GB2500542A - Graphene devices with local dual gates - Google Patents

Graphene devices with local dual gates Download PDF

Info

Publication number
GB2500542A
GB2500542A GB1312093.6A GB201312093A GB2500542A GB 2500542 A GB2500542 A GB 2500542A GB 201312093 A GB201312093 A GB 201312093A GB 2500542 A GB2500542 A GB 2500542A
Authority
GB
United Kingdom
Prior art keywords
local
dielectric layer
insulator
channel
gates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1312093.6A
Other versions
GB201312093D0 (en
GB2500542B (en
Inventor
Zhihong Chen
Aaron D Franklin
Shu-Jen Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/986,342 priority Critical patent/US9076873B2/en
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to PCT/US2011/066463 priority patent/WO2012094154A1/en
Publication of GB201312093D0 publication Critical patent/GB201312093D0/en
Publication of GB2500542A publication Critical patent/GB2500542A/en
Application granted granted Critical
Publication of GB2500542B publication Critical patent/GB2500542B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/0425Making electrodes
    • H01L21/044Conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Abstract

An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
GB1312093.6A 2011-01-07 2011-12-21 Graphene devices with local dual gates Active GB2500542B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/986,342 US9076873B2 (en) 2011-01-07 2011-01-07 Graphene devices with local dual gates
PCT/US2011/066463 WO2012094154A1 (en) 2011-01-07 2011-12-21 Graphene devices with local dual gates

Publications (3)

Publication Number Publication Date
GB201312093D0 GB201312093D0 (en) 2013-08-21
GB2500542A true GB2500542A (en) 2013-09-25
GB2500542B GB2500542B (en) 2014-08-20

Family

ID=46454561

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1312093.6A Active GB2500542B (en) 2011-01-07 2011-12-21 Graphene devices with local dual gates

Country Status (5)

Country Link
US (4) US9076873B2 (en)
CN (1) CN103329244B (en)
DE (1) DE112011103809T5 (en)
GB (1) GB2500542B (en)
WO (1) WO2012094154A1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006837A1 (en) * 2009-06-02 2011-01-13 Feng Wang Graphene Device, Method of Investigating Graphene, and Method of Operating Graphene Device
KR20110098441A (en) * 2010-02-26 2011-09-01 삼성전자주식회사 Graphene electronic device and method of fabricating the same
US9076873B2 (en) * 2011-01-07 2015-07-07 International Business Machines Corporation Graphene devices with local dual gates
US8642996B2 (en) 2011-04-18 2014-02-04 International Business Machines Corporation Graphene nanoribbons and carbon nanotubes fabricated from SiC fins or nanowire templates
KR101946003B1 (en) * 2011-07-08 2019-02-11 삼성전자주식회사 High frequency circuit comprising graphene and operating method thereof
US9368581B2 (en) * 2012-02-20 2016-06-14 Micron Technology, Inc. Integrated circuitry components, switches, and memory cells
EP2667417A1 (en) * 2012-05-23 2013-11-27 Imec Graphene-based semiconductor device
US8741756B2 (en) 2012-08-13 2014-06-03 International Business Machines Corporation Contacts-first self-aligned carbon nanotube transistor with gate-all-around
US9040364B2 (en) * 2012-10-30 2015-05-26 International Business Machines Corporation Carbon nanotube devices with unzipped low-resistance contacts
US8932919B2 (en) * 2012-11-21 2015-01-13 International Business Machines Corporation Vertical stacking of graphene in a field-effect transistor
US9293627B1 (en) * 2012-12-03 2016-03-22 Sandia Corporation Sub-wavelength antenna enhanced bilayer graphene tunable photodetector
US8796096B2 (en) 2012-12-04 2014-08-05 International Business Machines Corporation Self-aligned double-gate graphene transistor
US8609481B1 (en) 2012-12-05 2013-12-17 International Business Machines Corporation Gate-all-around carbon nanotube transistor with selectively doped spacers
WO2014139167A1 (en) * 2013-03-15 2014-09-18 中国科学院宁波材料技术与工程研究所 Transistor with modified gate structure
US8952431B2 (en) 2013-05-09 2015-02-10 International Business Machines Corporation Stacked carbon-based FETs
JP6244705B2 (en) * 2013-07-11 2017-12-13 富士通株式会社 Semiconductor device and switching control method of semiconductor device
CN103579350B (en) * 2013-10-23 2016-01-20 清华大学 Graphene field effect pipe and forming method thereof
EP2887398B1 (en) * 2013-12-18 2017-09-13 Imec A bilayer graphene tunneling field effect transistor
KR20170019338A (en) 2014-06-13 2017-02-21 인텔 코포레이션 Graphene fluorination for integration of graphene with insulators and devices
CN104218089B (en) * 2014-09-10 2017-02-15 北京大学 Stepped gate-dielectric double-layer graphene field effect transistor and production method thereof
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
WO2016100049A1 (en) 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-sensitive field effect transistor
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US9362919B1 (en) * 2014-12-22 2016-06-07 University Of Notre Dame Du Lac Devices for utilizing symFETs for low-power information processing
US9484428B2 (en) * 2015-01-29 2016-11-01 Globalfoundries Inc. Non-planar exciton transistor (BiSFET) and methods for making
DE102015106511A1 (en) * 2015-02-25 2016-08-25 Konstantin Vilyuk Boundary-layer graphene transistor
US9583702B2 (en) * 2015-03-20 2017-02-28 Samsung Electronics Co., Ltd. Graphene-inserted phase change memory device and method of fabricating the same
US9741796B2 (en) * 2015-09-20 2017-08-22 National Tsing Hua University Graphene-based valley filter and method for operating the same
CN105428417B (en) * 2015-11-24 2018-07-03 电子科技大学 The preparation method of autoregistration graphene/black phosphorus crystal pipe structure
CN105428416A (en) * 2015-11-24 2016-03-23 电子科技大学 Silicon gate graphene/black phosphorus transistor and preparation method
US10164121B2 (en) * 2015-11-25 2018-12-25 Samsung Electronics Co., Ltd. Stacked independently contacted field effect transistor having electrically separated first and second gates
CN107230632B (en) * 2016-03-24 2020-05-01 上海新昇半导体科技有限公司 Dual-gate graphene field effect transistor and manufacturing method thereof
WO2017166167A1 (en) 2016-03-31 2017-10-05 华为技术有限公司 Field effect transistor and manufacturing method therefor
CN105914158B (en) * 2016-05-10 2018-09-11 中国科学院微电子研究所 The preparation method and grapheme transistor of metallic graphite carbon alkene double contact structure
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
US10665799B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
CN107887333A (en) 2016-09-30 2018-04-06 中芯国际集成电路制造(北京)有限公司 Semiconductor device and its manufacture method
WO2018076268A1 (en) * 2016-10-28 2018-05-03 华为技术有限公司 Structure for field-effect transistor and preparation method therefor
JP2018160540A (en) 2017-03-22 2018-10-11 株式会社東芝 Graphene wiring structure, semiconductor device, manufacturing method of graphene wiring structure, and manufacturing method of wiring structure
US10263107B2 (en) * 2017-05-01 2019-04-16 The Regents Of The University Of California Strain gated transistors and method
CN109564921A (en) * 2017-07-20 2019-04-02 华为技术有限公司 Field-effect tube and manufacturing method
CN110010688A (en) * 2019-01-28 2019-07-12 电子科技大学 Double grid negative capacitance field effect transistor and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080312088A1 (en) * 2007-06-13 2008-12-18 Samsung Electronics Co., Ltd. Field effect transistor, logic circuit including the same and methods of manufacturing the same
US20090020764A1 (en) * 2007-07-16 2009-01-22 Anderson Brent A Graphene-based transistor
US20100006823A1 (en) * 2008-07-11 2010-01-14 International Business Machines Corporation Semiconducting Device Having Graphene Channel

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650655A (en) * 1994-04-28 1997-07-22 Micron Technology, Inc. Integrated circuitry having electrical interconnects
DE4435461C2 (en) * 1993-10-06 2001-09-20 Micron Technology Inc N D Ges Thin film transistor and its manufacturing process
US5497019A (en) * 1994-09-22 1996-03-05 The Aerospace Corporation Silicon-on-insulator gate-all-around MOSFET devices and fabrication methods
US5985703A (en) * 1994-10-24 1999-11-16 Banerjee; Sanjay Method of making thin film transistors
US6686630B2 (en) * 2001-02-07 2004-02-03 International Business Machines Corporation Damascene double-gate MOSFET structure and its fabrication method
US7385262B2 (en) 2001-11-27 2008-06-10 The Board Of Trustees Of The Leland Stanford Junior University Band-structure modulation of nano-structures in an electric field
JP3764401B2 (en) * 2002-04-18 2006-04-05 株式会社東芝 Manufacturing method of semiconductor device
US7358121B2 (en) 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
JP2005285822A (en) * 2004-03-26 2005-10-13 Fujitsu Ltd Semiconductor device and semiconductor sensor
KR101025846B1 (en) 2004-09-13 2011-03-30 삼성전자주식회사 Transistor of semiconductor device comprising carbon nano-tube channel
US7491594B2 (en) * 2005-10-26 2009-02-17 Freescale Semiconductor, Inc. Methods of generating planar double gate transistor shapes
US7492015B2 (en) 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
KR100711000B1 (en) * 2005-11-28 2007-04-24 동부일렉트로닉스 주식회사 Mos transistor equipped with double gate and the manufacturing method thereof
US20080296689A1 (en) 2007-05-29 2008-12-04 Dawei Wang Nanotube dual gate transistor and method of operating the same
US20090020792A1 (en) 2007-07-18 2009-01-22 Rafael Rios Isolated tri-gate transistor fabricated on bulk substrate
US8659009B2 (en) 2007-11-02 2014-02-25 The Trustees Of Columbia University In The City Of New York Locally gated graphene nanostructures and methods of making and using
US8445893B2 (en) * 2009-07-21 2013-05-21 Trustees Of Columbia University In The City Of New York High-performance gate oxides such as for graphene field-effect transistors or carbon nanotubes
US8105928B2 (en) * 2009-11-04 2012-01-31 International Business Machines Corporation Graphene based switching device having a tunable bandgap
CN101777583B (en) * 2010-02-05 2011-09-14 电子科技大学 Graphene field effect transistor
KR101736971B1 (en) * 2010-10-01 2017-05-30 삼성전자주식회사 Graphene electronic device and method of fabricating the same
US9076873B2 (en) * 2011-01-07 2015-07-07 International Business Machines Corporation Graphene devices with local dual gates
US20140077161A1 (en) * 2011-03-02 2014-03-20 The Regents Of The University Of California High performance graphene transistors and fabrication processes thereof
KR101813179B1 (en) * 2011-06-10 2017-12-29 삼성전자주식회사 Graphene electronic device having a multi-layered gate insulating layer
US8785911B2 (en) * 2011-06-23 2014-07-22 International Business Machines Corporation Graphene or carbon nanotube devices with localized bottom gates and gate dielectric
EP2667417A1 (en) * 2012-05-23 2013-11-27 Imec Graphene-based semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080312088A1 (en) * 2007-06-13 2008-12-18 Samsung Electronics Co., Ltd. Field effect transistor, logic circuit including the same and methods of manufacturing the same
US20090020764A1 (en) * 2007-07-16 2009-01-22 Anderson Brent A Graphene-based transistor
US20100006823A1 (en) * 2008-07-11 2010-01-14 International Business Machines Corporation Semiconducting Device Having Graphene Channel

Also Published As

Publication number Publication date
US9466686B2 (en) 2016-10-11
US20150325672A1 (en) 2015-11-12
US20130001519A1 (en) 2013-01-03
US20120175594A1 (en) 2012-07-12
WO2012094154A1 (en) 2012-07-12
US20150194536A1 (en) 2015-07-09
GB2500542B (en) 2014-08-20
GB201312093D0 (en) 2013-08-21
CN103329244A (en) 2013-09-25
DE112011103809T5 (en) 2013-08-14
CN103329244B (en) 2016-06-01
US9076873B2 (en) 2015-07-07
US9306028B2 (en) 2016-04-05
US9082856B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
EP3033770A4 (en) Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
WO2016048682A3 (en) Vertical memory device with bit line air gap
EP3070745A4 (en) Display substrate and manufacturing method therefor, and flexible display device
WO2014197047A3 (en) Superconducting three-terminal device and logic gates
SG10201400703PA (en) Densely packed standard cells for integrated circuit products, and methods of making same
GB201312093D0 (en) Graphene devices with local dual gates
EP2648221A3 (en) Thin film transistor having plural semiconductive oxides, thin film transistor array panel and display device including the same, and manufacturing method of thin film transistor
WO2015035409A3 (en) Insulated concrete slip form and method of accelerating concrete curing using same
WO2012158464A3 (en) Gan hemts with a back gate connected to the source
EP2768039A3 (en) Graphene device and electronic apparatus
GB2531223A (en) Displays with silicon and semiconducting oxide thin-film transistors
WO2012116207A3 (en) Charge storage apparatus, systems and methods
DE102011003654A8 (en) Insulated gate semiconductor device
GB2497248B (en) A graphene transistor with a self-aligned gate
EP2819169A3 (en) Semiconductor device
WO2012121952A3 (en) Electrode configurations for semiconductor devices
GB201400432D0 (en) Insulated gate transistor and method of production thereof
SG190373A1 (en) Silicon and silicon germanium nanowire structures
TW201130053A (en) Method for manufacturing semiconductor device
GB2497258A (en) Nanowire field effect transistors
SG177058A1 (en) Semiconductor device and fabrication method therefor
TW201614803A (en) Device having multiple transistors and method for fabricating the same
BR112012027891A2 (en) Electrochromic devices
SG187362A1 (en) Piezoelectric thin-film resonator and method for manufacturing the same
TW200711054A (en) A method of manufacturing a transistor and a method of forming a memory device

Legal Events

Date Code Title Description
746 Register noted 'licences of right' (sect. 46/1977)

Effective date: 20140909