GB2503669A - Simultaneously recording multiple media assets using a single tuner - Google Patents

Simultaneously recording multiple media assets using a single tuner Download PDF

Info

Publication number
GB2503669A
GB2503669A GB1211750.3A GB201211750A GB2503669A GB 2503669 A GB2503669 A GB 2503669A GB 201211750 A GB201211750 A GB 201211750A GB 2503669 A GB2503669 A GB 2503669A
Authority
GB
United Kingdom
Prior art keywords
broadcast
recording
data
broadband
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1211750.3A
Other versions
GB2503669B (en
GB201211750D0 (en
Inventor
Eyal Farkash
Kevin A Murray
Eliphaz Hibshoosh
Aliza Itzkowitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synamedia Ltd
Original Assignee
NDS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDS Ltd filed Critical NDS Ltd
Priority to GB1211750.3A priority Critical patent/GB2503669B/en
Publication of GB201211750D0 publication Critical patent/GB201211750D0/en
Priority to US14/412,680 priority patent/US9918111B2/en
Priority to PCT/IB2013/055397 priority patent/WO2014006558A1/en
Publication of GB2503669A publication Critical patent/GB2503669A/en
Application granted granted Critical
Publication of GB2503669B publication Critical patent/GB2503669B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234327Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by decomposing into layers, e.g. base layer and one or more enhancement layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/76Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet
    • H04H60/81Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by the transmission system itself
    • H04H60/82Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by the transmission system itself the transmission system being the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23605Creation or processing of packetized elementary streams [PES]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23608Remultiplexing multiplex streams, e.g. involving modifying time stamps or remapping the packet identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4347Demultiplexing of several video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/44016Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving splicing one content stream with another content stream, e.g. for substituting a video clip
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/462Content or additional data management, e.g. creating a master electronic program guide from data received from the Internet and a Head-end, controlling the complexity of a video stream by scaling the resolution or bit-rate based on the client capabilities
    • H04N21/4622Retrieving content or additional data from different sources, e.g. from a broadcast channel and the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6125Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving transmission via Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/845Structuring of content, e.g. decomposing content into time segments
    • H04N21/8456Structuring of content, e.g. decomposing content into time segments by decomposing the content in the time domain, e.g. in time segments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/85Assembly of content; Generation of multimedia applications
    • H04N21/854Content authoring
    • H04N21/8547Content authoring involving timestamps for synchronizing content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/92Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback

Abstract

A method for facilitating multiple recordings via a single tuner includes isolating data packets 13 associated with recording candidate media assets from at least two broadcast data streams and generating at least one broadcast recording data stream from a subset of the isolated data packets. The broadcast recording data stream is broadcast in parallel with the original broadcast data streams, where the broadcast recording data stream is broadcast via a dedicated broadcast recording device 22D and the original broadcast data streams are broadcast via other broadcast devices 22A, 22B, 22C. The remaining data packets not included in the isolated data packets are stored in broadband data segments 16, and transmitted 17 via an IP connection 5 to facilitate reassembly of partially recorded media assets, where the partially recorded media assets were recorded from the broadcast recording stream. Related methods and apparatus are also disclosed. The number of programs included in a given transponders data stream can therefore be increased by broadcasting a certain ratio of each program as a segmented broadcast and delivering the left-over packets via broadband. The exact percentage of segments broadcast is variable and may be uniform, prioritised or subject to manual input.

Description

A SYSTEM AND METHOD FOR SIMULTANEOUSLY RECORDING
MULTiPLE MEDiA ASSETS USING A SINGLE TUNER
FIELD OF THE INVENTION
The present invention relates to facilitating the recording of broadcasted media assets.
BACKGROUND OF THE INVENTION
The following references are believed to represent the known state of thc art: Robert N. Lee; Interface for resolving recording conflicts with network devices, U.s. 7917008 BI Mar. 2011; US Patent 5193009 "Signal switching method of a TV-VCR combination having two tuners" to Park; US Patent Application 2001/0033343 "Multi-tuner DVR."of Yap; US Patent Applciation 2006/0051051 "Combination recording apparatus for simultaneous recording and method thereof' of Kim; US Patent Application 2008/0089671 "Simultaneous recording and playback of audio/visual programs" of Lang; and US Patent Application 2007/002 153 "Peer-To-Peer Set-Top Box System" of Bachet, et al.
SUMMARY OF THE INVENTION
There is provided in accordance with some embodiments of the present invention a method for facilitating multiple recordings via a single tuner, the method including isolating data packets associated with recording candidate media assets from at least two broadcast data streams, generating at least one broadcast recording data stream from a subset of the isolated data packets, broadcasting the at least one broadcast recording data stream in parallel with the at least two broadcast data streams, where the broadcast recording data stream is broadcast via at least one dedicated broadcast "recording" device, and the at least two broadcast data streams are broadcast via other broadcast devices, storing remaining data packets not included in the isolated data packets in broadband data segments, and transmitting the broadband data segments via an if connection to facilitate reassembly of partially recorded the media assets, where the partially recorded media assets were recorded from the broadcast recording stream.
Further, in accordance with some embodiments of the present invention, the generating includes assigning a broadcastIbroadband ratio to each of the recording candidate media assets, where each broadcast/broadband ratio indicates a percentage of the isolated data packets from an associated recording candidate media asset to be included in the broadcast recording stream.
Still farther, in accordance with some embodiments of the present invention, the broadcast/broadband ratios are at least one of uniform, prioritized and subject to manual input Additionally, in accordance with some embodiments of the present invention, the assigning includes initially defining at least one the broadcastibroadband ratio as %, and redefining the broadcast'broadband ratio with a lower value after an initial portion of its associated recording candidate media asset has been included in the broadcast recording data stream.
Moreover, in accordance with some embodiments of the present invention, the assigning includes accommodating the defining by temporarily assigning lower the broadcastibroadband ratios for other the recording candidate media assets included in the broadcast recording data stream until after the initial portion is complete.
Further, in accordance with some embodiments of the present invention, the assigning includes accommodating the defining by allocating dedicated bandwidth for broadcasting the initial portion.
Still further, in accordancc with some embodiments of the prcscnt invcntion, thc broadband data segmcnts arc storcd in a different format than thc broadcast data strcarns.
Additionally, in accordance with some embodiments of the present invention, the assigning includes defining allocation ratios for the subset of packets and the remaining packets in accordance with at least one of consumer recording requests and proportional distribution.
There is also provided in accordance with some embodiments of the present invention, A method for simultaneous'y recording multiple media assets, the method including designating at least one of n tuners on a media content recording device as a designated recording tuner, receiving at least n + Ituning service requests on the media content recording device, where each tuning service request represents at least one of a recording request and a viewing request for media content on a different broadcast channel, tuning the designated recording tuner to receive a broadcast recording data stream from a dedicated broadcast "recording" device, where the broadcast recording stream includes a multiplicity of subsets of data packets, each of the subsets of data packets associated with one of a multiplicity of recording candidate media assets, recording at least two of the multiplicity of subsets of data packets as received from the dedicated broadcast recording device, where recording of the associated recording candidate media assets was requested in the at least n + ititning service requests, receiving data segments representing remaining the data packets associated with at least one of the recorded subsets of data packets, and assembling at least one of the multiplicity of recording candidate media assets from the at least one recorded subset and the data segments.
Further, in accordance with some embodiments of the present invention, the method includes starting a complete version recording of at least one of the recording candidate media assets from one of a multiplicity of "source" broadcast dcviccs, whcre cach of thc sourcc broadcast dcviccs broadcasts complete versions of at least some of thc rccording candidatc media assets, after rccciving at least n + 1 tuning service requests, saving the complete version recording as a partial full version recording, and performing tuning and recording, where at least one of the at least two of the multiplicity of subsets of data packets represents a subset of the at least one recording candidate media assets for which the complete version recording was started.
Still fttrther, in accordance with some embodiments of the present invention, the assembling includes assembling the at least one of the multiplicity of recording candidate media assets from the at least one recorded subset, the data segments and the partial fttll version recording.
Additionally, in accordance with some embodiments of the present invention, the assembling also includes converting the data segments to a format compatible with the recorded subset.
There is also provided, in accordance with some embodiments of the present invention, a broadcast headend including a data stream generator to generate a multiplicity of data streams for broadcast, a cropping module to crop at least two of the multiplicity of data streams to generate at least a cropped broadcast stream and broadband data segments, where the cropped broadcast stream includes a subset of packets associated with at least two recording candidate media assets in the multiplicity of data streams, and the broadband data segments represent remaining packets associated with the recording candidate media assets and not included in the subset of packets, a broadcast uploader to upload at least the multiplicity of data streams and cropped broadcast stream to a broadcast satellite, where the cropped broadcast stream is uploaded to a dedicated broadcast "recording" device for broadcast as a broadcast recording stream, and a broadband transmitter to transmit the broadband data segments via an IP connection to a recording device configured to record packets associated with at least one of the recording candidate media assets in the broadcast recording stream, where the transmitted broadband data segments are associated with the at least one of the recording candidate media assets.
Further, the broadcast headend also includes a crop control module to at least define allocation ratios for the subset of packets and the remaining packets.
Still further, in accordance with some embodiments of the present invention, the broadcast headend also includes a broadband data segment storage unit to store the broadband data segments prior to transmission by the broadband transmitter, where thc broadband data segment storage unit is configurable to store the broadband data segments in a different format than the data streams.
There is also provided, in accordance with some embodiments of the present invention, a media recording device including at least two tuners to tune the device to receive media asset broadcasts, where at least one of the tuners is configurable as a broadcast recording tuner to be tuned to a dedicated broadcast "recording" device, the dedicated broadcast recording device configurable to transmit a broadcast recording stream including a subset of packets associated with at least two recording candidate media assets generated from a multiplicity of data streams broadcast in parallel to the broadcast recording stream, a recorder to at least record a partial recording of at least one of the recording candidate media assets from the subset of packets, a broadband receiver to receive broadband data segments associated with the partial recording, where the broadband data segments are also generated from the multiplicity of data streams, and an assembly engine to assemble the at least one recording candidate media asset from at least the partial recording and the received broadband data segments.
Further, in accordance with some embodiments of the present invention, the assembly engine is configurable to convert the broadband data segments to a format compatible with the partial recording.
Still further; in accordance with some embodiments of the present invention, the dedicated broadcast "recording" device is a satellite transponder.
Additionally, in accordance with some embodiments of the present invention, the dedicated broadcast "recording" device is a cable frequency transmitter.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be understood and appreciated more frilly from the foflowing detailed description, taken in conjunction with the drawings in which: Fig. is a schematic illustration of a novel broadcast media recording system, constructed and operative in accordance with an embodiment of the present invention; Fig. 2 is a schematic illustration of the cropping module of Fig. 1; Fig. 3 is a block diagram of a novel delivery ratio determination tO process to bc performed by thc crop control module of Fig. 2; Fig. 4 a is a block diagram of a novel data segmentation process to be performed by the packet allocator of Fig. 2; Fig. S is a schematic illustration of two altcmative options for implementing the embodiment of Fig. 1; IS Fig. 6 is a block diagram of a typical opcrating flow for an STB, constructcd and opcrativc in accordance with somc cmbodiments of thc prcscnt invention; Fig. 7 is a block diagram of a novel recording assembly process, constructed and operative in accordance with some embodiments of the present invention; Fig. 8 is a schcmatic illustration of an cxcmplary flow of data for a mcdia asset rccordcd and rcasscmblcd according to thc cmbodimcnts of Figs. 6 and 7; Fig. 9A is a block diagram of a novel "consumer recording feedback" policy, constructed and operative in accordance with some ernbodimcnts of thc prcscnt invcntion; and Fig. 9B is a schematic illustration of exemplary tables to be used by the process of Fig. 9A.
DETAILED DESCRIPTiON
In the following description, for purposes of explanation, numerous details are set forth, such as flowcharts and systems configuration, in order to provide an understanding of one or more embodiments of the present invention, However it is and will be apparent to one skilled in the art that those specific details are not required in order to practice the present invention.
Persons skilled in the art will appreciate that, throughout the present application, a set top box (STB) is used by way of cxample only, and that thc present invention is not limited to a particular type of STB, but rather includes any suitable device with recording and playback functionality.
STBs may be configured with recording functionality that may be used to simultaneously record multiple television programs as they are broadcasted. Typically, an STB must be tuned to a broadcast transponder broadcasting the program being recorded. Accordingly, if the programs to be recorded are not being broadcast via the same transponder, the number of programs that may be recorded may be effectively limited by the number of tuners in a given STB. Therefore, depending on the circumstances, a dual-tuner STB may be capable of two simultaneous recordings, but not three or more. It will be appreciated that this limitation of tuners vs. simultaneous programs may also exist in homes/environments where a gateway may be used for the distribution of broadcast TV to IP-based clients. The maximum number of independent clients may be similarly limited by the number of tLtners in the gateway.
It will be appreciated that transponders may typically be configured to broadcast multiple programs simultaneously in a single data stream.
Accordingly, in some situations, a single tuner may facilitate the recording of multiple programs simultaneously, as long as all of the programs are broadcast via the same transponder. It may therefore be beneficial for a television service provider to broadcast the most popularly recorded programs via the same transponder. However, transponders may have limited bandwidth, such that it may not be feasible to include all, or even most, of the popularly recorded programs in a single transponder's data stream. To illustrate, a video bitrate of 1.2 mbps may be used for an exemplary standard definition (SD) quality broadcast and a 2.5 mbps video bitrate may be used for an exemplary high definition (HD) quality broadcast. A typical transponder may have bandwidth of 40mbps which may therefore providc sufficient bandwidth for a maximum of 33 (33 X 1.2 mbps = 39.6 mbps) SD programs, 16 HD programs (16 X 2.5 rnbps = 40 mbps), or some combination thereof, for example, 12 SD programs and 10 HD programs ((12 X 1.2 mbps) + (10 X 2.5 mbps) = 39.4 mbps). Therefore, depending upon the requirements of the television service provider, there may not be sufficient bandwidth to provide all of the desired programs in a single data stream. It will be appreciated that the use of the term television program is exemplary; the present invention may provide support for any program, media asset or service that may be typically provided by a television service provider.
SIBs configured with IP connectivity are known in the art.
Applicant has realized that such connectivity may be leveraged to increase the number of programs included in a given transponder's data stream by broadcasting a subset of each program as a "segmented broadcast" and delivering the remaining data segments as required via a broadband connection.
Reference is now made to Fig. 1 which illustrates a novel broadcast media recording system 100, constructed and operative in accordance with an embodiment of the present invention. The system 100 may comprise broadcast headend 10, satellite 20 and SIB 30. It will be appreciated that system 100 may support a multiplicity of STBs 30. However, for the purposes of clarity only one SIB 30 is illustrated in Fig. 1.
It will similarly be appreciated that additional ftmctionality of system 100 that may be required to broadcast and/or receive media assets may not be depicted explicitly in Fig. 1. System 100 may comprise such ftinctionality; however, in the interests of clearly pointing out the present invention, it may not be depicted in Fig. 1.
As will be described hereinbelow, system 100 may be configured to employ both over-the-air transmissions as well as broadband connections to deliver complimentary segments of a single television broadcast to subscribers for recording. It will be appreciated, however, that in accordance with an alternative embodiment of the present invention, system 100 may be configured to provide similar functionality via a cable based television broadcast system, where the associated cable bandwidth may be split between dedicated television broadcasts and IP broadband.
An exemplary broadcast satellite 20 may comprise four transponders 22 for receiving program data from headend 10 and then broadcasting it to customers using receiving apparatuses such as, for example, STB 30. Transponders 22 may be any standard transponders such as are known in the art. An exemplary system 100 may generally broadcast programs and services requiring up to 120 mbps of bandwidth, such that exemplary transponders 22A, 22B and 22C with 40 mbps bandwidth each may be sufficient for standard broadcast requirements. In accordance with some embodiments of the present invention, transponder 22D may be designated as a "recording transponder", to broadcast segmented broadcasts representing subsets of programs broadcast via transponders 22A, 22B and 22C to facilitate their recording by users of system 100.
It will be appreciated that the configuration of broadcast satellite 20 with four transponders 22 is exemplary: the present invention may support any configuration of at least n + 1 transponders 22, where n = the number of transponders required to provide sufficient bandwidth to broadcast the programs and services of system 100. It will similarly be appreciated that if system 100 may be configured with a cable based television broadcast system, the functionality of satellite 20 and transponders 22 may be provided by cable television frequencies and channels.
Headend 10 may comprise stream generator 11 and broadcast uploader 12. Stream generator 11 may comprise known functionalities for generating data streams suitable for broadcasting television programs and services.
For example, stream generator 11 may generate DVB data packets representing audio/video programs and services to be uploaded to satellite 20 via broadcast Ltploader 12. In an exemplary embodiment of the present invention, stream generator 11 may generate three such streams (data streams 1, 2 and 3) for simultaneous broadcast. It will, however, be appreciated that the number of data I0 streams to be generated may be configurable; the present invention may support other configLirations as required by a given television service provider. Each data stream may be associated with a specific transponder 22; for example, data stream 1 may be associated with transponder 22A, data stream 2 with transponder 22B and data stream 3 with transponder 22C. Broadcast uploader 12 may be configured to upload each data stream to its associated transponder 22 for broadcast.
Headend 10 may also comprise de-mux units 18, cropping module 13, re-mux unit 14, broadband segment storage 16 and broadband transmitter 17. It will be appreciated that this configuration may be exemplary; some elements of headend 10, such as, for example, broadband storage 16 andlor broadband transmitter 17, may be alternatively be configured as part of an associated content distribution network (CDN) or cloud.
De-mux units 18 may be configured to de mux copies of the data streams (labeled as DS 1, 2 and 3) received from stream generator 11. It will be appreciated that each such data stream may include multiple services, not all of which may be necessary for recording programs. Dc mux units 18 may discard any unnecessary data packets and forward the de muxed streams (labeled as DS 1', 2' and 3') consisting of the remaining data packets to cropping module 13. As described hereinbelow, cropping module 113 may be configured to combine a selection of packets from each of the de muxed streams to generate a single stream (herein labeled as "cropped stream") of data packets from media assets defined as rccording candidates; the selection may include a percentage of the packets from media assets deemed to be most likely to be recorded by the end user. The cropped stream may therefore represent a segmented broadcast of media assets for recording that may be input to re-mux unit 14. The remainder of the packets associated with the recording candidates may be forwarded as broadband data segments in any suitable format to broadband segment storage 16.
Re-mux unit, 114, may be configured to multiplex the received packets for broadcast over the air and send the resulting "recording stream" to broadcast uploader 12 for transmission to transponder 22D. It will be appreciated that the recording stream may ultimately be broadcast by transponder 22D in any
II
suitable format such as, for example, DVB-IS, ES, or pure data over DVB. It will further be appreciated that the "cropped" media assets in the recording stream may be broadcast generally in parallel, i.e. at generally the same time, with the broadcast of their associated complete versions via transponders 22A -C. Broadband transmitter 17 may be configured to receive broadband segment data from broadband segment storage 16 for transmission as required via Internet 5.
SIB 30 may comprise a multiplicity of tuners 31, recorder 33, tuned recording storage 34, player 35, broadband receiver 36 and broadband recording storage 37. In accordance with an exemplary embodimcnt of the present invention, SIB 30 may comprise two tuners 31, it will, however, be appreciated that the present invention may also provide support for three or more tuners 31.
In accordance with some embodiments of the present invention, tuner 31A may be configurable to tune to recording transponder 22D, while tuner 3 lB may switch between transponders 22A, 22B and 22C as required per user selection of television chaimels. Recorder 33 may be configured to record programs from either one or both of tuners 31, saving the associated recorded data in tuned recording storage 34. Player 35 may access the recorded data in tuned recording storage 34 as necessary to play the recorded programs as per user request.
It will be appreciated that while the recording data from tuner 3 lB programs may represent complete, playable versions of the recorded programs.
However, the recording data associated with the tuner 3 1A programs may represent incomplete versions that may require the program segments "cropped" by cropping module 13 for completion. Broadband receiver 36 may receive these program segments via a broadband connection and save them in broadband recording storage 37. Alternatively, broadband receiver 36 may forward the received program segments directly to player 35 to be played without intermediate storage.
Player 35 may be configured with known functionality for playing complete programs, for example, those recorded from tuner 3 lB. In accordance with some embodiments of the present invention, player 35 may also comprise assembly engine 50 which may be configured to assemble a complete playable program from the data received from both tuned recording storage 34 and broadband segment storage 16 via a broadband connection. It will be appreciated that the description of assembly engine 50 as an integral component of player 35 may bc excmplary; thc prcsent invdntion may also support an extcrnal asscmbly enginc 50 that may bc invokcd or acccsscd by playcr 35.
As described hereinabove, transponder 22D may be configured to broadcast a "cropped" data stream comprising a subset of the packets associated with each program broadcast. In accordance with an exemplary embodiment of the prcscnt invcntion, transpondcr 22D may havc a bandwidth capacity of 40 mbps.
Each SD channel on transponder 22D may be allocated 500kbps, and each HD channel may be allocated 1.4 mbps. Assuming that the available bandwidth may be equally divided between SD an HD channels, transponder 22D may therefore provide approximately 42 channels ((21 X.5 mbps SD channels) + (21 X 1.4 mbps HD channels) = 39.9 mbps) as opposed to the approximately 22 channels that may typically be provided by a 40 mbps transponder when similarly divided between SD an HD channels as described hereinabove.
Assuming that SD and HD channels may be so allocated, the required bandwidth for generally real time complementary downloads may be 700 kbps for SD and 1.1 mbps for HD. It will be appreciated that currently available broadband services may typically provide download bandwidth in excess of 1.1 mbps such that it may be expected that it may be feasible for system 100 to support real time broadband complementary downloads.
It will be appreciated that, as discussed hereinabove, the media assets broadcasted by transponder 22D may he incomplete versions that may not be immediately playable after recording. To generate a playable version it may be necessary to recombine a recorded incomplete version with its associated broadband data segments that were stored in broadband segment storage 16.
Depending on the configuration of system 100 and the timing of the user's request to recombine a recorded incomplete version with its associated broadband data segments, there may be a lag of several minutes before a complete version of the media asset may be generated. Therefore, in accordance with some embodiments of the present invention, the first x minutes of each program broadcast by transponder 22D may be broadcast in full; cropping module 13 may be configured to include a complete version of a program as it starts in the cropped stream forwarded to re-mux unit 14. For example, the first x minutes of an HD program may be allocated a full 2.5 mbps when broadcast by transponder 22D. It will be appreciated that an STB may typically be configured with a receiving buffer that may be employed to store the beginning of a program's broadcast. This may prevent time-shift or catch-up issues in case the viewer switches immediately to the recorded event.
It will further be appreciated that the operator of system may typically be expected to ifilly allocate the bandwidth of transponder 22D such that in order to allocate a full 2.5 mbps to the beginning of an HD media asset broadcast it may be necessary to temporarily reduce the bandwidth available for the other media assets being broadcast via transponder 22D. Alternatively, transponder 22D may be configured with a dedicated reserve bandwidth percentage to be allocated as needed to media assets at the beginning of their broadcasts.
Reference is now made to Fig. 2 which illustrates the components of cropping module 13. Cropping module 13 may comprise data receiver 131, PID extractor 132, packet allocator 133 and crop control module 134. In operation, data receiver 131 may receive the de-muxed data streams from de-mux units 18 (Fig. 1), and forward them to P1D (packet ID) extractor 132. PID extractor 132 may be configured to extract packets according to their PIDs as per settings received from crop control module 134. The settings may indicate which PIDs may be associated with rncdia assets to be broadcast by transponder 22D (Fig. 1); packets associated with other media assets or services may he ignored.
The extracted packets may be forwarded to packet allocator 133.
Packet allocator 133 may be configured to allocate a percentage of the incoming packets into a cropped broadcast stream for forwarding to re-mux unit 14 as discussed hereinabove. The remaining packets may be formatted in any suitable manner as program data segments to be stored in broadband segment storage 16 prior to broadband transmission as discussed hereinabove. As will be described hereinbelow, crop control module 134 may be configured to define the broadcast/broadband allocation ratios that may be Lised by packet allocator 133.
The program data segments may therefore be sections or blocks of data with a header that may rcprcscnt excerpts of the media assets included in the data streams generated by stream generator 11 (Fig. 1) for broadcast via one or more of transponders 22A, 22B or 22C. Such segments may not be limited by length, size or standard. For example, a segment may be in the format of a DVB packet (typically 18S bytes), a GOP, or a 1 -2 second segment of dynamic streaming (of 1-2 seconds). Any suitable format may be used for a segment; in fact, a segment may even include not necessarily playable data such as, for example, enhanced information. Similarly, the segments may be transcoded (with the exception of time domain transcoding) to reduce transmission bandwidth requirements.
Reference is now made to Fig. 3 which illustrates a delivery ratio determination process 300 that may be employed to calculate the settings for crop control module 134. The broadcast schedLile may be inpLlt (step 301) with a list of scheduled media assets and services. The scheduled media assets and/or services to be broadcast on the dedicated "recording" transponder (e.g. transponder 22D) may be defined (step 302) by any suitable means. For example, a broadcaster may typically categorize media assets and services according to pricing bundles or categories. In such a case, all "premium" programs may be defined automatically.
Alternatively, a specific media asset or service may be defined by manual input.
For example, a 24/7 sports channel may be added during the World Cup to facilitate recording games played in a different time zone in the middle of the night. Media assets and services may also be defined by a statistical a'gorithm analyzing past usage.
A desired ratio may be defined (step 303) for each such defined media asset or service. Any suitable process or algorithm may be used to perform such definition. For example, a uniform ratio may be applied to each defined media asset or service. Prioritized ratios may also be applied depending on pricing bundles and/or categories. Manual input may also be employed to proactively adjust to defined ratios.
The overall required bandwidth (as per the results of step 303) may be checked (step 304) to ensure that it does not exceed the bandwidth available on the recording transponder. Steps 303 and 304 may be performed iteratively until the ratio definitions are finalized and validated by step 304. The settings in crop control module 134 may be updated (step 305) with the defined ratios per the selected media assets and services. It will be appreciated that the logic of process 300 may be incorporated within crop control module 134. Alternatively, process 300 may be an external process that may communicate with crop control module 134.
In accordance with some embodiments of the present invention, assembly engine 50 (Fig. 1) may assemble the recorded media asset or service according to program clock references (PCRs) included in the data received via both broadcast and broadband. PCRs are timestamps that may be associated with specific assets or services to synchronize the demultiplexing of data streams.
Reference is now made to Fig. 4 which illustrates a data segmentation process 400 according to which packet allocator 133 may leverage the PCRs from the original data streams produced by stream generator 11 to generate and label the program data segments to be transmitted via broadband.
Packet allocator 133 may read (step 401) a first packet and define (step 402) "PCR Start" as the value of the packet's PCR. The PCR is then compared (step 403) to (PCR Start + "y"), where y is the target length of the segment minus "w", and w is an integer smaller than target lengthl2. If the result of step 403 is no, packet allocator 133 may write (step 404) the data from the packet in the segment and may read (step 405) the next packet before returning to step 403.
When the result of step 403 is yes, packet allocator 133 may close (step 406) the segment and write (step 407) the current PCR in its header before storing (step 408) the segment in broadband segment storage 16. The process may then return to step 402 to begin generating the next segment with the already read packet. Process 400 may therefore facilitate a consistent use of PCR timestamps by the associated broadcast and broadband delivery vehicles for a single media asset or service, thereby enabling assembly engine to identify the "missing" I6 packets from the broadcast data stream and replace them from the broadband data stream.
It will be appreciated that process 400 may include other logic as necessary to differentiate between packets associated with different media assets or services; a segment may not include data from more than a single media asset or service. Furthermore, all related data segments (i.e. those associated with a single media asset) may be stored serially according to PCR in a single logical or physical file in broadband segment storage 16.
Reference is now made to Fig. 5 which illustrates two alternative options for informing STB 30 about the existence of the recording transponder (e.g. transponder 22D in the embodiment of Fig. 1) along with some other information that may be required, such as, for example, transponder information and packet IDs. In option 1, the DVB adaptation field is used to include information inside the data stream. For example, AFC=l may indicate that the media asset or service may be available on the recording transponder.
Alternatively, as illustrated in option 2, the recording transponder information may be included in the NIT, PMT and SI information of the broadcast stream.
Reference is now made to Fig. 6 which illustrates a typical operating flow 600 for an STB 30, constructed and operative in accordance with some embodiments of the present invention. In the interests of clarity, SIB 30 may be assumed to comprise two tuners 3 1 as in the embodiment of Fig. 1. It will, however, be appreciated that the present invention may support three, four, or even greater numbers of tuners 3 1 as well. It will similarly be appreciated that SIB 30 may bc configured with a wideband tuner that may providc generally thc same thnctionality as muhiple physical tuners.
Step 601 may represent a typical state where n -1 tuning services may be in process, where "n" may represent the number of tuners 3 1 in an exemplary SIB 30. For example, if STB 30 may be configured with two tuners 31 as depicted in Fig. 1, one tuner 31 (e.g. tuner 3 1A) may be tuned to record as per a viewer request or as a scheduled operation. When the nthl tuner 3 1 may start recording (step 602) in response to an additional tuning service request, both tuners 3 1 may be "busy", actively engaged in receiving a broadcast.
While both tuners are busy recording, a viewer may zap (step 603) between services to access a different media asset or service (e.g. one that is not already being recorded by one of the two tuners 3 1), thereby effectively requesting a cumulative total of n -I-1 tuncr services. STB 30 may check (step 604) whether both of the services being recorded are available from recording transponder 22D.
if both services are not available from recording transponder 22D, STB 30 may attempt to resolve (step 605) the conflict, typically by prompting the user to either maintain both of the recordings or to stop one of them to free up a tuner 31.
However, if both services are available on recording transponder 22D, tuner 3 IA may be tuned (step 606) to recording transponder 22D and start recording both services, thus freeing tuner 3 lB to provide the non-recording service requested by the viewer. STB 30 may request the "missing" segments, (e.g. those that do not exist in the broadcast from transponder 22D), from headend 10. STB 30 may then receive (step 608) the segments from headend 10 via an IP connection.
It will be appreciated that the timing of step 608 may be configurable. For example, STB 30 may receive the broadband segments in real time while recorder 33 may be recording the services received via transponder 22D. Alternatively, headend 10 may provide the segments at a later time, presumably, although not necessarily. during an off peak traffic period, when bandwidth resources may generally be in less demand.
Headend 10 may even be configured to transmit the segments on demand when player 35 is invoked to play the recording. Delaying the transmission in such manner may naturally spread out the broadband transmissions over time to prevent traffic congestion. Furthermore, since some recordings are never played by the user, it may serve to conserve bandwidth that would otherwise be "wasted" on transmissions from which no benefit may be derived. The broadband data segments stored in broadband segment storage 16 may be deleted after receipt by broadband receiver 36. System 100 may also be configurable to delete the broadband data segments if they are not requested within a definable period of time.
Reference is now made to Fig. 7 which illustrates a novel recording assembly process 700 that may be employed by assembly engine 50 to reassemble a media asset or service partially recorded via recording transponder 22D. Upon a request for playback of thc recording, assembly cnginc 50 may open (step 701) thc associated recording stored in tuned recording storage 34.
Assembly engine 50 may scan (step 702) the PCR of the current data segment. If (step 703) an end of file' condition is detected, the process may end (step 704). Assembly engine 50 may detect (step 705) "missing" packets using the formula: PCR Gap > y, where "y" may be equal to the target length of a scgmcnt minus "w", and w is an integer smaller than target lcngthl2 as discussed hereinabove with respect to the embodiment of Fig. 4.
It will be appreciated that there may not be a constant distance between PCRs in DVB -only the maximum duration between PCRs may be defined. Accordingly, if the gap between PCRs exceeds y, assembly engine may extract (step 706) the previous PCR read. Assembly engine 50 may use the extracted value to retrieve (step 707) the "missing" segment from the broadband data segments generated by cropping module 13 (as discussed hereinabove with respect to the embodiment of Fig. 2), identi'ing the retrieved segment as PCR = Extracted PCR+ 1. The retrieved segment may then be inserted in the playback stream after the previous segment (as defined by the extracted PCR).
Control may then return to step 702 and loop continuously until EOF (step 703). It will be appreciated that following the insertion of a broadband data segment in step 707, the previous PCR for step 707 may be the PCR of the inserted segment. Similarly, if the previous iteration of step 705 yidds a "no" result, then the previous PCR may he from the previous result of step 702; i.e. from the previous segment from the broadcast recording.
It will be appreciated that the present invention may support several options for implementing the retrieval of the broadband data segments in step 707.
For example, STB 30 may open an IP session with headend 10 in response to an actual request to play the recording. In such a case, broadband transmitter 17 may stream the relevant broadband data segments file directly to assembly engine 50 via the Internet and broadband receiver 36 without intermediate storage in broadband recording storage 37. Alternatively, broadband transmitter 17 may transmit the data segments file in parallel with the initial broadcast via transponder 22D. The data segments file may then be stored in broadband recording storage 37 until required by assembly engine 50. System 100 may also be configured such that broadband transmitter 17 may transmit the data segments according to a schedule some time after the original broadcast such that the data segments may generally, but not necessarily always, be stored in broadband recording storage 37 prior to the execution of process 700. System 100 may also be configured to broadcast the broadband data segments to SIB 30 via any of transponders 22 during off peak hours when there may be available bandwidth in one or more of transponders 22.
It will further be appreciated that process 700 may be scheduled for execution without requiring a proactive user request to play the recording. For example, assembly engine 50 may be configured to assemble a complete version of the recorded media asset during off peak hours when broadband usage may be lower andlor SIB 30 may not nonally be in active use by the user. in such a case, the complete recording may be stored in tuned recording storage 34 for later use without requiring assembly at or near the time that a playback may be requested by the user.
Reference is now made to Fig. 8 which illustrates an exemplary flow of data for a media asset recorded and reassembled according to the embodiments of Figs. 6 and 7. Broadcast data stream 810 may represent a typical broadcast data stream for viewing and/or recording by users of STB 30, such as, for example, data stream 1, 2 or 3 broadcast by transponders 22A, 22B or 22C as in the embodiment of Fig. 1. Broadcast data stream 830 may represent a broadcast recording data stream such as that broadcast by transponder 22D. Broadband data stream 820 may represent a transmission of data segments such as, for example, that transmitted by broadband transmitter 17. Media asset data repository 840 may represent the data associated with a given recorded media asset as it may be saved in order of playback. Extractors 807 and 808 may represent functional modules used by SIB to extract relevant data from data streams 810, 820 and/or 830 when playing and/or recording a media asset.
Broadcast data streams 810 and 830 may comprise data packets with headers 812 and 813 corresponding to data 815 and 816, respectively. Headers 812 and 813 may provide a variety of parameters that may related to the broadcast, including, for cxample, information which may bc uscd to idcntify the media assets associated with data 815 and 8 16 and indicate the order in which they should be played when broadcast and/or recorded.
As per the example depicted in Fig. 8, the user of STB 30 may initially record a media asset from data stream 810. As part of the recording process, extractors 807 may extract data 815 from data stream 810 based on the information in headers 812, and copy data 815 as data 845A into media asset data repository 840. It will be appreciated that repository 840 may be any suitable functionality for storing a media asset as it may be played and/or recorded such as, for example, a playback/recording buffer or a more persistent type of storage.
It will also be appreciated that the depiction of data stream 810 as comprising only two data packets may be exemplary; in operation data stream 810 may comprise a continLiolts stream of data packets. It will similarly be appreciated that data stream 810 may also comprise data packets from other media assets that may be ignored, i.e. not recorded; in the interests of clarity these ignored data packets are not depicted in Fig. 8. Furthermore, the order in which data 815 may be transmitted in data stream 810 may not necessarily correspond with the order in which it may be saved in repository 840; extractor 807 may order data 845A in repository 840 in accordance with counter or PCRs read from associated headers 807.
As discussed hereinabove with respect to Fig. 6, during the recording process it may be necessary to switch from recording broadcast data stream 810 to recording data stream 830. Line 801 may indicate the point at which such a switch may be necessary. From that point onwards, it may ultimately be necessary to reassemble the media asset from both data streams 820 and 830.
It will be appreciated that the data provided by broadband data stream 820 and broadcast data stream 830 may be in different formats. Broadcast data stream 830 may be in generally the same format as broadcast data stream 810, typically, although not necessarily in DVB format. In contrast, broadband data 2! stream 820 may be file or segment based. Furthermore, the data segments in broadband data stream 820 may not be limited to encapsulated versions of the data packets in broadcast data streams 810 and 830; broadband data stream 820 may also includc transcodcd vcrsions of a media asset's data, i.e., the same content in different bitrate or resolution. In accordance with some embodiments of the present invention headend 10 may also deliver different versions of segments to different playback devices depending on the playback device's available bandwidth.
Data 825 from broadband data stream 820 may be extracted by extractors 808 and copied into repository 840 as data 845B. Extractors 808 may be functionally similar to extractors 807. However, it will be appreciated that since, as discussed hereinabove, data 815 and 825 may be provided in different formats, the technical configuration of extractors 807 and 808 may be different. For example, data 825 may be received in packets of different sizes; i.e. while DVB packets in an exemplary broadcast data stream 810 may be limited to 188 bytes, the data in broadband data stream 810 may not be similarly limited. For example, broadband data stream 810 may have a playback duration limitationlduration, for example 1 second of video playback. In such a case the actual size' of a data packet may be based on the bitrate and data NALs that may be included.
Accordingly, each data packet in broadband data stream 820 may include a header 822 that "presents" sLich information to extractor 808 which may then remove header 22 and place data 825 in its position in repository 840 as data 845B.
It will be appreciated that data 815 from broadcast data stream 830 may be formatted in the same manner as data 815 from broadcast data stream 810.
According, extractors 807 may extract data 815 from broadcast data stream 830 and copy them into repository 840 as data 845C in generally the same manner as data 815 may be extracted from broadcast data stream 810. It will be appreciated that as indicated by header 813, data 816 may not be related to the media asset being recorded and accordingly may not be copied into repository 840.
Data 845 A, B and C as copied into repository 840 may jointly represent a complete version of the recorded media asset. It will be appreciated, however, that such a complete version may not be immediately available after or during the initial broadcast of the asset. As discussed hereinabove, broadband data stream 820 may not be received in parallel with broadcast data stream 830 and there may also be a delay while assembly engine 50 assembles the complete version using extractors 807 and 808 and/or any other suitable functionality.
Reference is now made to Fig. 9A, which illustrates a "consumer recording feedback" policy 900 that may be used by crop control module 15 to calculate settings for broadcast/broadband ratios as a function of user recording requests. Reference is also made to Fig. 9B which illustrates exemplary tables that may be used by the process of Fig. 9A.
Crop control module 15 may collect (step 901) predefined recording requests from users of system 100 and store (step 902) the request details in recording requests table 910. The requests may contain, for example, request numbers 911, user IDs 912 and asset IDs 913. Other information may also be stored as required, including, for example, broadcast scheduling information.
Module 15 may sort (step 903) the data from table 910, for example, according to the number of requests for each asset ID 913 to yield sorted request table 920 which may include, for example, the number of requests 921 for each asset ID 922. Module 15 may select (step 904) the next media asset in table 920 according to number of requests 921. For example, for the first execution of step 904. the selected media asset may be associated with the asset ID 922 with the highest number of requests 921.
Module 15 may define (step 905) a broadcast/broadband ratio for the selected media asset. For example, the ratio may be a function of the proportion of thc associated number of requests 921 to the sum of all number of requests 921 in table 920. Other factors may affect the ratio. For example, a minimum and/or maximum ratio may be defined for any relevant media asset, i.e. a media asset with a value of at least one number of requests 921.
As discussed hereinabove in the context of Figs. 2 and 3, the defined ratio may be used to determine (step 906) the percentage of data segments to be flagged for inclusion in a "recording" broadcast data stream, with the remaining data segments forwarded to broadband segment storage 16. Crop control module 15 may also check (step 907) the total bandwidth allocated on a continuous basis to prevent under/over allocation. If the allocation is not considered fLill, control may return to step 905 to refine the allocation. If there is full bandwidth allocation, the process may return to step 904 to select the next media asset in table 920 for processing. This process may continue iteratively until the entire table 920 may be processed.
Alternatively, a "proportional distribution" policy may be used by module 15 to calculate broadcast'broadband ratios as a function of each media asset's popularity distribution among viewers. Instead of recording requests, audience measurement system (AMS) statistics may be received and analyzed by module 15 to prioritize and allocate broadcast bandwidth for each media asset to be broadcast via transponder 22D. It will be appreciated that the present invention may support any suitable generally available source or algorithm for compiling such statistics.
In practice, some or all of these ftrnctions may be combined in a single physical component or, alternatively, implemented using multiple physical components. These physical components may comprise hard-wired or programmable devices, or a combination of the two. In some embodiments, at least some of the functions of the processing circuitry may be carried out by a programmable processor under the control of suitable software. This software may be downloaded to STB 30 in electronic form, over a network, for example.
Alternatively or additionally, the software may be stored in tangible, non-transitory computer-readable storage media, such as optical, magnetic, or electronic memory.
It is appreciated that software components of the present invention may, if desired, be implemented in ROM (read only memory) form. The software components may, generally, be implemented in hardware, if desired, using conventional techniques. It is ftirther appreciated that the software components may be instantiated, for example, as a computer program product; on a tangible medium; or as a signal intcrprctablc by an appropriate computer.
It will be appreciated that various features of the invention which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable sub-combination.
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the invention is defined by the appended claims and equivalents thereot

Claims (19)

  1. CLAIMSWhat is claimed is: 1. A method for facilitating multiple recordings via a single tuner, the method comprising: isolating data packets associated with recording candidate media assets from at least two broadcast data streams; generating at least one broadcast recording data stream from a subset of said isolated data packets; broadcasting said at least one broadcast recording data stream in parallel with said at least two broadcast data streams, wherein said broadcast recording data stream is broadcast via at least one dedicated broadcast "recording" device, and said at least two broadcast data streams are broadcast via other broadcast devices; storing remaining data packets not included in said isolated data packets in broadband data segments; and transmitting said broadband data segments via an 12 connection to flidilitate reassembly of partially recorded said media assets, wherein said partially recorded media assets were recorded from said broadcast recording stream.
  2. 2. The method according to claim 1 wherein said generating comprises: assigning a broadcast/broadband ratio to each of said recording candidate media assets, wherein each said broadcast/broadband ratio indicates a percentage of said isolated data packets from an associated recording candidate media asset to be included in said broadcast recording stream.
  3. 3. The method according to claim 2 wherein said broadcast/broadband ratios are at least one of uniform, prioritized and subject to manual input.
  4. 4. The method according to claim 2 wherein said assigning comprises: initially defining at least one said broadcast/broadband ratio as 100%; and redefining said broadcastibroadband ratio with a lower value after an initial portion of its said associated recording candidate media asset has been included in said broadcast recording data stream.
  5. 5. The method according to claim 4 wherein said assigning comprises: accommodating said defining by temporarily assigning lower said broadcast/broadband ratios for other said recording candidate media assets included in said broadcast recording data stream until after said initial portion is complete.
  6. 6. The method according to claim 5 wherein said assigning comprises: accommodating said defining by allocating dedicated bandwidth for broadcasting said initial portion.
  7. 7. The method according to claim 1 wherein said broadband data segments are stored in a different format than said broadcast data streams.
  8. 8. The method according to claim 2 wherein said assigning comprises: defining allocation ratios for said subset of packets and said remaining packets in accordance with at least one of: consumer recording requests and proportional distribution.
  9. 9. A method for simultaneously recording multiple media assets, the method comprising: designating at least one of n tuners on a media content recording device as a designated recording tune receiving at least n + I tuning service requests on said media content recording device, wherein each said tuning service request represents at least one of a recording request and a viewing request for media content on a different broadcast channel; tuning said designated recording tuner to receive a broadcast rccording data stream from a dcdicatcd broadcast "recording" device, wherein said broadcast rccording stream includes a multiplicity of subsets of data packets, each of said subsets of data packets associated with one of a multiplicity of recording candidate media assets; recording at least two of said multiplicity of subsets of data packets as rcccivcd from said dedicated broadcast recording dcvicc, whcrcin recording of said associated recording candidatc media assets was requested in said at least n + 1 tuning service requests: receiving data segments representing remaining said data packets associated with at least one of said recorded subsets of data packets; and assembling at least one of said multiplicity of recording candidate media assets from said at least one recorded subset and said data segments.
  10. 10. The method according claim to 9 and further comprising: starting a complete version recording of at least one of said recording candidate media assets from one of a multiplicity of "source" broadcast devices, wherein each of said source broadcast devices broadcasts complete versions of at least some of said recording candidate media assets; after said receiving at Icast n -I-1 tuning service requests, saving said complete version recording as a partial frill version recording; and performing said tuning and recording, wherein at least one of said at least two of said multiplicity of subsets of data packets represents a subset of said at least one recording candidate media assets for which said complete version recording was started.
  11. 11. The method according to claim 10 wherein said assembling comprises: assembling said at least one of said multiplicity of recording candidate media assets from said at least one recorded subset, said data segments and said partial full version recording.
  12. 12. Thc mcthod according to claim 8 whcrcin said assembling also comprises converting said data segments to a format compatible with said recorded subset.
  13. 13. A broadcast headend comprising: a data strcam gcncrator to gcncratc a multiplicity of data streams for broadcast; a cropping module to crop at least two of said mLlltiplicity of data streams to generate at least a cropped broadcast stream and broadband data segments, wherein said cropped broadcast stream includes a subset of packets associated with at least two recording candidate media assets in said multiplicity of data streams, and said broadband data segments represent remaining packets associated with said recording candidate media assets and not included in said subset of packets; a broadcast uploader to upload at least said multiplicity of data streams and cropped broadcast stream to a broadcast satellite, wherein said cropped broadcast stream is uploaded to a dedicated broadcast "recording" device for broadcast as a broadcast recording stream; and a broadband transmitter to transmit said broadband data segments via an IP connection to a rccording device configured to record packets associated with at least one of said recording candidate media assets in said broadcast recording stream, wherein said transmitted broadband data segments are associated with said at least one of said recording candidate media assets.
  14. 14. The broadcast headend according to claim 13 and also comprising a crop control modLile to at least define allocation ratios for said subset of packets and said remaining packets.
  15. 15. The broadcast headend according to claim 13 and also comprising a broadband data segment storage unit to store said broadband data segments prior to transmission by said broadband transmitter, wherein said broadband data segment storage unit is configurable to store said broadband data segments in a different format than said data streams.
  16. 16. A media recording device comprising: at least two tuners to time said device to receive media asset broadcasts, wherein at least one of said tuners is configurable as a broadcast recording tuner to be tuned to a dedicated broadcast "recording" device, said dedicated broadcast recording device configurable to transmit a broadcast recording stream including a subset of packets associated with at least two recording candidate media assets generated from a multiplicity of data streams broadcast in parallel to said broadcast recording stream; a recorder to at least record a partial recording of at least one of said recording candidate media assets from said subset of packets; a broadband receiver to receive broadband data segments associated with said partial recording; wherein said broadband data segments are also generated from said multiplicity of data streams; and an assembly engine to assemble said at least one recording candidate media asset from at least said partial recording and said received broadband data segments.
  17. 17. The media recording device according to claim 16 wherein said assembly engine is configurable to convert said broadband data segments to a format compatible with said partial recording.
  18. 18. The method, broadcast headend, or media recording unit according to any of claims 1, 9 13 or 16 wherein said dedicated broadcast "recording" device is a satellite transponder.
  19. 19. The method, broadcast headend or media recording unit according to any of claims 1, 9 13 or 16 wherein said dedicated broadcast "recording" device is a cable frequency transmitter. 3'
GB1211750.3A 2012-07-03 2012-07-03 A system and method for simultaneously recording multiple media assets using a single tuner Active GB2503669B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1211750.3A GB2503669B (en) 2012-07-03 2012-07-03 A system and method for simultaneously recording multiple media assets using a single tuner
US14/412,680 US9918111B2 (en) 2012-07-03 2013-07-01 System and method for simultaneously recording multiple media assets using a single tuner
PCT/IB2013/055397 WO2014006558A1 (en) 2012-07-03 2013-07-01 A system and method for simultaneously recording multiple media assets using a single tuner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1211750.3A GB2503669B (en) 2012-07-03 2012-07-03 A system and method for simultaneously recording multiple media assets using a single tuner

Publications (3)

Publication Number Publication Date
GB201211750D0 GB201211750D0 (en) 2012-08-15
GB2503669A true GB2503669A (en) 2014-01-08
GB2503669B GB2503669B (en) 2015-08-19

Family

ID=46721776

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1211750.3A Active GB2503669B (en) 2012-07-03 2012-07-03 A system and method for simultaneously recording multiple media assets using a single tuner

Country Status (3)

Country Link
US (1) US9918111B2 (en)
GB (1) GB2503669B (en)
WO (1) WO2014006558A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11375347B2 (en) 2013-02-20 2022-06-28 Disney Enterprises, Inc. System and method for delivering secondary content to movie theater patrons
US9420325B2 (en) * 2013-12-20 2016-08-16 Echostar Technologies L.L.C. Virtualized content sourcing
US10506295B2 (en) * 2014-10-09 2019-12-10 Disney Enterprises, Inc. Systems and methods for delivering secondary content to viewers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047410A2 (en) * 2005-10-14 2007-04-26 United Video Properties, Inc. Systems and methods for recording multiple programs simultaneously with a single tuner
US20080216119A1 (en) * 2007-03-03 2008-09-04 Howard Pfeffer Methods and apparatus for implementing guides and using recording information in determining program to communications channel mappings
GB2462732A (en) * 2009-09-02 2010-02-24 Nds Ltd Simultaneous recording of multiple broadcast programs on a digital video recorder
WO2010144221A1 (en) * 2009-06-11 2010-12-16 Verizon Patent And Licensing Inc. Enhanced simultaneous recording in multi-room digital video recorder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193009A (en) 1989-01-20 1993-03-09 Goldstar Co., Ltd. Signal switching method of a TV-VCR combination having two tuners
US7272298B1 (en) 1998-05-06 2007-09-18 Burst.Com, Inc. System and method for time-shifted program viewing
US6633982B1 (en) 1999-03-20 2003-10-14 Wayne Samuel Kurzeja Method and process for managing ultra secure electronic distribution of digital movies to commercial exhibitors
US20010033343A1 (en) 2000-03-23 2001-10-25 Adrian Yap Multi-tuner DVR
US7917008B1 (en) 2001-08-19 2011-03-29 The Directv Group, Inc. Interface for resolving recording conflicts with network devices
US7149415B2 (en) * 2002-05-23 2006-12-12 Microsoft Corporation Program recording completion
KR100571751B1 (en) 2004-09-08 2006-04-18 삼성전자주식회사 Combination recording apparatus for recording simultaneously and method thereof
US7992175B2 (en) * 2006-05-15 2011-08-02 The Directv Group, Inc. Methods and apparatus to provide content on demand in content broadcast systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047410A2 (en) * 2005-10-14 2007-04-26 United Video Properties, Inc. Systems and methods for recording multiple programs simultaneously with a single tuner
US20080216119A1 (en) * 2007-03-03 2008-09-04 Howard Pfeffer Methods and apparatus for implementing guides and using recording information in determining program to communications channel mappings
WO2010144221A1 (en) * 2009-06-11 2010-12-16 Verizon Patent And Licensing Inc. Enhanced simultaneous recording in multi-room digital video recorder
GB2462732A (en) * 2009-09-02 2010-02-24 Nds Ltd Simultaneous recording of multiple broadcast programs on a digital video recorder

Also Published As

Publication number Publication date
US20150163529A1 (en) 2015-06-11
GB2503669B (en) 2015-08-19
US9918111B2 (en) 2018-03-13
WO2014006558A1 (en) 2014-01-09
GB201211750D0 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US8566862B2 (en) System and method for enhanced advertising in a video content network
US9930418B2 (en) Technique for delivering network personal video recorder service and broadcast programming service over a communications network
US7610606B2 (en) Technique for effectively providing various entertainment services through a communications network
CA2484518C (en) Technique for synchronizing deliveries of information and entertainment in a communications network
US8151294B2 (en) Technique for delivering entertainment programming content including commercial content therein over a communications network
US7941823B2 (en) Transport stream encapsulated trick modes
US20060090186A1 (en) Programming content capturing and processing system and method
US8180200B2 (en) Prevention of trick modes during digital video recorder (DVR) and network digital video recorder (NDVR) content
US20080022347A1 (en) TV-on-demand
US20090300673A1 (en) Peer- to- peer set-top box system
US20050034171A1 (en) Technique for delivering programming content based on a modified network personal video recorder service
US20060136966A1 (en) Digital video recorder for recording missed program episodes and for resolving scheduling conflicts between programs to be recorded
US10110948B2 (en) Apparatus, systems and methods for satellite system fast channel change
EP2572506A2 (en) System and method for managing distributed content
US9918111B2 (en) System and method for simultaneously recording multiple media assets using a single tuner
US8146129B2 (en) Apparatus and method for providing video content and supplemental information to a client over a switched digital video content-based network
WO2005083977A1 (en) Method and apparatus for reproducing a first data stream
KR101116966B1 (en) Program scheduling and providing method of the real-time broadcast in interactive broadcast service