GB2508662A - Improved display - Google Patents

Improved display Download PDF

Info

Publication number
GB2508662A
GB2508662A GB1222162.8A GB201222162A GB2508662A GB 2508662 A GB2508662 A GB 2508662A GB 201222162 A GB201222162 A GB 201222162A GB 2508662 A GB2508662 A GB 2508662A
Authority
GB
United Kingdom
Prior art keywords
display
output area
image
waveguide
ocular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1222162.8A
Other versions
GB2508662B (en
GB201222162D0 (en
Inventor
Michael David Simmonds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems PLC
Original Assignee
BAE Systems PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAE Systems PLC filed Critical BAE Systems PLC
Priority to GB1222162.8A priority Critical patent/GB2508662B/en
Publication of GB201222162D0 publication Critical patent/GB201222162D0/en
Priority to ES13799641T priority patent/ES2788756T3/en
Priority to US14/650,686 priority patent/US9684170B2/en
Priority to PCT/GB2013/053136 priority patent/WO2014091201A1/en
Priority to EP13799641.9A priority patent/EP2929391B1/en
Publication of GB2508662A publication Critical patent/GB2508662A/en
Application granted granted Critical
Publication of GB2508662B publication Critical patent/GB2508662B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)

Abstract

A display apparatus, such as a helmet mounted display or other HUD, has an optical ocular part 3, such as night vision goggles (NVG) for viewing a scene, and a waveguide display 6 for guiding image-bearing light to a transparent display output area (16, fig 3). The ocular part 3 and/or the waveguide display 6 are, or can be, positioned in register or in-line for viewing simultaneously the scene and the displayed image. A focuser (17, fig 4A), such as a switchable holographic lens formed from an electrically switchable transmissive Bragg grating, is positioned in register or in-line with the display output area (16, fig 3) and focuses simultaneously the scene and the displayed image for focussed viewing by a user 13.

Description

IMPROVEMENTS IN AND RELATING TO DISPLAYS
The present invention relates to displays, and particularly, though not exclusively, to head-up displays such as head-mounted displays and the like.
Head-mounted displays may employ transparent waveguide displays designed to generate an image via a transparent display screen through which an external scene is viewed by the helmet wearer (e.g. the view from a cockpit of an aircraft). The image thereby forms an overlay to the viewed scene and may comprise flight information (speed, altitude, positional information etc.). When it is necessary to employ additional optical aids, such as monocular or binocular elements in the form of night-vision viewers/goggles (NVG) or the like, a focal mismatch may arise between the optical output of the waveguide display and the additional optical aid. In particular, the user of a night-vision viewer invariable will wish to set the focus of the NVG in the region of -1.0 Dioptres. This may lead to a loss in conformal display accuracy at the waveguide exit pupil and will cause user discomfort.
The invention seeks to address these matters.
In a first aspect, the invention may provide a display apparatus comprising: an optical ocular part arranged for viewing a scene therethrough; a waveguide display part arranged for guiding image-bearing light to a transparent display output area thereof and thereat displaying the image; wherein the ocular part and/or the waveguide display part are positioned or are arranged to be positioned mutually in register for viewing simultaneously the scene with the displayed image incorporated therein through the transparent display output area; and, a focuser part positioned in register with the display output area for focussing simultaneously the scene and the incorporated image for focussed viewing by a user. In this way, the focuser may apply a desired focussing of the combined light of the guided image from the waveguide display part and the light of the scene viewed through the ocular part. The ocular part may be adjustable to adjust the focus thereof (e.g. in the range from about -1.0 Dioptres to about +6 Dioptres).
The waveguide display part may comprise a planar waveguide display. The ocular part may be comprised within a monocular lens assembly which is either a lone lens assembly or forms one lens assembly within a binocular lens assembly.
The waveguide display part may be arranged to output the image-bearing light at the display output area as collimated light. The ocular part may be arranged or may be adjustable to output to the display output area collimated light conveying the scene. The optical output of the ocular part and of the waveguide display part may each comprise collimated light. The focuser part may thus be arranged to apply a focussing to the collimated combined light of both the ocular part and the waveguide display part.
The focuser part may be arranged or operable to possess a negative optical power thereby to diverge light received thereby from the display output area. For example, focuser part may be arranged to provide an optical power in the range from about 0 (zero) Dioptres to about -2 Dioptres, or more preferably between -0.5 Dioptres to about -1.5 Dioptres, e.g. about -1.0 Dioptres.
The focuser part may be switchable between a first state in which it possesses substantially no optical power and a second state in which it possesses an optical power for focussing light received thereby from the display output area.
The ocular part may be moveably connected to the waveguide display part and is moveable between a first position in which it is not in said register with the waveguide display part and a second position in which it is so in register.
The focuser part is preferably arranged to switch from the first state to the second state when the ocular part is moved from the first position into the second position. The focuser part may be arranged to switch from the second state to the first state when the ocular part is moved from the second position into the first position.
In a second of its aspects, the invention may provide a method of displaying a scene comprising: providing an optical ocular part and viewing a scene therethrough; providing a waveguide display part and guiding image-bearing light to a transparent display output area thereof and thereat displaying the image; positioning the ocular part and the waveguide display part mutually in register and viewing simultaneously the scene with the displayed image incorporated therein through the transparent display output area; and, providing a focuser part positioned in register with the display output area and therewith focussing simultaneously the scene and the incorporated image-bearing light for focussed viewing by a user.
The method may include outputting from the waveguide display part the image-bearing light as collimated light at the display output area, and outputting to the display output area collimated light from the ocular part conveying the scene.
According to the method the focuser part may be arranged or be operable to possess a negative optical power, the method may include diverging light received thereby from the display output area.
The focuser part is preferably switchable between a first state in which it possesses substantially no optical power and a second state in which it possesses an optical power for focussing light received thereby from the display output area. The ocular part may be moveably connected to the waveguide display part and is preferably moveable between a first position in which it is not in said register with the waveguide display part and a second position in which it is so in register.
The method may include switching the focuser part from the first state to the second state by moving the ocular part from the first position into the second position.
The method may include switching the focuser part from the second state to the first state by moving the ocular part from the second position into the first position.
The focuser part may be arranged or be operable (e.g. switchable) to possess a negative optical power thereby to diverge light received thereby from the display output area.
An illustrative but non-limiting example of the invention shall now be described with reference to the accompanying drawings of which: Figure 1 is a schematic view of a helmet-mounted display apparatus according to the invention, comprising a pair of night-vision goggles (NVG) attached to a helmet and positioned in a stowed position; Figure 2 is a schematic view of a helmet-mounted display apparatus according to the invention, comprising a pair of night-vision goggles (NVG) attached to a helmet and positioned in a deployed position to permit viewing of a scene therethrough by a user; Figure 3 schematically illustrates a slab waveguide display; Figures 4A and 4B show two switched states of a switchable holographic Bragg grating unit; Figure 5 shows a binocular night vision goggles (NVG) according to an embodiment the invention.
In the drawings, like articles are assigned like reference symbols.
Referring to Figure 1, there is shown a helmet mounted display apparatus comprising an optical ocular part (1, 2, 3) which is one of two separate and parallel monocular components of a pair of binoculars of a night-vision goggle (NVG) unit. The NVGs are arranged for viewing a night-time scene therethrough and include an objective lens part (2) optically coupled to an eyepiece lens part (3) via an image intensifier part (1) arranged to intensify an image of a scene formed by the objective lens part for viewing via the eyepiece part. The NVGs may be such as would be readily available and/or apparent to the skilled person.
The display apparatus includes a planar waveguide display part (6) comprising an image generator part (7) for generating image-bearing light, and a planar waveguide upon or within which is formed two or more diffraction gratings (e.g. Bragg gratings). The image generator part is in communication with an image controller part (8) arranged to generate image data (digital or analogue) and to control the image generator part according to the image data to generate an image accordingly for display.
A first such diffraction grating defines a waveguide input region for receiving image-bearing light from the image generator part (7) and for diffracting image-bearing light into the planar (e.g. slab) waveguide for guiding therealong to a transparent display output area thereof and thereat displaying the image. A second such diffraction grating located at the output area is arranged to diffract out of the waveguide the guided image-bearing light from the waveguide input region.
The eyepiece part (3) and the waveguide display part are shown positioned (and are arranged to be moveably positioned) mutually in register for the viewing simultaneously an external night-time scene such that a display image from the image generator part is incorporated in the scene through the transparent display output area of the waveguide part (6).
A switchable holographic lens part (9) is positioned in register with the display output area of the waveguide part (6) for focussing simultaneously the night-time scene produced by the NVG (1, 2, 3) and the incorporated image-bearing light for focussed viewing by a user. (13).
The waveguide display part is arranged to output the image-bearing light at the display output area as collimated light. The eyepiece part (3) of the ocular part is arranged to be adjustable in optical power to enable a user to control the focus of the scene-bearing light output thereby.
When used in isolation, a typical pair of NVGs would be arranged with an eyepiece of negative optical power set to diverge the scene-bearing light output thereby to achieve a close focus for use by a user/wearer of the NVGs. However, this conflicts with the collimating output power (e.g. substantially/effectively zero, or negligibly small optical power) of the planar waveguide which does not bring image-bearing light to a close focus. When the waveguide part and the NVG ocular part are used together, as shown in Figure 2, the state of focus of scene-bearing light and the state of focus of the image-bearing light is adjusted to render them consistent and optimal. This avoids the visual discomfort a user will otherwise suffer and permits the display apparatus to display both a night-time scene and the image conveyed by the waveguide part concurrently (the latter overlaid on the former) at the display output area of the waveguide part via collimated light conveying both the night-time scene and the guided image from the image generator part (7).
The switchable holographic lens comprises an electrically switchable transmissive Bragg grating formed on a transparent substrate. It is structured to define a holographic optical lens which has a negative optical power (e.g. -1.0 Dioptres) when activated electrically, and has effectively/substantially no optical power when not electrically activated (e.g. effectively zero Dioptres). When activated, the holographic lens is thereby arranged to diverge light received thereby from the display output area to bring it to a close focus desired by a user. The light so focussed is received by the holographic lens as collimated light conveying both the night-time scene from the NVGs and the image-bearing light originating from the image generator part (7).
The focuser part may be switchable according to a switch control unit (10) between a first state shown in Figure 1 in which it possesses substantially no optical power and a second state shown in Figure 2 in which it possesses an optical power for focussing light received thereby from the display output area.
The ocular part of the NVGs is moveably connected via a pivotable connection arm (4) to a helmet (5) to which the waveguide display part is connected or fixed. The ocular part is (e.g. pivotingly) moveable relative to the helmet between a first "stowed" position (Figure 1) in which it is not in register with the waveguide display part and a second "deployed" position (Figure 2) in which it is so in register.
The control unit is arranged to control the focuser part to switch from the first state to the second state when the ocular part is moved from the stowed position into the deployed position, and similarly, to switch from the second state to the first state when the ocular part is moved from the deployed position into the stowed position. In this way, with the holographic lens part switched off' (i.e. no lens) the optical waveguide part is able to be used when the NVGs are in the stowed position and the user's eyes naturally focus to receive collimated image-bearing light from the waveguide part when viewing the environment through the display area of the waveguide part -e.g. during the daytime. Conversely, when it is desired to use the NVGs while still using the waveguide display part, the holographic lens is switched on and the eyepiece of the NVG ocular set to collimate its output. This enables the light output of both the ocular and the waveguide part to be suitably close-focussed by the holographic lens with optimal comfort for the user. In effect, the holographic lens serves the function which is usually served by the eyepiece of the NVG ocular, while allowing the image conveyed by the waveguide to be comfortably incorporated into the overall scene viewed by the user (13).
Figure 3 shows schematically an optical waveguide suitable for the waveguide display part (6).
The optical waveguide is a slab waveguide comprising a first (input) diffractive grating region (14) arranged to receive image-bearing light from the image generator part (7) and to diffract the received light along the optical waveguide by total internal reflection between the planar surfaces of the slab waveguide. An intermediate diffraction grating (15) is optically coupled to the first diffractive grating region by the optical waveguide to receive the diffracted light from the first grating and to expand the received light in a lateral dimension by diffraction as shown by arrows (iSA). A second (output) diffractive grating region (16) is optically coupled to the intermediate diffraction grating by the optical waveguide to receive the expanded light and to output the received expanded light from the optical waveguide by diffraction thereby to display the image conveyed by the image-bearing light when input at the first (input) diffraction grating (14).
The image projector part (7) may be a micro-display pico-projector, such as would be readily available to the skilled person. For example, the pico-projector may include an illumination source (if required), a micro-display area, and one of more lenses and optical components arranged to collimate an image from the micri-display area and inject it into the waveguide. For example, the micro-display may be a reflective LOoS (Liquid crystal on silicon) device, which is a micro-projection or micro-display technology well known in the art. Alternatively, the micro-display may be DMD (digital micro-mirror device) also well known in the art, which may comprise a chip having on its surface many microscopic mirrors arranged in an array which correspond to the pixels in an image to be displayed. The mirrors can be individually rotated to an on or off state to collectively generate an image to be displayed via reflected light.
Figures 4A and 4B schematically show the switchable holographic lens unit in an un-activated state (off') in which no holographic lens is present (Fig. 4A) and also in an activated state (on") in which a holographic lens is generated. The unit comprises an electrically switchable transmissive Bragg grating (17) formed on a transparent substrate (9) of plastic or glass of other suitable optically transniissive material such as would be readily apparent to the skilled person. The switchable transmissive Bragg grating may comprise a Bragg grating recorded into liquid crystal such as is known in the art. An example of this is described in "Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices" by A. dAlessandro et al.: June 15, 2004 / Vol. 29, No. 12/ OPTICS LETTERS. An alternative is to use a liquid crystal switchable lens such as is described in EP0693188B1.
It is structured to define a holographic optical lens which has a negative optical power (e.g. - 1.0 Dioptres) when activated electrically by application of electrical voltage to cause the distribution of refractive index across the surface of the unit (9) to vary in such a way as to define the Bragg grating. Removal of the electrical voltage removes the pattern of refractive index and causes the Bragg grating to disappear.
Thus, when no electrical voltage is applied the unit has effectively/substantially no optical power (e.g. effectively zero Dioptres). When activated, the holographic lens is thereby generated and is arranged to diverge light received thereby from the display output area (16) of the optical waveguide part (6) to bring it to a close focus desired by a user, as shown in Figure 4B.
The switch control unit (10) is arranged to selectively apply/remove the required voltage to the switchable Bragg grating unit (9) to cause it to switch between the first state shown in Figures 1 and 4A in which it possesses substantially no optical power and the second state shown in Figures 2 and 4B in which it possesses negative optical power. The switch control unit (10) may, in preferred embodiments be connected to an external switch element (20) formed in the pivotable connection arm (or alternatively in the helmet 5) which is arranged to adopt automatically a first switch state when the NVGs are in the stowed position (Fig.1) and to adopt automatically a second state when the NVGs are in the deployed position (Fig.2). The switch control unit (10) is arranged, in such embodiments, to be responsive to the external switch element when in the first state to not activate the switchable Bragg grating, and to be responsive to the external switch element when in the second state to activate the switchable Bragg grating. In this way, the switchable Bragg grating may be automatically activated when the NVGs are deployed. In other embodiments, the external switch unit may be simply a hand-operated switch operable directly (manually) by the user.
The setting of the focus of an ocular of the NVGs may be performed manually by the wearer by adjustment of the eyepiece(s) thereof. An appropriate eyepiece may thus be manually adjusted to collimate by the wearer.
Figure 5 shows schematically how a pair of NVG oculars may be used with the waveguide display part and the focuser part of the invention in a preferred embodiment. Only one of the two oculars is arranged in combination with a waveguide display part (6) and focuser part (9).
That ocular (13) is arranged to output collimated light from a viewed scene, whereas the other ocular (1 B, 2B, 3B) of the pair is arranged to output divergent light close-focussed via eyepiece (3B) optical elements possessing negative optical power (e.g. about -1.0 Dioptres). The negative optical power of that other ocular (3B) is substantially matched by the negative optical poser of the focuser unit (9) with the result that the user sees a given scene through both eyes (13 and 138) appropriately focussed with an image from an image generation unit (7) superimposed thereupon in the view through one eye (13).
The embodiments described above are intended as non-limited examples of the invention the scope of which is intended to encompass variants, modifications and equivalents to the examples such as would be readily apparent to the skilled person.

Claims (15)

  1. CLAIMS: 1. A display apparatus comprising: an optical ocular part arranged for viewing a scene therethrough; a waveguide display part arranged for guiding image-bearing light to a transparent display output area thereof and thereat displaying said image; wherein the ocular part and/or the waveguide display part are positioned or are arranged to be positioned mutually in register for viewing simultaneously said scene with said displayed image incorporated therein through said transparent display output area; and, a focuser part positioned in register with said display output area for focussing simultaneously said scene and said incorporated image for focussed viewing by a said user.
  2. 2. A display apparatus according to any preceding claim in which said waveguide display part is arranged to output said image-bearing light at said display output area as collimated light, and said ocular part is arranged or is adjustable to output to the display output area collimated light conveying said scene.
  3. 3. A display apparatus according to any preceding claim in which the focuser part is arranged or operable to possess a negative optical power thereby to diverge light received thereby from said display output area.
  4. 4. A display apparatus according to any preceding claim in which the focuser part is switchable between a first state in which it possesses substantially no optical power and a second state in which it possesses an optical power for focussing light received thereby from said display output area.
  5. 5. A display apparatus according to any preceding clam in which the ocular part is moveably connected to the waveguide display part and is moveable between a first position in which it is not in said register with the waveguide display part and a second position in which it is so in register.
  6. 6. A display apparatus according to claims 4 and 5 in which the focuser part is arranged to switch from said first state to said second state when the ocular part is moved from said first position into said second position.
  7. 7. A display apparatus according to claims 4 and 5, or claim 6, in which the focuser part is arranged to switch from said second state to said first state when the ocular part is moved from said second position into said first position.
  8. 8. A display apparatus according to any preceding claim in which the waveguide display part comprises a planar waveguide display.
  9. 9. A display apparatus according to any preceding claim in which the ocular part is comprised within a monocular lens assembly which is either a lone lens assembly or forms one lens assembly within a binocular lens assembly.
  10. 10. A method of displaying a scene comprising: providing an optical ocular part and viewing a scene therethrough; providing a waveguide display part and guiding image-bearing light to a transparent display output area thereof and thereat displaying said image; positioning the ocular part and the waveguide display part mutually in register and viewing simultaneously said scene with said displayed image incorporated therein through said transparent display output area; and, providing a focuser part positioned in register with said display output area and therewith focussing simultaneously said scene and said incorporated image-bearing light for focussed viewing by a said user.
  11. 11. A method according to claim 10 including outputting from said waveguide display part said image-bearing light as collimated light at said display output area, and outputting to the display output area collimated light from the ocular part conveying said scene.
  12. 12. A method according to any of claims 10 and 11 in which the focuser part is arranged or operable to possess a negative optical power, the method including diverging light received thereby from said display output area.
  13. 13. A method according to any of claims 10 to 12 in which the focuser part is switchable between a first state in which it possesses substantially no optical power and a second state in which it possesses an optical power for focussing light received thereby from said display output area, and the ocular part is moveably connected to the waveguide display part and is moveable between a first position in which it is not in said register with the waveguide display part and a second position in which it is so in register.
  14. 14. A method according to claim 13 including switching the focuser part from said first state to said second state by moving the ocular part from said first position into said second position.
  15. 15. A method according to claim 13 or claim 14, including switching the focuser part from said second state to said first state by moving the ocular part from said second position into said first position.
GB1222162.8A 2012-12-10 2012-12-10 Improvements in and relating to displays Expired - Fee Related GB2508662B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB1222162.8A GB2508662B (en) 2012-12-10 2012-12-10 Improvements in and relating to displays
ES13799641T ES2788756T3 (en) 2012-12-10 2013-11-27 Improvements in and related to display systems
US14/650,686 US9684170B2 (en) 2012-12-10 2013-11-27 Displays
PCT/GB2013/053136 WO2014091201A1 (en) 2012-12-10 2013-11-27 Improvements in and relating to displays
EP13799641.9A EP2929391B1 (en) 2012-12-10 2013-11-27 Improvements in and relating to displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1222162.8A GB2508662B (en) 2012-12-10 2012-12-10 Improvements in and relating to displays

Publications (3)

Publication Number Publication Date
GB201222162D0 GB201222162D0 (en) 2013-01-23
GB2508662A true GB2508662A (en) 2014-06-11
GB2508662B GB2508662B (en) 2018-08-22

Family

ID=47602306

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1222162.8A Expired - Fee Related GB2508662B (en) 2012-12-10 2012-12-10 Improvements in and relating to displays

Country Status (1)

Country Link
GB (1) GB2508662B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083800A1 (en) * 2014-11-26 2016-06-02 Bae Systems Plc Improvements in and relating to displays

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254855A1 (en) * 2008-12-19 2011-10-20 Bae Systems Plc Display system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808722A3 (en) * 1996-10-08 2007-07-25 The Microoptical Corporation Image Combining System for Eyeglasses and Face Masks
FR2903786B1 (en) * 2006-07-11 2008-09-05 Thales Sa HELMET VISUALIZATION SYSTEM WITH INTERCHANGEABLE OPTICAL MODULES
EP2494388B1 (en) * 2009-10-27 2018-11-21 DigiLens Inc. Compact holographic eyeglass display
US9106909B2 (en) * 2010-04-20 2015-08-11 Hewlett-Packard Development Company, L.P. Stereo vision viewing systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254855A1 (en) * 2008-12-19 2011-10-20 Bae Systems Plc Display system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083800A1 (en) * 2014-11-26 2016-06-02 Bae Systems Plc Improvements in and relating to displays
US10394022B2 (en) 2014-11-26 2019-08-27 Bae Systems Plc Displays

Also Published As

Publication number Publication date
GB2508662B (en) 2018-08-22
GB201222162D0 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
EP2929391B1 (en) Improvements in and relating to displays
US10663728B2 (en) Relating to displays
US8079713B2 (en) Near eye display system
JP4411547B2 (en) Image display device
CN108957752B (en) Head-mounted display
JP4155343B2 (en) An optical system for guiding light from two scenes to the viewer's eye alternatively or simultaneously
AU2015341881B2 (en) Head-borne viewing system comprising crossed optics
US20200301239A1 (en) Varifocal display with fixed-focus lens
WO2016143245A1 (en) Image display device
CN106019585B (en) Head-mounted display
KR20030088217A (en) Wearable display system enabling adjustment of magnfication
JP2002287077A (en) Video display device
JP2022509114A (en) Near focus correction AR glasses
US10732407B1 (en) Near eye head up display system and method with fixed combiner
JP7093729B2 (en) See-through display system
EP3091740A1 (en) Improvements in and relating to displays
EP3230789A1 (en) Display system
KR20230088726A (en) Optical system with a cylindrical waveguide
JP2004145367A (en) Image displaying device
EP4150384A1 (en) Eyebox steering and field of view expansion using a beam steering element
EP2741121A1 (en) Improvements in or relating to displays
GB2508662A (en) Improved display
Bakholdin et al. Systems design of augmented-reality collimator displays
KR20200061755A (en) Multi mode head-mounted display and operating method thereof

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20211210