgical furnace automatic exhaust device being conveniently replaceable pipeline
CN110686107A (en) * 2019-09-30 2020-01-14 东软医疗系统股份有限公司 Pressure valve for superconducting magnet container
US11097873B2 (en) 2019-10-18 2021-08-24 Cryoport, Inc. Vapor plug retention strap

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557359A (en) * 2013-11-15 2014-02-05 罗达健 Reinforced type protective cover for pressure regulating valve

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2269012B1 (en) * 1974-04-26 1976-12-17 Alsthom Cgee
DE3211449C2 (en) 1982-03-27 1984-06-20 Daimler-Benz Ag, 7000 Stuttgart Radiator cap
CN87217202U (en) 1987-12-30 1988-12-21 大连工学院 Single ball double safe leading operating safety valve
DE3915788C2 (en) * 1989-05-13 1994-09-15 Spectrospin Ag Cryostat with an overpressure cover
US5135024A (en) * 1991-09-27 1992-08-04 Ebw, Inc. Roll over pressure relief valve
US5158204A (en) * 1992-02-06 1992-10-27 Air Products And Chemicals, Inc. Containment and diversion cap for gas cylinders
US5892424A (en) 1995-02-10 1999-04-06 The Furukawa Electric Co., Ltd. Encapsulated contact material and a manufacturing method therefor, and a manufacturing method and a using method for an encapsulated contact
FR2730791B1 (en) 1995-02-17 1997-04-30 Mulhouse Dornach Ind Chimique SAFETY DEVICE OF A GAS OR VAPOR PRESSURE APPARATUS
DE19650752C1 (en) 1996-12-06 1998-03-05 Louis Renner Gmbh Sintered copper@-chromium@ vacuum contact material
DE19827667C2 (en) 1998-06-22 2002-07-18 Moeller Gmbh Switching contact arrangement
US6305412B1 (en) * 2000-03-27 2001-10-23 Dynamic Air Inc. Double acting pressure relief valve with low pressure seal
US20090145883A1 (en) 2005-04-16 2009-06-11 Abb Technology Ag Method for Producing Contact Makers for Vacuum Switching Chambers
GB2463062B (en) * 2008-09-01 2010-07-14 Siemens Magnet Technology Ltd Multi-purpose valve for cryogen gas egress
GB2468491B (en) * 2009-03-10 2011-07-27 Siemens Magnet Technology Ltd Cryostat vent valve
GB2472589B (en) 2009-08-11 2011-09-07 Siemens Magnet Technology Ltd Quench path for cryogen vessel for containing a superconducting magnet
US20120174994A1 (en) 2009-09-15 2012-07-12 Soerensen Eric A Venting Valve For Cargo Tanks
KR101648981B1 (en) 2009-12-23 2016-08-17 두산인프라코어 주식회사 Pressure maintenance apparatus for oil tank
PL220600B1 (en) 2012-07-30 2015-11-30 Tedspaw Spółka Z Ograniczoną Odpowiedzialnością Method and apparatus for set pressure spring-loaded safety valves
CN203214985U (en) 2013-03-16 2013-09-25 青岛天信变频电机有限公司 Automatic pressure release valve
CN203214986U (en) * 2013-04-22 2013-09-25 大连理工安全装备有限公司 Spring type safety valve having on-line monitoring and verifying function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557359A (en) * 2013-11-15 2014-02-05 罗达健 Reinforced type protective cover for pressure regulating valve

Also Published As

Publication number Publication date
WO2015150009A1 (en) 2015-10-08
CN106164551B (en) 2018-02-16
GB2524811B (en) 2017-01-18
GB201406040D0 (en) 2014-05-21
CN106164551A (en) 2016-11-23
US20170023142A1 (en) 2017-01-26
US10113658B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
US10113658B2 (en) Pressure limiting valve for a cryostat containing a cryogen and a superconducting magnet
CN109716457B (en) Apparatus and method for supercooling operation of cryostat with small amount of coolant
CN101581941B (en) Control of egress of gas from a cryogen vessel
EP2567162B1 (en) Improved method and apparatus for shipping and storage of cryogenic devices
JP5934393B2 (en) Overpressure limiting configuration for cryogen containers
US20050088266A1 (en) Zero backflow vent for liquid helium cooled magnets
US11384883B2 (en) Cryogenic transfer line coupling assembly
GB2491463A (en) Penetration tube assemblies for reducing cryostat heat load
KR100843389B1 (en) Undercooled horizontal cryostat configuration
CN101994903B (en) Superconducting magnet cryogen quench path outlet assembly or method
WO2006061578A1 (en) Magnetic apparatus and method
JP4790421B2 (en) Cryostat structure with quench seal
US20150276129A1 (en) Cryostat and method for reducing heat input into a cryostat
GB2468491A (en) Cryostat Vent Valve
US20100199690A1 (en) Refrigerator Isolation Valve
WO2015158469A1 (en) A pressure relief valve arrangement
EP4109121A1 (en) Autonomous cooling of a superconductive, dry cooled mr magnetic coil system
JP2006165009A (en) Superconducting magnet device, nmr analyzer using the same, mri equipment or icr mass spectrometer
CN205303097U (en) Superconducting magnet's drain tap , superconducting magnet and magnetic resonance imaging equipment
GB2528919A (en) Superconducting magnet assembly
CN212433377U (en) Cold head exhaust structure of magnetic resonance imaging equipment and magnetic resonance imaging equipment
DE3406859C1 (en) Device for very deep freezing of objects
US20160334060A1 (en) Helium vessel port arrangement for a magnetic resonance imaging system
WO2016037811A1 (en) Superconducting magnet assembly with an access pipe, and methods for filling the assembly with cryogen
KR20220111471A (en) SMR system comprising double containment using liquid nitrogen

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20160211 AND 20160217