GB2524499A - Jet pump - Google Patents

Jet pump Download PDF

Info

Publication number
GB2524499A
GB2524499A GB1405229.4A GB201405229A GB2524499A GB 2524499 A GB2524499 A GB 2524499A GB 201405229 A GB201405229 A GB 201405229A GB 2524499 A GB2524499 A GB 2524499A
Authority
GB
United Kingdom
Prior art keywords
assembly
jet pump
housing
nozzle
nozzle assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1405229.4A
Other versions
GB2524499B (en
GB201405229D0 (en
Inventor
Mirza Najam Ali Beg
Mir Mahmood Sarshar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caltec Ltd
Original Assignee
Caltec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caltec Ltd filed Critical Caltec Ltd
Priority to GB1405229.4A priority Critical patent/GB2524499B/en
Publication of GB201405229D0 publication Critical patent/GB201405229D0/en
Priority to US14/665,430 priority patent/US20150292524A1/en
Priority to NO20150355A priority patent/NO20150355A1/en
Publication of GB2524499A publication Critical patent/GB2524499A/en
Application granted granted Critical
Publication of GB2524499B publication Critical patent/GB2524499B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/42Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow characterised by the input flow of inducing fluid medium being radial or tangential to output flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/463Arrangements of nozzles with provisions for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/04Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/24Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/461Adjustable nozzles

Abstract

A jet pump 26 comprising a housing 30, having an upstream end 32 and a downstream end 34, a nozzle assembly 50, a mixing tube/diffuser assembly 52, a HP inlet 40 and an LP inlet 42, extending non-axially through a wall 31 of the housing, and an outlet 48, wherein the nozzle and diffuser assemblies can be removed from the housing through the upstream end. Preferably the inlets extend through the wall at an angle, relative to a longitudinal axis A of the housing, of between 0 and 90 degrees. There may be a removable closure member 36 at the upstream end. Preferably the nozzle and diffuser assemblies are interconnected by a link assembly 82. The pump is for use in the oil and gas industries and allows the nozzle and diffuser assemblies to be removed for maintenance without the need for disconnecting either of the inlets.

Description

Jet pump The present invention relates to a jet pump and in particular. but not exclusively, to a jet pump for use in the oil and gas industries.
Jet pumps or eductors are passive devices that use energy from a high pressure (HP) fluid source to boost the pressure of a low pressure (LP) fluid. The terms jet pump, eductor, ejector and gas jet compressor are used in various industries and refer to the same general type of device. The HP and LP fluids may each consist of liquids, gases or a mixture of liquids and gases.
Figures 1 and 2 show the key features of a typical jet pump. HP fluid from a HP source passes through a HP inlet 4 to ajet pump 6, where it passes through constriction known as a nozzle assembly 8 that increases the velocity of the fluid. In this way part of the potential (pressure) energy of the HP fluid is converted to kinetic energy (high velocity fluid). As a result, the pressure of the fluid in a nozzle discharge zone 10 in front of the nozzle assembly 8 drops significantly.
LP fluid from a LP source passes through a LP inlet 12 and is introduced into the jet pump at the nozzle discharge zone 10. where it is entrained in the flow of fluid emerging from the nozzle assembly 8. The mixture of fluids then passes through a mixing tube 14 where momentum and energy are exchanged between the fluids. The mixture finally passes through an expanding diffuser 16 where the velocity of flow normalises and pressure recovery takes place. The pressure at the outlet 18 of the jet pump will he at an intermediate value between the pressures of the HP and LP fluids at the inlets 4. 12.
Jet pumps have been used successfully in a variety of applications onshore or near the bottom of oil or gas wells. k such situations the HP fluid may be gas or a high pressure liquid such as oil or water. The LP fluid could he gas. or liquid (oil and/or water), or a mixture of gas and liquid.
For maximum efficiency, the dimensions of the nozzle assembly 8 and the mixing tube/diffuser assembly 14, 16 must be selected according to the pressures, flow rates and types of fluids delivered to the jet pump. hi some jet pumps the nozzle 8 and the mixing tube/diffuser 14. 16 comprise replaceable components that are mounted within a housing 20. This allows the internal components 8, 14, 16 to be removed and exchanged if the operating conditions change.
hi most jet pumps used for onshore or offshore applications the HP inlet 4 is in line with axis of the jet pump as shown in figures 1 and 2, whilst the LP inlet 12 comprises a Tee junction 12, such that the LP inlet is at 90 degrees to the longitudinal axis A of the jet pump. In other words, the jet pump has an axial HP inlet 4, an axial outlet 18 and a non-axial LP inlet 12. The nozzle assembly 8 can be introduced into the jet pump through the HP inlet 4 at one end of the housing 20. There is also a patented jet pump system (GB2384027B) that enables the nozzle assembly 8 to be removed and replaced through the HP inlet end 4 of the jet pump, while the mixing tube/diffuser section 14. 16 can be removed and replaced through the outlet end 18 of the jet pump.
When the jet pump is in operation and removal and replacement of the internal components is needed, a spool piece comprising a flanged length of pipe (not shown) must be removed from both the HP inlet end 4 and the outlet end 18 of the jet pump to provide access to the internal components. Sufficient space must be available at both ends of the jet pump to allow the nozzle assembly 8 and the mixing tube/diffuser assembly 14, 16 to be pulled out of the housing 20. This operation is time consuming and requires re-installing the spool pieces after the installation of the new internal components, followed by tightening the bolts at both HP inlet and outlet ends 4. 18 and checking the system for leaks.
It is an object of the present invention to provide a jet pump that mitigates one or more of the aforesaid disadvantages.
According to one aspect ol the present invention there is provided a jet pump including an elongate tubular housing that has a longitudinal axis, an upstream first end and a downstream second end, a nozzle assembly and a mixing tube/diffuser assembly, said nozzle assembly and said mixing tube/diffuser assembly being removably received within the housing, a first inlet vent for a HP first fluid, a second inlet vent for a LP second fluid and an outlet vent at the downstream second end of the housing for the combined first and second fluids, wherein the first and second inlet vents extend non-axially through a circumferential wall of the tubular housing, and wherein the nozzle assembly and the mixing tube/diffuser assembly can removed from the housing through the upstream first end thereol The configuration of the jet pump makes it possible to remove the nozLle assembly and the mixing tube/diffuser assembly through the upstream first end of the housing without disconnecting the HP and LP feed lines from the jet pump. The internal components of the jet pump can therefore be removed and replaced relatively quickly and easily, thus enabling the jet pump to be adapted readily to different operating conditions to ensure that it operates efficienfly.
Advantageously, one or both of the first and second inlet vents extend through a circumferential wall of the tubular housing at an angle 0 relative to the longitudinal axis, where 0° < 0 90°. The first and second inlet vents may extend through the circumferential wall of the tuhuar housing at an angle of 90° rdative to the longitudinal axis. Alternatively, they may extend through the circumferential wall of the tubular housing at an acute angle relative to the longitudinal axis so that the HP and LP fluids entering the housing have a component of velocity in the direction of flow through the housing.
Advantageously, the jet pump includes a removable closure member at the upstream first end of the housing. The removable closure member may for example comprise a blind flange plate that is removably attached to the upstream first end of the housing in order to seal that end of the housing hermetically.
Advantageously, the nozzle assembly and the mixing tube/diffuser assembly are interconnected by a link assembly, allowing them to he removed as a unit from the housing.
Advantageously, the link assembly is configured such that the nozzle assembly and die mixing tube/diffuser assembly are separable. This makes it possible to replace either nozzle assembly or the mixing tube/diffuser assembly, without replacing the other assembly.
S Advantageously, the jet pump includes a pull-out assembly connected to the nozzle assembly for extracting the nozzle assembly and the mixing tube/diffuser assembly from the housing through the upstream first end thereof This simplifies extraction of the nozzle assembly and the mixing tube/diffuser assembly from the housing.
Advantageously, the pull-out assembly is separable from the nozzle assembly. The pull-out assembly and the nozzle assembly may for example be interconnected by separable screw threads. This allows the nozzle assembly to he replaced without replacing the pull-out assembly.
Advantageously, the jet pump includes a tubular sleeve element that interconnects the pull-out assembly and the nozzle assembly.
Advantageously, the tubular sleeve element includes a fluid flow passageway configured to allow HP fluid to flow from the first inlet vent to the nozzle assembly.
Advantageously, the first inlet vent extends through the circumferential wall of the tubular housing upstream of the nozzle assembly.
Advantageously, the second inlet vent extends through the circumferential wall of the tubular housing downstream of the nozzle assembly and upstream of the mixing tube/diffuser assembly. Preferably, the second inlet vent extends through the circumferential wall of the tubular housing in the vicinity of a nozzle discharge zone immediately downstream of the nozzle assembly.
According to one preferred aspect of the present invention there is provided a Tee spool piece 40 for the introduction of the HP fluids. Therefore, unlike conventional jet pumps.
the HP fluid entry is also at 90 degrees to the longitudinal axis of the jet pump via flange 44. In this arrangement access to the internals of the jet pump, which are the nozzle assembly 58 and the mixing tube 52 and diffuser 68. is via a flanged end 36 of the jet pump which is normally closed by the blind flange 45. This arrangement therefore allows die internals to be pulled out of the jet pump from one end which is not connected to HP or LP inlets or the discharge lines and results in not needing to remove spooi pieces attached to the HP inlet and the discharge line of the jet pump An embodiment of the invention will now be described by way of example with reference to the accompanying drawings. in which: Figure 1 is a sectional side view of a known jet pump; Figure 2 is a sectional isometric view of a known jet pump, and Figure 3 is a sectional side view of a jet pump according to an embodiment of the invention.
Figure 3 shows a jet pump 26 according to a first ernbodimcnt of thc invcntion. The jet pump 26 comprises a substantially cylindrical tubular elongate housing 30 having a circumferential wall 31. a first end 32 and a second end 34. A first flange plate 36 is providcd at the first end 32 of the housing 30 and a second flange plate 38 is provided at the downstream second end 34 of the housing 30. The housing 30 also includes first and second inlet pipes 40, 42, which extend outwards from the housing substantially perpendicular to the longitudinal axis A of the housing 30. The first and second inlet pipes 40, 42 are provided at their outer ends with inlet flange plates 44, 46 respectively and comprise inlet vents that extend through the circumferential wall 31 of the housing 30. The first and second inlet pipes 40, 42 are displaced axially from one another, the first inlet pipe 40 being located towards the first end 32 of the housing 30, while the second inlet pipe 42 is located towards the middle of the housing 30, midway between the first and second ends 36, 38. The first and sccond inlct pipcs 40, 42 arc conncctcd in usc to HP and LP delivery lines (not shown) to receive HP and LP fluids respectivdy.
The second end 34 of the housing 30 provides an outlet 48 for fluids flowing out of the jet pump. The first end 32 of the housing is closed and sealed by a blind flange plate 49, which is bolted to the first flange plate 36.
A nozzle assembly 50 and a mixing tube/diffuser assembly 52 are removably mounted within the tubular body of the housing 30. The nozzle assembly 50 includes a tubular cylindrical body 54 having a cylindrical mounting portion 56 at one end and a hollow conical nozzle portion 58 at the other end, which leads to the nozzle outlet 60. The mounting portion 56 carries a pair of 0-rings 62 in grooves on its outer surface, which form a seal with the inner surface of the cylindrical housing 30 and prevent HP fluid from inlet 40 from bypassing the nozzle assembly and flowing directly to the mixing tube/diffuser assembly 52.
The mixing tube/diffuser assembly 52 comprises a tubular body that has a sliding fit within the downstream part of the housing 30. The tubular body has a longitudinal bore that includes a converging upstream portion 64, a central mixer portion 66 of constant diameter and a diverging downstream portion 68. The upstream portion 64, which comprises the inlet to the mixing tube/diffuser assembly 52. is located in the vicinity of the nozzle discharge zone 70, which is just downstream of the nozzk 60, to receive fluids discharged from the nozzle 60. Thc downstream end of thc mixer tube/diffuser assembly 52 is located close to the downstream second end 34 of the housing. The mixer tube/diffuser assembly 52 carries a pair of 0-rings 72 in grooves on its outer surface, which form a seal with the inner surface of the cylindrical housing 30.
The nozzle assembly 50 is connected by a tubular cylindrical section 74 to an extractor device 76 located towards the first end 32 of the housing. The extractor device 76 includes a connector piece 78 that extends axially towards the first end 32 of the housing. When the blind liange plate 49 is removed, the extractor device 76 can be engaged by an extractor tool (not shown) and withdrawn axially from the housing 30 through the first end 32, thereby removing the nozzle assembly 50.
The cylindrical section 74 has an opening 80 through which a high pressure first fluid HP can flow from the first inlet pipe 40 to the interior of the nozzle assembly 50, so that it can he discharged through the nozzle 60.
The mixer tube/diffuser assembly 52 is linked to the nozzle assembly 50 by a link structure 82, for example comprising a set of link bars that extend from the mounting portion 56 of the nozzle assembly to the upstream end of the mixer tube/diffuser assembly 52. This link structure 82 can he permanently attached to the nettle assembly 50 and the mixer tube/diffuser assembly 52 for example by welding so that the two assemblies 50,52 form a single component, or it can be designed to allow the nozzle assembly 50 and the mixer tube/diffuser assembly 52 to he separated. For example, the nozzle assembly 50 and the mixer tube/diffuser assembly 52 may be connected by separable bolts.
The bars comprising the link structure 82 are spaced apart to provide an opening 84 through which a low pressure second fluid LP can flow from the second inlet pipe 42 into the nozzle discharge zone 70 downstream of the nozzle 60. The LP second fluid can then combine with the first fluid discharged through the nozzle 60. and the combined first and second fluids CF can then mix as they flow together through the mixer tube/diffuser assembly 52 towards the outlet 48.
In use, a high pressure first fluid HP flows through the first inlet tube 40 upstream of the nozzle assembly 50 and is discharged through the nozzle 60 into the low pressure nozzle discharge tone 70 immediately downstream of the nozzle 60. The nozzle 60 is constricted to increase the velocity of the fluid as it is discharged from the nozzle. In this way the potential (pressure) energy of the first fluid is converted to kinetic energy as the fluid emerges from the nozzle 60. This reduces the pressure at the low pressure nozzle discharge zone 70.
A low pressure second fluid LP passes through the second inlet pipe 42 and is introduced into the low pressure nozzle discharge zone 70 downstream of thc nozzle 60. The second fluid is combined in the nozzle discharge zone 70 with the first fluid emerging from the nozzle 60 and the first and second fluids are mixed within the mixing tube 66 downstream of the nozzle 60 to form a combined fluid CF. The combined fluid CF then passes through the expanding diffuser 68, where the velocity of the combined fluid CF normaliscs and pressure recovery takes place. Finally, the mixture of fluids exits the jet pump 26 at outlet 48. The combined fluid CF at the outlel 48 will be at an intermediate pressure value that lies between the pressures of the HP and LP fluids at the first and second ifflets 40, 42.
In the present invention the HP and LP fluids arc introduced into the jet pump through flanged inlets 40, 42, which are attached non-axially to the main body of the jet pump, typically either perpendicular to or at an acute angle to the longitudinal axis A of the jet pump. This arrangement leaves free the first end 32 of die jet pump (which under previous designs would have carried the HP nozzle) and allows access to the internal components 50, 52 of the jet pump without having to remove spool pieces connected to the first and second ends of the jet pump. The lirst end 32 ol the housing 30 is blinded during the normal operation of the jet pump 26 by the blind liange plate 49, which can be removed to allow access to the internal components.
After removing the blind flange plate 49 from the flanged first end 32. the entire combined nozzle assembly 50 and mixing tube/diffuser assembly 52 can be pulled out of the housing as a single unit, without having to remove any spool pieces from the first. and second ends of the jet pump. The nozzk assemlly 50 and/or the mixing tube/diffuser assembly 52 can then be removed and replaced as required.
In order to be able to remove the nozzle assembly 50 and the mixing tube/diffuser assembly 52 as a single unit this assembly has the following unique features.
The cylindrical section 74 has an opening 80 that faces the HP inlet pipe 40 to allow the HP fluid to enter the opening 80 and pass through the nozzle assemffly 50. The nozzle assembly 50 is equipped with a pair of 0-ring seals 62, which enable it to isolate the HP inlet 40 of the jet pump from the LP inlet 42 and the mixing tube/diffuser assembly 52. The seals 62 are preferably mounted on the nozzle assembly 50 so that when the nozzle assembly 50 is pufled out of the jet pump housing 30, the seals 62 are retrieved and can he rcplaccd if needed.
The nozzle assembly 50 is linked to the pull out assembly 76 by the cylindrical section 74, whcrcin one end of thc cylindrical scction is attached to thc body of thc nozzle asscmbly and the other end is attached to the pull out assembly 76. The cylindrical section 74 may be permanently attached to the body of the nozzle assembly 50, for example by welding, or it may be removably attached, for example by respective screw threads.
The link structure 82 is preferably welded to the outside body of the mixing tube/diffuser assembly 52. The bars comprising the link structure 82 can be of flat plate type, curved plate type or L-shaped to add to their stillness if required. The cylindrical section 74 and the link structure 82 are strong enough to hold the mixing tube/diffuser assembly 52 and the noz1e assembly 50 together during operation of the jet pump 26 and also when die assemblies 50, 52 are pulled out of the housing 30 when it is necessary to change the design of the internal components or to install new internals components. The link structure 82, which is welded at one end to the nozzle assembly 50 and at the other end to the mixing tube/diffuser assembly 52, can be made in two separate sections that overlap one another and are bolted together to connect the nozzle assembly 50 and the mixing tube assembly 52. This feature also enables the two units (the nozzle assembly 50 and the mixing tube/diffuser assembly 52) to he separated from one another and replaced individually if needed after being pulled out or during transport.
The mixing tube/diffuser assembly 52 is held in a centralised position inside the jet pump housing 30 by two sets of rings 72 that are welded to the external surface of the mixing tube/diffuser assembly 52. These rings 72 can be equipped with seals to prevent fluids from entering the annular space between the mixing tube/diffuser assembly 52 and the housing 30. Alternatively, the rings 72 can he provided with weep holes or similar vent features if it is not necessary to seal the gap between the mixing tube 52 and the housing 30. In this case the rings 72 only serve to hold the mixing tube/diffuser assembly in position and prevent it from vibrating. If required, the annular space between the mixing tube/diffuser assembly 52 and the housing 30 can be filled with grease to prevent the ingress of fluids flowing through the jet pump 26. The rings 72 also act as dampeners to prevent the mixing tube/diffuser assembly 52 vibrating during operation.
The pull-out end assembly 76 is equipped with an extension part 78. This extension part 78 is designed to allow an external pull out device to be locked onto it, enabling the pull out device 76 and the nozzle/mixing tube assembly 50, 52 to he removed and re-installed in the housing 30. There are many suitable methods for enabling the external pull out device to be locked onto the internals pull out end.
The blind flange plate 49 can be a standard blind flange, which is attached to the flange 36 at the first end 32 of the housing with bolts. Alternatively, the connection to the first end 32 of the housing can be of clamped type or of collet type, or any other connection mechanism available in the industry may be used as site conditions dictate. This also applies to the connections provided at the first and second inlet pipes 40, 42 and to the discharge flange 38 at the second end 34. All three types of connection, whether flanged, collet or clamp type, are industry standard connectors which can he used depending on die pressure rating of the system or their use for onshore, offshore or subsea applications.
Subsea applications of the jet pumps The combined nozzle assembly 50 and mixing tube/diffuser assembly 52 descnbed above is ideal for use in subsea applications, as this allows the entire set of internal components to he pulled out with the help of a remotely operated vehide (ROV) when needed without having to disconnect the inlet and outlet pipelines including the HP and LP inlet lines. The jet pump in this case can be installed in horizontal or vertical mode depending on the details of the subsea module and features included to assist the ROV to lock onto the module and pull out the internal components. -Il-

Claims (11)

  1. CLAIMS1. A jet pump including an elongate tubular housing that has a longitudinal axis, an upstream first end and a downstream second end, a nozzle assembly and a mixing tube/diffuser assembly, said nozzle assembly and said mixing tube/diffuser assembly being removably received within the housing, a first inlet vent for a HP first fluid, a second inlet vent for a LP second fluid and an outlet vent at the downstream second end of the housing for the combined first and second fluids, wherein the first and second inlet vents extend non-axially through a circumferential wall of the tuhuar housing, and wherein the nozzle assemily and the mixing tube/diffuser assembly can removed from the housing through the upstream first end thereof.
  2. 2. A jet pump according to claim 1. wherein one or both of the first and second inlet vents extend through a circumferential wall of the tubular housing at an angle 0 relative to the longitudinal axis, where 00 c 0 900.
  3. 3. A jet pump according to claim I or claim 2, including a removable closure member at the upstream first end of the housing.
  4. 4. A jet pump according to any one of the preceding claims, wherein the nozzle assembly and the mixing tube/diffuser assembly are interconnected by a link assembly.
  5. 5. A jet pump according to claim 4, wherein the link assembly is configured such that the nozzle assembly and the mixing tube/diffuser assembly arc separable.
  6. 6. A jet pump according to any one of the preceding claims, including a pull-out assembly connected to the nozzle assembly for extracting the nozzle assembly and the mixing tuhe/dilluser assembly from die housing through the upstream first end thereof
  7. 7. A jet pump according to claim 6. wherein the pull-out assembly is separable from the nozzle assembly.
  8. 8. A jet pump according to claim 6 or claim 7. including a tubular sleeve element that interconnects the puB-out assembly and the nozzle assembly.
  9. 9. A jet pump according to claim 6, wherein the tubular sleeve element includes a fluid flow passageway configured to allow HP fluid to flow from the first inlet vent to the nozzle assembly.
  10. 10. A jet pump according to any one of the preceding claims, wherein the first inlet vent extends through the circumferential wall of the tubular housing upstream of the nozzle assembly.
  11. 11. A jet pump according to any one of the preceding claims, wherein the second inlet vent extends through the circumferential wall of the tubular housing downstream of the nozzle assembly and upstream of the mixing tube/diffuser assembly.
GB1405229.4A 2014-03-24 2014-03-24 Jet pump Active GB2524499B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1405229.4A GB2524499B (en) 2014-03-24 2014-03-24 Jet pump
US14/665,430 US20150292524A1 (en) 2014-03-24 2015-03-23 Jet pump
NO20150355A NO20150355A1 (en) 2014-03-24 2015-03-23 Jet pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1405229.4A GB2524499B (en) 2014-03-24 2014-03-24 Jet pump

Publications (3)

Publication Number Publication Date
GB201405229D0 GB201405229D0 (en) 2014-05-07
GB2524499A true GB2524499A (en) 2015-09-30
GB2524499B GB2524499B (en) 2020-02-12

Family

ID=50686799

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1405229.4A Active GB2524499B (en) 2014-03-24 2014-03-24 Jet pump

Country Status (3)

Country Link
US (1) US20150292524A1 (en)
GB (1) GB2524499B (en)
NO (1) NO20150355A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039230A1 (en) * 2018-08-21 2020-02-27 Sertecpet S.A. Ejector for improving delivery flow conditions in boreholes and in crude oil transport, from storage tanks, above ground
GB2590183A (en) * 2019-11-05 2021-06-23 Transvac Systems Ltd Ejector device
RU2772392C1 (en) * 2018-08-21 2022-05-19 Сертекпет С.А. Ejector for improving flow supply conditions in boreholes and during transportation of crude oil from surface storage tanks

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170241593A1 (en) * 2016-02-23 2017-08-24 Charles Koch Liquid propane injection pump
EP3438466B1 (en) * 2016-04-01 2020-04-01 TLV Co., Ltd. Ejector, ejector production method, and method for setting outlet flow path of diffuser
JP6352544B2 (en) * 2016-04-01 2018-07-04 株式会社テイエルブイ Ejector, ejector manufacturing method and diffuser outlet flow path setting method
DE102016206616A1 (en) * 2016-04-19 2017-10-19 Elringklinger Ag Ejector device and combination of a cylinder head cover and an ejector device
CN107115986B (en) * 2017-06-19 2023-04-07 桂林航天工业学院 Adjustable ejector
CN108151347A (en) * 2017-12-22 2018-06-12 重庆美的通用制冷设备有限公司 refrigeration system and its control method
DE102019209765A1 (en) * 2019-07-03 2021-01-07 Audi Ag Ejector, ejector set, method for operating an ejector, fuel cell system and motor vehicle
DE102020207269A1 (en) 2020-06-10 2021-12-16 Robert Bosch Gesellschaft mit beschränkter Haftung Delivery unit for a fuel cell system for delivering and / or controlling a gaseous medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326700A (en) * 1996-06-13 1996-12-10 Smc Corp Ejector unit
US6162021A (en) * 1993-09-06 2000-12-19 B.H.R. Group Limited System for pumping liquids using a jet pump and a phase separator
US20010020649A1 (en) * 2000-03-10 2001-09-13 Compagnie Generale Des Matieres Nucleaires Vapor -liquid ejector with a removable nozzle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3125583A1 (en) * 1981-06-30 1983-01-13 Bälz, Helmut, 7100 Heilbronn JET PUMP, ESPECIALLY FOR HOT WATER HEATING OR PREPARATION PLANTS WITH RETURN ADMINISTRATION
US6262646B1 (en) * 1999-10-18 2001-07-17 Duraswitch Industries, Inc. Island switch
CN2410608Y (en) * 1999-12-10 2000-12-13 珠海市声速科技有限公司 Supersonic speed four head self-water supply super energy-saving device
GB2384027B (en) * 2002-01-11 2006-04-12 Transvac Systems Ltd Ejector
JP4140386B2 (en) * 2003-01-15 2008-08-27 株式会社デンソー Ejector device and fuel cell system using the same
US20070000253A1 (en) * 2005-07-01 2007-01-04 Desai Mihir C Variable jet mixer for improving the performance of a fixed displacement fuel pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162021A (en) * 1993-09-06 2000-12-19 B.H.R. Group Limited System for pumping liquids using a jet pump and a phase separator
JPH08326700A (en) * 1996-06-13 1996-12-10 Smc Corp Ejector unit
US20010020649A1 (en) * 2000-03-10 2001-09-13 Compagnie Generale Des Matieres Nucleaires Vapor -liquid ejector with a removable nozzle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039230A1 (en) * 2018-08-21 2020-02-27 Sertecpet S.A. Ejector for improving delivery flow conditions in boreholes and in crude oil transport, from storage tanks, above ground
RU2772392C1 (en) * 2018-08-21 2022-05-19 Сертекпет С.А. Ejector for improving flow supply conditions in boreholes and during transportation of crude oil from surface storage tanks
GB2590183A (en) * 2019-11-05 2021-06-23 Transvac Systems Ltd Ejector device
GB2590183B (en) * 2019-11-05 2023-03-15 Transvac Systems Ltd Ejector device

Also Published As

Publication number Publication date
GB2524499B (en) 2020-02-12
US20150292524A1 (en) 2015-10-15
GB201405229D0 (en) 2014-05-07
NO20150355A1 (en) 2015-09-25

Similar Documents

Publication Publication Date Title
US20150292524A1 (en) Jet pump
NO316088B1 (en) Fluid separator and method for separating fluids of different densities in a stream through a flow line
US11136874B2 (en) Solid particle separation in oil and/or gas production
US20060220383A1 (en) Steamout effluent catchment blind for tanks and pressure tanks
EP2490818B1 (en) Cyclone separator for high gas volume fraction fluids
US9964242B2 (en) Connection joint for pipes to convey gas, compressed air and other fluids
US8899269B2 (en) Manifold
CN104211144B (en) A kind of feedway of the main ballasting waterline supply aqueous acrylamide aldehyde solution to ship
US20150285271A1 (en) Jet pump
KR20140137290A (en) Device for sealing a ship propeller shaft and method for producing such a device
TW200303402A (en) Bursting insert
US10527215B2 (en) Adapter housing and connecting device for chromatography
US20220364577A1 (en) Ejector device
NO20131706A1 (en) PUMP COMPOSITION CONTAINING A MULTIPLE JET PUMPS
US20160265558A1 (en) Jet pump
CN106838501B (en) Pipeline connecting assembly and application thereof
US6935513B2 (en) Method and apparatus for mixture separation
EP2603303B1 (en) High efficiency phase splitter
US20100270245A1 (en) Liquid separating device for the separation of a liquid mixture
US20090133872A1 (en) Flow back separators
JP2005147482A (en) Gas-liquid separator
US200471A (en) Improvement in oil-saver and casing-head
US11092164B2 (en) Non-welded suction chamber for surface pumping systems
US20220234009A1 (en) Chemical injection and mixing device
KR20120058834A (en) Banjo fitting for hydraulic piping

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20200312 AND 20200318