GB2524227A - Method of forming an imaging reference device - Google Patents

Method of forming an imaging reference device Download PDF

Info

Publication number
GB2524227A
GB2524227A GB1400815.5A GB201400815A GB2524227A GB 2524227 A GB2524227 A GB 2524227A GB 201400815 A GB201400815 A GB 201400815A GB 2524227 A GB2524227 A GB 2524227A
Authority
GB
United Kingdom
Prior art keywords
regions
biological tissue
substrate
stain
stained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1400815.5A
Other versions
GB2524227B (en
GB201400815D0 (en
Inventor
William Craig Revie
Martin Philip Gouch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FFEI Ltd
Original Assignee
FFEI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FFEI Ltd filed Critical FFEI Ltd
Priority to GB1400815.5A priority Critical patent/GB2524227B/en
Publication of GB201400815D0 publication Critical patent/GB201400815D0/en
Priority to US14/642,305 priority patent/US9454691B2/en
Publication of GB2524227A publication Critical patent/GB2524227A/en
Application granted granted Critical
Publication of GB2524227B publication Critical patent/GB2524227B/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • G01N1/312Apparatus therefor for samples mounted on planar substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor
    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7759Dipstick; Test strip

Abstract

A method is provided of forming an imaging reference device (or calibration standard) 10 for a biological material imaging system. A first region is provided in a substrate formed from an optically transmissive material which is an analogue of biological tissue. This first region is stained using a first biological tissue stain. A second region is provided in a second substrate which is optically transmissive and an analogue of biological tissue. The second region is stained with a second biological tissue stain. The first and second regions are overlapped as a pair, such that light incident upon the pair is modulated by the respective first and second biological tissue stains of the respective regions. Multiple regions of the first and second type may be provided, stained to different degrees. The substrates may be formed from a material such as cellophane (RTM), cellulose, agar, agarose or gelatine. The stains may be those used for the Haematoxylin and Eosin (H&E) staining protocol.

Description

Method of Forming an Imaging Reference Device
Field of the Invention
The present invention relates to a method of forming an imaging reference device for use by a biological material imaging system.
Background
In histopathology, there are well known methods of examining biological materials such as tissue or cells at microscopic scales. Typical methods used by pathologists for analysing cells involve the preparation of tissue samples by sectioning and staining samples and then examining the stained samples under an optical microscope. Colouring tissue using stains or dyes is a technique commonly used in microscopy to enhance contrast in the microscopic image.
Different cell types (or cell components) may be combined with stains of different colours so that they can be easily differentiated. This enables diagnosis of abnormalities or diseases for example.
The set of stains in combination with the method of applying these stains to tissue samples on microscope slides are known as staining protocols. The most widely used staining protocol uses haematoxylin and eosin stains ("H&E" staining). The colour produced by each tissue preparation depends on the type of tissue (or cell component), the tissue thickness and the strength of the stain used. The intensity of the staining depends upon each of the tissue thickness and the stain concentration. This difference in staining strength is important and may influence the diagnostic result a pathologist decides upon.
In modern laboratories it has become common practice to view a sample of cells with a digital camera attached to a microscope or to use a very high resolution scanner to reproduce digitally the appearance of the cells over a larger area.
This enables the images to be shared between pathologists without the need for them to be looking down the same microscope at the same sample. A significant problem with this practice, however, is that the colour appearance of the cells has an additional variation added by the colour response of the microscope, digital camera or scanner and the colour monitor or printer being used to view the image, as each of these devices has its own colour response. A means to calibrate and to assess the colour accuracy of these systems is highly desirable.
The variation in colour appearance due to different image capture and reproduction equipment is a problem commonly encountered in colour imaging.
This problem is normally addressed by using a standardised calibration process as defined by the International Color Consortium (ICC). This is a standardised way of translating digital values read by a device or equipment into colour measurements defined by the Commission Internationale de l'Eclairage (OlE).
The ICC defines a file format which specifies a mathematical transform that can be used to convert the device colour values to colour values in an interchange space that uses device independent CIE colour coordinates. Thus a colour produced by one image capture device or reproduction device can be mapped onto another device such that to a typical person they appear to be the same colour. This file format is commonly referred to as an "ICC profile'.
In the graphic arts, an ICC profile is generated by producing matched pairs of values. The reproduction part of the process, i.e. by monitor display or printing, is common in the graphic arts and in a similar way ICC profiles can be used with the reproduction of microscopy images. Typically an input device such as a graphic arts scanner or a studio camera is calibrated or characterised using a colour calibration target. The calibration target typically contains a set of colour patches having a wide range of colours. The colour patches are imaged with the input device which usually produces three values for each colour patch, commonly called ROB, or red, green, blue triplets. The corresponding colour patches of the chart are then measured with a spectrophotometer or other suitable instrument which typically produces 32 sets of spectral reflectance or transmittance values across the visible spectrum. These spectral values can then be converted to CIE colour coordinates using the equations defined by the CIE, which are typically triplets such as CIELab or CIEXYZ. An ICC profile describes the mapping from the ROB values to the CIE colour values.
The colour patches are normally combined into a mosaic of patches referred to as a calibration chart. Typically this is a chart as defined by ISO 12641:1997 "Graphic technology -Prepress digital data exchange -Colour targets for input scanner calibration", but there are other examples of such calibration charts such as the XRite Color Checker. It is normal for the calibration chart to contain the colours typically presented to the image capture system such as a microscope with an attached digital camera.
For graphic arts applications, these calibration charts are produced in every type of film substrate used in order to ensure that the spectral content of each patch is the same as the spectral content of the images being scanned. Otherwise, a phenomenon known as metamerism can cause the ICC profile to correctly calibrate the chart but to give different colours for the image being scanned. In the case of a digital microscope used in pathology this phenomenon can occur when the same colour on the chart and the stained cell have a different spectral content which produce the same CIE colour value but different imaged RGB values.
One approach to more accurately reproduce the spectral response of biological stains is disclosed by the present applicant in W02013/186530. That patent publication discloses a method of forming an imaging calibration device by depositing and localising tissue stain material in regions of the device, such as "wells", which are defined within a gasket placed on top of a glass slide.
Despite the methods and apparatus discussed in W02013/186530, there remains a need to provide improved devices, and methods of their production, which can be used to assess the accuracy with which a digital microscope system is able to reproduce slides stained using a given staining protocol, together with a calibration system for digital microscopes that minimises the effect of metamerism.
It would in principle be possible to use standardised biological tissue samples to address these needs however there are a number of difficulties with this approach: (a) it is difficult to produce standardised tissue and to produce sections of standard thickness, (b) stained tissue samples exhibit significant variation in colour within a cell and this makes it difficult to obtain regions of uniform colour of a size that can be measured and (c) tissue samples degrade with time resulting in significant colour shifts.
There is therefore a need to identify a non-tissue substrate that can be stained to produce the same colours as biological tissue samples and which may be readily manipulated so as to provide imaging calibration or reference devices for biological imaging systems.
Summary of the Invention
In accordance with a first aspect of the present invention we provide a method of forming an imaging reference device for a biological material imaging system, the method comprising: providing at least one first region of a first substrate, the first substrate being formed from an optically transmissive material which is an analogue of biological tissue, wherein the at least one first region is stained using a first biological tissue stain; providing at least one second region of a second substrate, the second substrate being formed from an optically transmissive material which is an analogue of biological tissue, wherein the at least one second region is stained using a second biological tissue stain; and, overlapping at least one pair of regions, each pair being formed from the overlap of a first region with a second region, such that light incident upon a pair is modulated by the respective first and second biological tissue stains of the respective regions.
We have realised that overlapping two or more optically transmissive substrates, each of which having been stained using a biological tissue stain, enables the production of significantly improved reference devices, which may be used for example as stain colour charts. Stained regions of substrate material provide for ease of handling when forming a reference device. The concept of "stacking" two or more different regions enables many different combinations of stains to be produced readily, for example, either for use of the device in a direct comparison with a similarly stained tissue, or for the use of a device as a calibration device.
Thus, substrate materials may be stained and combined on microscope slides to produce sets of standardised colour reference patches that closely match the spectral characteristics of colours present on pathology slides. These colour references can be used to create a calibration slide for digital microscopes and to create reference materials for each staining protocol that can be used to assess the performance of digital microscopes. In its most general form the device may be used as a reference for simple comparison purposes when imaging or viewing a stained tissue sample. However, the device may be used as a more advanced reference device where for example spectral measurements are taken from numerous differently stained regions, having a known staining intensity, and these may then be used as a calibration device to calibrate imaging apparatus.
The first and second biological tissue stains (each herein referred to as "stains") may in fact each be of the same material. They may therefore be of an identical composition. They may also be of different composition, in the sense of different levels of dilution albeit with the same stoichiometry of the stain itself.
In many cases however the first and second biological tissue stains are formed from entirely different stain materials. As an example the first biological tissue stain may be haematoxylin at a given respective composition and the second may be eosin at a given respective composition. A surprising finding from our research in the effect of stains is that stains do not typically interact with each other, at least in the sense of their effect in modulating the spectrum of transmitted light. Hence a staining target (such as biological tissue) which undergoes staining with two different stains, has a similar effect on transmitted light as two such targets stained individually. The fact that the spectral effect of a stain is optically independent allows superposition of spectral effects mathematically and also, crucially, physically. Hence, unexpectedly we have found that the stacking or overlaying of independently stained regions of substrates is an excellent model for tissue, either in the sense of different intensities of staining using a common stain, or more usefully in terms of tissue stained with two or more different stain types.
We have identified a number of non-tissue substrate materials which can be used as a biological tissue analogue. Such materials are a tissue analogue in the sense that they absorb and retain biological tissue stains in a similar sense to biological tissue. Preferably these materials are manufactured analogues which allows the process by which they are formed to be carefully controlled, this in turn providing the substrates with accurately controlled properties. The stain absorption and retention behaviour also allows substrates manufactured from such materials to be processed and manipulated after staining has occurred since they provide a dry colouration to the material itself. Such materials include, but are not limited to cellophane (RTM), cellulose, agar, agarose and gelatine, that can be used as an effective substrate for pathology stains. Whilst the first and second substrate may comprise different materials, typically the first and second substrate will be a common material, for example cellophane.
Typically such materials are manufactured polymers. They are preferably provided in the form of a film. It is preferred that such a film is self-supporting to enable ease of processing. Films are useful since they are typically produced with a reliably uniform thickness and are sufficiently thing to provide low attenuation of light when in an unstained state. In general, the stains are applied to the substrate by immersing the substrate in a bath of the stain at a predetermined concentration. The stains are generally absorbed by the substrate material such that a homogeneous distribution of staining is achieved in the through-thickness direction.
In the most advantageous practical examples two or more of the first and/or second regions are provided. Typically a plurality of first regions is provided as a first series of first regions and a plurality of second regions is provided as a second series of second regions. The plurality of regions may be thought of as a "series" in terms of a relationship between the respective locations of the regions within the device. Alternatively, or in addition, the series may be in the sense of the respective relative effects of the regions upon the incident light. Preferably in one or each of the first and second series, the respective spectral effects of the stains applied to the regions within a series are modulated. The modulated spectral effects may be produced by using one or more of: i) different concentrations of the respective biological tissue stains; ii) different time durations of application of the respective biological tissue stains; iU) different thicknesses of the regions of the respective first and/or second substrate; or iv) different stain absorption characteristics of the respective regions of the first and/or second substrate.
The regions within a series may be produced upon a common piece of unitary substrate, such as a piece of substrate film. Typically however regions with different degrees of staining are produced upon different pieces of substrate (for example each being cut from a film) and these are then bonded together so as to form the reference device. The regions themselves may take a number of different geometrical forms. Each region in one or each of the first or second series may be elongate with the directions of elongation being parallel. For example, the regions of the first and the second series may each be arranged to be elongate, with the respective directions of elongation of the first and second series being arranged at an angle such that the pairs of overlapping regions form a two dimensional array. With these directions being orthogonal, a grid pattern of overlapped pairs of regions may be produced in the device. The physical arrangement of the regions within the first or second series may correspond to a monotonical modulation in the effect of the respective staining on incident light.
Thus the staining may become increasingly intense across a series for example.
In a simple example, this intensity modulation may be linear across a series in terms of its effect upon transmitted light (such as broad spectrum or white light).
The stained regions within a series may be formed by the overlap of corresponding numbers of layers of the substrate, each of similar thickness and staining. Hence for example a series of regions may be produced by overlaying similar pieces of stained material and for example attaching them together to form a unitary item which may be combined with one or more other substrates comprising a second series.
As will be understood, depending upon the desired combination of stained regions, the overlap between two or more regions may be partial or full.
In many cases the first and second biological tissue stains each comprise single stains. However it is contemplated that one or each stain may itself comprise two or more different biological tissue stains. Although the examples described herein are for Haematoxylin and Eosin (H&E) staining, the same techniques can be applied to a wide range of staining protocols including but not limited to the following: Haematoxylin and Eosin (H&E), Diaminobenzidine (DAB) with Haematoxylin counter stain, Papanicolaou (PAP), Perls' Prussian blue, Periodic acid-Schiff (PAS), Reticulin, Millers elastic Van Gieson, Shikata, Giemsa stain, Ziehl Neelsen technique, Grocott, Alcian blue PAS, Jones methenamine silver, Gram, Congo red stain for amyloid and Masson trichrome.
In accordance with a second aspect of the invention we provide an imaging reference device for a biological material imaging system, the device comprising: a first substrate formed from an optically transmissive material which is an analogue of biological tissue, the first substrate having at least one first region stained using a first biological tissue stain; and, a second substrate formed from an optically transmissive material which is an analogue of biological tissue, the second substrate having at least one second region stained using a first biological tissue stain; wherein the first and second regions are overlapped so as to form a pair of regions, such that light incident upon a pair is modulated by the respective first and second biological tissue stains of the respective regions.
Typically the substrates forming the pairs of regions are bonded together using one of a number of bonding techniques, such as gluing. The reference device also typically comprises a microscope slide to act as a support for the substrates. The slide may in practice contain multiple instances of stained substrates using different combinations of stains.
In accordance with a third aspect of the invention there is provided an imaging reference device produced by the method according to the first aspect of the invention.
Brief Description of the Drawings
Some examples of the present invention are now described with reference to the accompanying drawings, in which: Figure 1 shows a stained tissue sample at three different levels of magnification; Figure 2 is a graph of the spectral absorbance for the haematoxylin stain at optical wavelengths (400 to 700 nm); Figure 3 is a graph of the spectral absorbance for the eosin stain at optical frequencies; Figure 4 shows the superposition of a spectrum of 30 parts of eosin to 70 parts of haematoxylin; Figure 5 shows a corresponding spectrum from a 30:70 mixture of eosin:haematoxylin; Figure 6 shows a first example reference device formed from overlapping series of strips of first and second biological tissue stains; Figure 7 is a flow diagram of a method of producing a reference device according to a first example; Figure 8 is a flow diagram of a method of producing a reference device according to a second example; Figure 9 shows sheets initially stained according to the second example; Figure 10 shows a base sheet with gluing and fiducial marks according to the
second example;
Figure 11 shows a number of strips applied to the base sheet of the second
example;
Figure 12 shows a second base sheet of the second example; Figure 13 shows the strips of the second stain applied to the second base sheet; Figure 14 shows the orthogonal orientation of strips of the first and second series of stains applied together in the second example; Figure 15 shows the application of the strips to a microscope slide; Figure 16 shows a third example using overlaid strips which are similarly stained, Figure 17 shows a fourth example method of staining a substrate by staged increases in immersion depth within a liquid stain; and, Figure 18 shows a fifth example method of staining a substrate by staged removal from a liquid stain.
Description of Preferred Examples
In order to inspect biological tissue using optical methods, typically combinations of stains are applied to pathology samples (following a staining protocol) in order to enhance the colour contrast between different tissue elements. Figure 1 shows example images at three different magnifications, where the tissue is stained with haematoxylin and eosin (commonly known as H&E staining). A low magnification image on the left of Figure 1 shows the stained tissue in question positioned upon a microscope slide. An area A" of the stained sample is magnified in the central image in Figure 1. Within this, a further area B is magnified in the image to the right of Figure 1. In the magnified area B, the cell nuclei are stained strongly, this staining being produced mainly by haematoxylin with a small percentage of eosin. The more lightly stained surrounding elements are stained primarily by eosin with a small amount of haematoxylin. Other levels or staining are produced by differing mixes of the two stains. Example regions are indicated in Figure 1. As will be appreciated, in practice these different levels of staining are actually represented by different colours, these originating from the two different stains. The different colouration of the tissue allows a pathologist to inspect the tissue using a microscope imaging system so as to obtain information about the structure of the tissue including the presence of abnormalities or disease.
Cur investigations in to the way these colours are produced shows that there is usually no chemical interaction between the stains and that the colour produced in any region depends only on the amount of each stain present at each point in the sample. In other words the colours mix in a simple linear fashion. This is illustrated more clearly with reference to Figures 2 to 5.
Figures 2 and 3 show graphs of the spectral absorbance for haematoxylin and eosin stains, respectively, in isolation, measured at a number of wavelengths across the visible spectrum from 400 nm to 700 nm. Figure 4 shows a stacked bar graph with the spectral absorbance formed from 70% haematoxylin (below and darker in Figure 4) with 30% eosin (above and lighter) added. Figure 5 shows a typical measured spectrum for a cell nucleus stained with a 70:30 mixture of haematoxylin:eosin. As can be seen by inspecting Figures 4 and 5, the measured absorbance for the cell nucleus is the same as the absorbance of 30% eosin added to 70% haematoxylin. Similarly it is found that other spectra taken at other locations in the tissue of the slide are composed of different percentages of each stain.
Investigation of a number of materials has shown that the stains can be applied to cellophane (or similar materials) to produce a result which is most similar in colour to that of stained tissue. A number of such other similar materials could also be used such as cellulose, agar, agarose, or gelatine providing the optical characteristics are similar to that of cellophane and the stain can be applied effectively. These materials act as effective biological tissue analogues".
This information can be used in the generation of reference devices.
A first example of such a reference device is shown in Figure 6. The device may be generated using a set of sheets of cellophane which are stained using different strengths of the stains used for each staining protocol. These sets of sheets are cut into strips and then laid on top of each other as shown to produce different colour combinations in each overlapping region. The method of producing the reference device of the first example is now discussed in more detail.
With reference to Figure 7, at step 100 a number of similar rectangular cellophane strips are obtained, for example by cutting these from a larger piece of cellophane film. The width of the strips is typically 1-2mm and the thickness of the film is typically 5-30 micrometres. Half the number of strips is used to form a first series of strips and the remainder a second series. For this example six strips are used in each case. At step 110 the first series of strips is stained using haematoxylin. In each case a strip is fully immersed in a bath of haematoxylin for a given duration (which may be from 10 seconds to 30 minutes). The concentration of the haematoxylin in the bath is modulated for each individual strip. The concentration is carefully controlled such that each strip is stained to a different degree (producing a corresponding staining intensity), this having a corresponding effect on the modulation of incident light which passes through the strip. The duration of immersion in the bath is chosen to be the same in this example. The concentrations of stain used for the different strips range from a minimum to a maximum concentration in equal concentration steps. The minimum concentration is set as a certain percentage (such as 10%) of a predetermined concentration, with the maximum being 100% of that concentration.
Having obtained a first series comprising 6 strips of increasing levels of haematoxylin staining at step 110, a similar procedure is followed on the remaining 7 strips using eosin (note that the time period used for staining with eosin may be different from that of haematoxylin). This is performed at step 120.
At step 130 the strips of the first and second series are then arranged in a regularly spaced array with the direction of elongation of the strips being parallel for all strips within a series and the direction of elongation for the first series being orthogonal to that of the second series. This is shown in Figure 6. The footprint of a given strip which overlies another strip forms a patch 11 which represents the intersection of the component stained regions from the respective strips. The strips are arranged onto a glass microscope slide and adhered in their array configuration with adhesive (using regions of the strips in each case which are not overlaid by other strips) so as to form the first example reference device. It will be noted that the relative arrangement of the strips is such that a small area at one end in each case is not overlapping with any strip from the other series. This allows for regions of only haematoxylin (at its 6 different staining levels) and only eosin (at its 6 different staining levels) to be imaged also. These areas can be seen in the upper and right hand regions of Figure 6.
As is also shown in Figure 6, fiducial marks are used to provide reference datums for measurement positions and focus points for use by the biological imaging system in question.
The reference device 10 so formed, therefore has a set of colours produced where the strips overlap to provide (in this case) thirty six patches with different combinations of stain intensity and six patches with different intensities of each stain. In the present example the entire strip in each case is stained using the appropriate stain material. This is convenient for manufacturing purposes but not essential. The stained region may therefore form only part of a particular piece of substrate material if required.
At step 150 in Figure 7, a biological tissue imaging system, for example including a microscope coupled with an automated stage and colour imaging device, is used to take reference measurements of the colours of the series of regions (overlapping and non-overlapping) of the device 10. These are stored and processed, so as to obtain data relating stain protocol with the spectral response of the regions in question (in terms of red, green and blue data), as imaged by the imaging system. Hence the set of coloured patches for a single staining protocol can be placed on a microscope slide and used to evaluate the accuracy with which a digital microscope is able to reproduce a particular staining protocol.
Although the example shown here is for H&E staining, the same method can be used for all other staining protocols that use two stains. It is of course not necessary to have similar numbers of strips/concentration steps for each series.
The method can be extended for protocols that use more than two stains by adding additional layers for the other stains.
Multiple sets of such coloured patches can be placed on a microscope slide and used in a similar way to graphic arts calibration targets to calibrate a digital microscope system, for example by creating an ICC Profile.
A second example is now described of a manufacturing method that may be used to produce a set of coloured patches for a single staining protocol. This example again describes H&E staining; however sets of coloured patches for other two-stain protocols can be constructed in a similar way.
With reference to Figure 8, initially at step 200, a number of sheets of cellophane are obtained having dimensions 210 mm by 148 mm by 5-30 micrometres. At step 210 a set of the sheets 20 is immersed individually in a bath of haematoxylin. The duration used for each sheet is carefully monitored and a series of differently stained sheets is obtained by immersing each sheet for a specific predetermined period so as to provide a series of sheets stained with increasingly heavy staining, in this case the duration ranging from 10 seconds to minutes. An example sheet 20 bearing a haematoxylin stain is shown at 20 in Figure 9. At step 220 a set of sheets (an example of which is shown at 21 in Figure 9) is stained using different durations to provide a staining series for eosin. In each of the above cases different concentrations of haematoxylin and eosin may be used (in a similar manner to the first example) as an alternative, so as to provide an increased staining range. As a further alternative, the surface of each sheet may be provided with a layer which affects the rate of absorption of the stain and modified layers upon different sheets may be used to provide the modulation in the degree of staining. There are well known methods for controlling the absorbance characteristics of polymer films using a coating material applied to each side of the film.
At step 230 a sheet of unstained cellophane substrate 22 is prepared with rows of elongate, generally rectangular, glue bearing areas 23, these being regularly spaced in a grid on the sheet 22 as shown in Figure 10. The substrate 22 is also marked (for example by pre-printing) with fiducial marks shown at 24. The light grey regions 25 of the substrate sheet will be removed once the strips have been fixed to the sheet and these regions 25 are partially cut or scored so that they can later be detached. At step 240 1mm wide strips 26 are cut from the haematoxylin-stained sheets and are applied across the rows of glue-bearing areas 23. In the present case six strips (each from a sheet with a different level of staining) are applied side-by-side as a "series" and the series is repeated four times across the sheet as shown in Figure 11. As will be observed from Figure 11 the fiducial marks 24 are not covered by the applied strips. Once the adhesive in the areas 23 has dried, the areas 25 are carefully removed at step 250 leaving a number of elongate separated sections of the original substrate 22, these sections bearing fiducial marks and being held together by multiple series of differently stained strips 26 spanning between the sections.
In a similar way a second sheet 30 of unstained substrate is prepared with glue areas 31 (see Figure 12), the orientation of the sheet/areas being orthogonal to that of sheet 22. Strips 32 from each sheet of eosin-stained sheets are attached to sheet 30, orientated orthogonally with respect to the strips 26 of sheet 22, and the intervening base sheet material is removed (see Figure 13).
These sets of strips from sheet 30 are then combined (step 270) with those of sheet 22, for example by gluing, as shown in Figure 14. The fiducial marks provide an easy means to ensure good alignment between these strips due to the transparent nature of the sheets. A section of the resultant structure, such as that highlighted at 35 in Figure 14 (representing all pairwise combinations of the sheets stained with each stain, plus each sheet stained individually) is then cut from the combined sheet and placed on a microscope slide. Additional sets of sections (such as pairwise combinations of other staining protocols) and other objects such as a barcode that includes measurement data for each stained region (overlapped or individual) may be added before a coverslip is applied to the slide as part of a finishing process for the device. The device may also include a "neutrals area" in which multiple regions are provide which each act as a neutral density filter (providing equal intensity attenuation across the spectrum). The neutrals area is important in the use of the reference device for calibration purposes. The finished device is illustrated in Figure 15.
The above method produces a very high quality reference or calibration device.
In some cases there may exist some slight variations within single sheets in terms of the degree to which they are stained and this leads to slight variation in the colour on the microscope slide. For this reason, when the highest accuracy is needed it is necessary to measure the colour of the stained regions on the slide in situ in the microscope and to make these measurements available to any system that uses the slide for calibration purposes. Care must be taken to ensure that measurements are collected using an optical geometry that is similar to that used when scanning pathology slides.
A third example method is illustrated in Figure 16. In this case a first step of the method comprises staining a number of similar sheets under identical staining conditions such that a set of identically stained sheets is produced. Then, a series of differently stained regions is obtained by partially overlapping a number of the strips where the intensity of staining in any region is dependent upon the number of strips overlaid for that region. The strips are bonded together to provide a unitary device and the peripheral areas of the device (which do not exhibit a difference in the number of overlaid strips as a function of location) are removed. With this method multiple layers of stained substrate are produce different absorbance for each region as shown. The multiple intensity strips produced in this way are then used as previously to create the set of coloured patches for each staining protocol.
A fourth example method is illustrated in Figure 17 for producing a series of stained regions. Here a series of regions having different stain intensities is produced by immersing a single sheet of substrate material in a stain to a first depth and leaving it at this depth for a first period. Thereafter the sheet is immersed further into the stain to a second depth at which it remains for a second period. Further depths are used for corresponding periods until, in this example, four differently stained regions are produced. The stained material bearing the four regions of different staining intensity is illustrated schematically on the right hand side of Figure 17. The region which was lowermost is provided with the most intense staining since it has endured the longest elapsed time within the stain.
A fifth example method is illustrated in Figure 18 which is a modification of the fourth example. In this fifth example, the substrate is immersed to a maximum depth initially and is then withdrawn from the stain in a series of reduced depth stages. This results in a similar staining series to that of the fourth example.
The fourth and fifth example methods are particularly beneficial techniques for producing a series of stained regions since the regions are produced within a common piece of substrate film.

Claims (20)

  1. CLAIMS1. A method of forming an imaging reference device for a biological material imaging system, the method comprising: providing at least one first region of a first substrate, the first substrate being formed from an optically transmissive material which is an analogue of biological tissue, wherein the at least one first region is stained using a first biological tissue stain; providing at least one second region of a second substrate, the second substrate being formed from an optically transmissive material which is an analogue of biological tissue, wherein the at least one second region is stained using a second biological tissue stain; and, overlapping at least one pair of the regions, each pair being formed from the overlap of a first region with a second region, such that light incident upon a pair is modulated by the respective first and second biological tissue stains of the respective regions.
  2. 2. A method according to claim 1, wherein a plurality of first regions is provided as a first series of first regions and wherein a plurality of second regions is provided as a second series of second regions.
  3. 3. A method according to claim 2, wherein in one or each of the first and second series, the respective spectral effects of the stains applied to the regions within a series are modulated.
  4. 4. A method according to claim 3, wherein the modulated spectral effects are effected by using different concentrations of the respective biological tissue stains.
  5. 5. A method according to claim 3 or claim 4, wherein the modulated spectral effects are effected by using different time durations of application of the respective biological tissue stains.
  6. 6. A method according to any of claims 3 to 5, wherein the modulated spectral effects are caused by using regions of the respective first and/or second substrate having different thicknesses.
  7. 7. A method according to any of claims 3 to 6, wherein the modulated spectral effects are caused by using regions of the respective first and/or second substrate having different stain absorption characteristics.
  8. 8. A method according to any of the preceding claims, wherein one or each of the first substrate or second substrate is provided as a film.
  9. 9. A method according to at least claim 2, wherein each region in one or each of the first or second series is elongate and wherein the directions of elongation of the regions are parallel.
  10. 10.A method according to claim 9, wherein the regions of the first and the second series are elongate, wherein the respective directions of elongation of the first and second series are arranged at an angle such that the pairs of overlapping regions form a two dimensional array.
  11. 11.A method according to any of the preceding claims wherein the physical arrangement of the regions within the first or second series corresponds to a monotonical modulation in the effect of the respective staining on incident light.
  12. 12. A method according to any of the preceding claims, wherein the stained regions within a series are formed by the overlap of corresponding numbers of layers of the substrate, each of similar thickness and staining.
  13. 13. A method according to any of the preceding claims the first biological tissue stain and the second biological tissue stain comprise one or more different biological tissue stains.
  14. 14.A method according to any of the preceding claims wherein the first and second stains are the stains used for one of the following staining protocols: Haematoxylin and Fosin (H&E), Diaminobenzidine (DAB) with Haematoxylin counter stain, Papanicolaou (PAP), Perls' Prussian blue, Periodic acid-Schiff (PAS), Reticulin, Millers elastic Van Gieson, Shikata, Giemsa stain, Ziehl Neelsen technique, Grocott, Alcian blue PAS, Jones methenamine silver, Gram, Congo red stain for amyloid and Masson trichrome.
  15. 15.A method according to any of the preceding claims, wherein the one or each of the first and second substrates is formed from a material selected from the group comprising: cellophane, cellulose, agar, agarose and gelatine.
  16. 16.A method according to any of the preceding claims, further comprising attaching the device to a microscope slide.
  17. 17.A method according to any of the preceding claims, wherein the staining is provided by immersing the respective first or second substrate in a bath of stain material having a predetermined composition and for a predetermined period.
  18. 18. An imaging reference device for a biological material imaging system, the device comprising: a first substrate formed from an optically transmissive material which is an analogue of biological tissue, the first substrate having at least one first region stained using a first biological tissue stain; a second substrate formed from an optically transmissive material which is an analogue of biological tissue, the second substrate having at least one second region stained using a first biological tissue stain; wherein at least one of the first and second regions is overlapped so as to form a pair of regions, such that light incident upon a pair is modulated by the respective first and second biological tissue stains of the respective regions.
  19. 19.An imaging reference device according to claim 18, wherein the first and second substrates are connected to each other.
  20. 20.An imaging reference device according to claim 18 or claim 19, wherein the device is a calibration device for a biological imaging system.
GB1400815.5A 2014-01-17 2014-01-17 Method of forming an imaging reference device Ceased GB2524227B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1400815.5A GB2524227B (en) 2014-01-17 2014-01-17 Method of forming an imaging reference device
US14/642,305 US9454691B2 (en) 2014-01-17 2015-03-09 Method for forming an image reference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1400815.5A GB2524227B (en) 2014-01-17 2014-01-17 Method of forming an imaging reference device

Publications (3)

Publication Number Publication Date
GB201400815D0 GB201400815D0 (en) 2014-03-05
GB2524227A true GB2524227A (en) 2015-09-23
GB2524227B GB2524227B (en) 2017-07-26

Family

ID=50239103

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1400815.5A Ceased GB2524227B (en) 2014-01-17 2014-01-17 Method of forming an imaging reference device

Country Status (2)

Country Link
US (1) US9454691B2 (en)
GB (1) GB2524227B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228576A1 (en) * 2017-06-15 2018-12-20 Sunstone Scientific Limited. Process record slide for special staining
WO2020156968A3 (en) * 2019-01-30 2020-09-10 Ventana Medical Systems, Inc. Calibration slides for digital pathology
GB2606387A (en) * 2021-05-06 2022-11-09 Futamura Chemical Uk Ltd Device
US11662564B2 (en) 2017-06-15 2023-05-30 Shenzhen Prs Limited Paraffin shield coating for microscope slide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020017213A2 (en) * 2018-02-26 2020-12-22 F. Hoffmann-La Roche Ag METHODS AND SYSTEMS FOR CALIBRATING AND USING A CAMERA TO DETECT ANALYTICAL IN A SAMPLE
GB2599751B (en) 2021-04-17 2022-10-12 Ffei Ltd Method of forming an imaging calibration device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080314114A1 (en) * 2007-06-20 2008-12-25 Carestream Health, Inc. Fluorescence calibrator for multiple band flat field correction
WO2013186530A1 (en) * 2012-06-13 2013-12-19 Ffei Limited Method of forming an imaging calibration device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428690A (en) * 1991-09-23 1995-06-27 Becton Dickinson And Company Method and apparatus for automated assay of biological specimens
CN1280623C (en) * 2004-07-16 2006-10-18 北京博奥生物芯片有限责任公司 Calibration chip for fluorescent instrument calibration measurement and its preparing method
CN103299173B (en) * 2010-11-10 2017-05-03 罗氏血液诊断股份有限公司 Automated systems and methods for preparing biological specimens for examination
WO2012143010A1 (en) * 2011-04-19 2012-10-26 Dako Denmark A/S New method for enzyme-mediated signal amplification
GB2522231B (en) * 2014-01-17 2019-11-06 Leeds Teaching Hospitals Nhs Trust Method of forming a stain assessment target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080314114A1 (en) * 2007-06-20 2008-12-25 Carestream Health, Inc. Fluorescence calibrator for multiple band flat field correction
WO2013186530A1 (en) * 2012-06-13 2013-12-19 Ffei Limited Method of forming an imaging calibration device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228576A1 (en) * 2017-06-15 2018-12-20 Sunstone Scientific Limited. Process record slide for special staining
EP3639080A4 (en) * 2017-06-15 2021-04-14 Sunstone Scientific Limited. Process record slide for special staining
US11662564B2 (en) 2017-06-15 2023-05-30 Shenzhen Prs Limited Paraffin shield coating for microscope slide
WO2020156968A3 (en) * 2019-01-30 2020-09-10 Ventana Medical Systems, Inc. Calibration slides for digital pathology
US11946838B2 (en) 2019-01-30 2024-04-02 Ventana Medical Systems, Inc. Calibration slides for digital pathology
GB2606387A (en) * 2021-05-06 2022-11-09 Futamura Chemical Uk Ltd Device
WO2022233684A1 (en) 2021-05-06 2022-11-10 Futamura Chemical Uk Ltd Device and method for tissue staining quality control

Also Published As

Publication number Publication date
US20160004900A1 (en) 2016-01-07
GB2524227B (en) 2017-07-26
US9454691B2 (en) 2016-09-27
GB201400815D0 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US9454691B2 (en) Method for forming an image reference device
EP2477016B1 (en) Multi-imaging system with interleaved images
US20050142654A1 (en) Slide glass, cover glass and pathologic diagnosis system
GB2522231B (en) Method of forming a stain assessment target
KR102432232B1 (en) Transmission-type color calibration chart
CN111256826B (en) Display screen chrominance measuring method and device and terminal equipment
DE102005022880B4 (en) Separation of spectrally or color superimposed image contributions in a multi-color image, especially in transmission microscopic multi-color images
Colantonio et al. Hypercolorimetric multispectral imaging system for cultural heritage diagnostics: an innovative study for copper painting examination
US20150103401A1 (en) Reference color slide for use in color correction of transmission-microscope slides
US10241310B2 (en) Method of forming an imaging calibration device
JP2019520721A (en) Color calibration and demonstration of digital pathology
JP2015190989A (en) Slide glass with cover glass containing pattern
JP7028101B2 (en) Transparent color calibration chart
US20220334032A1 (en) Method of forming an imaging calibration device
Wei et al. Evaluation of targets for color calibrating digital images from an optical bright‐field transmission microscope
EP4060298A1 (en) Transmissive color gradation chart, transmissive color gradation chart device, and gray gradation chart
WO2022080189A1 (en) Biological specimen detection system, microscope system, fluorescence microscope system, biological specimen detection method, and program
Brzostowski General Considerations for Acquiring a Three-Color Image by Laser Scanning Confocal Microscopy
Colantonio et al. Preliminary version–not for citation

Legal Events

Date Code Title Description
AT Applications terminated before publication under section 16(1)
CAT Correction to former announced terminated application (before grant)

Free format text: PATENT APPLICATION GB1400815.5 WAS ANNOUNCED AS TERMINATED (BEFORE PUBLICATION IN JOURNAL NUMBER 6560 DATED 11.2.15. THE APPLICATION WAS WITHDRAWN IN ERROR AND HAS BEEN RESUSCITATED UNDER THE PROVISIONS OF SECTION 117(1).