GB2500009A - Humidifying apparatus - Google Patents

Humidifying apparatus Download PDF

Info

Publication number
GB2500009A
GB2500009A GB1203894.9A GB201203894A GB2500009A GB 2500009 A GB2500009 A GB 2500009A GB 201203894 A GB201203894 A GB 201203894A GB 2500009 A GB2500009 A GB 2500009A
Authority
GB
United Kingdom
Prior art keywords
nozzle
air
air flow
water tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1203894.9A
Other versions
GB2500009B (en
GB201203894D0 (en
Inventor
Mark Joseph Staniforth
Daniel James Beavis
Jude Paul Pullen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Dyson Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Ltd filed Critical Dyson Technology Ltd
Priority to GB1203894.9A priority Critical patent/GB2500009B/en
Publication of GB201203894D0 publication Critical patent/GB201203894D0/en
Priority to EP13155040.2A priority patent/EP2636962A3/en
Priority to US13/786,313 priority patent/US20130234347A1/en
Priority to TW102203975U priority patent/TWM472758U/en
Priority to CN2013201012280U priority patent/CN203272072U/en
Priority to JP2013062875A priority patent/JP5572732B2/en
Priority to CN201310070642.4A priority patent/CN103306948B/en
Publication of GB2500009A publication Critical patent/GB2500009A/en
Application granted granted Critical
Publication of GB2500009B publication Critical patent/GB2500009B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/24Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/26Arrangements for air-circulation by means of induction, e.g. by fluid coupling or thermal effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F2006/008Air-humidifier with water reservoir
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Abstract

A humidifying apparatus 10 comprises a means 76, 78 for generating a first and second air flow (fan). The apparatus has a removable nozzle (14, fig 3) having at least one first air outlet 44 for emitting the first air flow, the nozzle defining an opening though which air outside of the humidifying apparatus is drawn by air emitted from the at least one first air outlet. A humidifying means 160 (piezoelectric atomising transducer) humidifies a second air flow and at least one second air outlet 52 emits the second air flow. The apparatus has a removeable water tank 120 having a pivotable handle 184 moveable between a stowed position and a deployed position and having a biasing means (188, figs 12a & 12b) for urging the handle towards the deployed position. The nozzle is configured to urge the handle towards the stowed position. The biasing means may comprise a torsion spring located in a recess 186, which also stores the handle. The water tank may be mounted on a base 56, which may comprise a water reservoir 140 and the atomising transducer. Water in the reservoir may be irradiated by an ultraviolet lamp 170.

Description

1
A FAN ASSEMBLY
FIELD OF THE INVENTION
The present invention relates to a fan assembly. In a preferred embodiment, the present 5 invention provides a humidifying apparatus for generating a flow of moist air and a flow of air for dispersing the moist air within a domestic environment, such as a room, office or the like. The invention may also be used to disperse a hot, cool, scented or ionized air flow within an environment.
10 BACKGROUND OF THE INVENTION
A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to generate an air flow. The movement and circulation of the air flow creates a 'wind chill' or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through 15 convection and evaporation. The blades are generally located within a cage which allows an air flow to pass through the housing while preventing users from coming into contact with the rotating blades during use of the fan.
US 2,488,467 describes a fan which does not use caged blades to project air from the 20 fan assembly. Instead, the fan assembly comprises a base which houses a motor-driven impeller for drawing an air flow into the base, and a series of concentric, annular nozzles connected to the base and each comprising an annular outlet located at the front of the nozzle for emitting the air flow from the fan. Each nozzle extends about a bore axis to define a bore about which the nozzle extends.
25
Each nozzle is in the shape of an airfoil. An airfoil may be considered to have a leading edge located at the rear of the nozzle, a trailing edge located at the front of the nozzle, and a chord line extending between the leading and trailing edges. In US 2,488,467 the chord line of each nozzle is parallel to the bore axis of the nozzles. The air outlet is 30 located on the chord line, and is arranged to emit the air flow in a direction extending away from the nozzle and along the chord line.
2
Another fan assembly which does not use caged blades to project air from the fan assembly is described in WO 2010/100449. This fan assembly comprises a cylindrical base which also houses a motor-driven impeller for drawing a primary air flow into the 5 base, and a single annular nozzle connected to the base and comprising an annular mouth through which the primary air flow is emitted from the fan. The nozzle defines an opening through which air in the local environment of the fan assembly is drawn by the primary air flow emitted from the mouth, amplifying the primary air flow. The nozzle includes a Coanda surface over which the mouth is arranged to direct the primary 10 air flow. The Coanda surface extends symmetrically about the central axis of the opening so that the air flow generated by the fan assembly is in the form of an annular jet having a cylindrical or frusto-conical profile.
An inner surface of the nozzle includes a detent for co-operating with a wedge located 15 on an external surface of the base. The detent has an inclined surface which is configured to slide over an inclined surface of the wedge as the nozzle is rotated relative to the base to attach the nozzle to the base. Opposing surfaces of the detent and the wedge subsequently inhibit rotation of the nozzle relative to the base during use of the fan assembly to prevent the nozzle from becoming inadvertently detached from the 20 base. When a user applies a relatively large rotational force to the nozzle, the detent is arranged to flex out of engagement with the wedge to allow the user to remove the nozzle from the base.
SUMMARY OF THE INVENTION
25 In a first aspect, the present invention provides a fan assembly comprising a body comprising means for generating an air flow; a nozzle mounted on the body for emitting the air flow, the nozzle defining an opening through which air from outside the fan assembly is drawn by the air emitted from the nozzle; nozzle retaining means for releasably retaining the nozzle on the body, the nozzle retaining means having a first 30 configuration in which the nozzle is retained on the body and a second configuration in which the nozzle is released for removal from the body; and a depressible catch for
3
effecting movement of the nozzle retaining means from the first configuration to the second configuration.
The provision of a depressible catch for effecting movement of the nozzle retaining 5 means from the first configuration to the second configuration can allow the nozzle to be rapidly and easily released for removal from the body. Once the nozzle has been released it may be pulled away from the body by a user, for example, for cleaning or replacement.
10 The nozzle retaining means is preferably biased towards the first configuration so that the nozzle is normally retained on the body. This can allow the fan assembly to be lifted by a user gripping the nozzle without the nozzle becoming accidentally released from the body.
15 The catch is preferably moveable from a first position to a second position to effect movement of the nozzle retaining means from the first configuration to the second configuration. The catch may be translated or rotated from the first position to the second position. Preferably, the catch is pivotably moveable between the first and second positions. The fan assembly may comprise biasing means for biasing the catch
20 towards the first position to reduce the risk of the catch being moved accidentally to the second position, and so require a user to apply a force to the catch to overcome the biasing force of the biasing means to move the nozzle retaining means to its second configuration. The biasing means may be in the form of one or more springs, such as a leaf spring or compression spring, or one or more resilient elements.
25
The catch is preferably located on the body of the fan assembly. The catch may be directly depressible by the user. Alternatively, the body may comprise a button which is operable to move the catch to the second position. This can allow the catch to be located remotely from the external surface of the body and so be located in a more
30 convenient position, or have a more convenient shape, for effecting the movement of the nozzle retaining means from its deployed configuration to its stowed configuration.
4
The button is preferably located on an upper surface of the body to allow a user to apply a downward pressure to the button to overcome the biasing force of the biasing means which urges the catch towards its first position.
5 The catch may be arranged to urge the nozzle away from the body as it moves from the first position to the second position to provide a visual indication to the user that the nozzle has been released for removal from the body.
The fan assembly may comprise catch retention means for releasably retaining the catch 10 in its second position. By maintaining the catch in its second position, the nozzle retaining means may be retained in its second configuration. This can enable the user to release the button to remove the nozzle from the body while the nozzle retaining means is retained its second configuration.
15 In a second aspect the present invention provides a fan assembly comprising a body comprising means for generating an air flow; a nozzle mounted on the body for emitting the air flow, the nozzle defining an opening through which air from outside the fan assembly is drawn by the air emitted from the nozzle; nozzle retaining means for releasably retaining the nozzle on the body, the nozzle retaining means being moveable 20 from a first configuration in which the nozzle is retained on the body to a second configuration in which the nozzle is released for removal from the body; and retaining means for releasably retaining the nozzle retaining means in the second configuration. The retaining means preferably comprises a moveable catch for retaining the nozzle retaining means in the second configuration. The catch is preferably moveable between 25 a first position and a second position for retaining the nozzle retaining means in the second configuration. The retaining means preferably comprises catch retention means for retaining the catch in the second position.
The catch retention means may comprise one or more magnets for retaining the catch in 30 its second position. Alternatively, the catch retention means may be arranged to engage the catch to retain the catch in its second position. In one embodiment, the catch
5
comprises a hooked section which moves over and is retained by a wedge located on the body as it moves to its second position.
The nozzle preferably comprises means for urging the retaining means away from the 5 the second configuration. The nozzle is preferably arranged to urge the catch away from the catch retention means as it is replaced on the body. For example, a lower surface of the nozzle may be formed with, or comprise, a protruding member which urges the catch away from the catch retention means as the nozzle is lowered on to the body. As the catch is moved away from the catch retention means, the catch is urged by the 10 biasing means towards its first position, which can in turn urge the nozzle retaining means towards its first configuration to retain the nozzle on the body.
The nozzle retaining means preferably comprises a detent which is moveable relative to the nozzle and the body to retain the nozzle on the body in the first configuration, and to 15 release the nozzle for removal from the body in the second configuration. The detent may be located on the nozzle, but in a preferred embodiment the body comprises the detent. The catch is preferably configured to move the detent from a deployed position to a stowed position to release the nozzle for removal from the body.
20 In a third aspect, the present invention provides a fan assembly comprising a body comprising means for generating an air flow, and a nozzle mounted on the body for emitting the air flow, the nozzle defining an opening through which air from outside the fan assembly is drawn by the air emitted from the nozzle, wherein the body comprises a detent which is moveable relative to the nozzle from a deployed position for retaining 25 the nozzle on the body to a stowed position for allowing the nozzle to be removed from the body, a catch which is moveable from a first position to a second position to move the detent from the deployed position to the stowed position, and means for releasably retaining the catch in the second position.
30 The nozzle retaining means preferably comprises biasing means for biasing the detent towards the deployed position. The biasing means is preferably in the form of a leaf
6
spring or a torsion spring, but the biasing means may be in the form of any resilient element.
The detent may be translated or rotated from the deployed position to the stowed 5 position. Preferably, the detent is pivotably moveable between the deployed and stowed positions. The catch may be arranged to engage a lower surface of the detent as the catch moves from its first position to the second position to pivot the detent from the deployed position to the stowed position. The detent is preferably pivotably connected to the body, but alternatively the detent may be pivotably connected to the nozzle.
10
The detent is preferably arranged to engage an outer surface of the nozzle to retain the nozzle on the body. For example, the detent may be arranged to engage or enter a recessed portion of the outer surface of the nozzle to retain the nozzle on the body.
15 The nozzle preferably comprises an inlet section which is at least partially insertable into the body, and the detent may be arranged to engage the inlet section of the nozzle to retain the nozzle on the body. The inlet section of the nozzle is preferably insertable into a duct of the body to receive at least part of the air flow from the body. The detent may be located externally of the duct, and so the duct may comprise an aperture through
20 which the detent protrudes when in its deployed position to retain the nozzle on the body.
The nozzle retaining means may comprise a single detent. In a preferred embodiment, the nozzle retaining means comprises a plurality of detents, and the catch may be
25 arranged to move the detents simultaneously between their deployed and stowed positions. The catch may be curved, arcuate or annular in shape so as to engage each of the detents. The detents may be located at diametrically opposed positions relative to the duct of the body.
30 The nozzle is preferably annular in shape, and extends about a bore through which air from outside the fan assembly is drawn by air emitted from the nozzle. The nozzle
7
comprises one or more air outlet(s) for emitting the air flow. The air outlet(s) may be located in a front end of the nozzle, or towards a rear end of the nozzle. The air outlet(s) may comprise a plurality of apertures each for emitting a respective air stream, and each aperture may be located on a respective side of the bore. Alternatively, the 5 nozzle may comprise a single air outlet extending about the bore. The nozzle may comprise an interior passage extending about the bore for conveying the air flow to the, or each, air outlet. The interior passage may surround the bore of the nozzle.
The fan assembly may be configured to generate a cooling air flow within a room or 10 other domestic environment. However, the fan assembly may be arranged to change a parameter of an air flow emitted from the fan assembly. In an illustrated embodiment, the fan assembly includes humidifying means, or a humidifier, for humidifying a second air flow, but the fan assembly may alternatively comprise one of a heater, a chiller, an air purifier and an ionizer for changing another parameter of either the first air flow or 15 the second air flow.
For example, the body may comprise humidifying means for humidifying a second air flow. The body may comprise a base and part of the humidifying means may be housed within the base. An air inlet and the means for generating an air flow is preferably 20 located in the base of the body. The means for generating an air flow preferably comprises an impeller and a motor for driving the impeller to generate the air flow. The impeller is preferably a mixed flow impeller. The means for generating an air flow preferably comprises a diffuser located downstream from the impeller. The base preferably comprises the duct for conveying the air flow to the nozzle.
25
Part of the humidifying means is preferably located adjacent to the nozzle. Depending on the proximity of the humidifying means to the nozzle, the humidifying means may comprise at least one of the nozzle retaining means, the catch and the catch retention means. In a fourth aspect, the present invention provides humidifying apparatus 30 comprising means for generating a first air flow and a second air flow; a nozzle comprising at least one first air outlet for emitting the first air flow, the nozzle defining
8
an opening through which air from outside the humidifying apparatus is drawn by air emitted from said at least one first air outlet; humidifying means for humidifying the second air flow; and at least one second air outlet for emitting the second air flow; wherein the humidifying means comprises nozzle retaining means for releasably 5 retaining the nozzle.
The humidifying means preferably comprises a water tank, and the water tank preferably comprises at least the nozzle retaining means, and preferably also the catch and the catch retention means. The water tank preferably comprises a housing for the 10 nozzle retention means, and which may also house the catch and the catch retention means. A wall of the water tank may provide the catch retention means. Alternatively, the catch retention means may be mounted on or connected to a wall of the water tank. The housing of the water tank preferably comprises an aperture through which the nozzle retaining means protrudes to retain the nozzle on the apparatus. The water tank 15 is preferably removably mounted on the base of the body. An aperture of the housing of the water tank may therefore align with the aperture on the duct of the base when the water tank is mounted on the base to allow the nozzle retaining means to protrude through both apertures to retain the nozzle.
20 The water tank may comprise a handle which is moveable between a stowed position and a deployed position to facilitate the removal of the water tank from the base of the body. The water tank may comprise a spring or other resilient element for urging the handle towards the deployed position to present the handle to the user. The nozzle preferably comprises means for urging the handle towards the stowed position, so that 25 when the nozzle is removed from the apparatus the handle moves automatically to the deployed position to facilitate the removal of the water tank from the base.
In a fifth aspect, the present invention provides humidifying apparatus comprising means for generating a first air flow and a second air flow; a removable nozzle 30 comprising at least one first air outlet for emitting the first air flow, the nozzle defining an opening through which air from outside the humidifying apparatus is drawn by air
9
emitted from said at least one first air outlet; humidifying means for humidifying the second air flow; at least one second air outlet for emitting the second air flow; and a water tank having a handle which is moveable between a stowed position and a deployed position, and biasing means for urging the handle towards the deployed 5 position; wherein the nozzle is configured to urge the handle towards the stowed position.
As the nozzle is replaced on the water tank, the nozzle may engage the handle to move the handle, against the biasing force of the biasing means, towards its stowed position. As the handle moves towards the stowed position, the handle may engage the catch to urge the catch away from the catch retention means to release the catch from its deployed position. The detent is preferably biased towards its second position. The release of the catch from its second position can allow the detent to move automatically to its deployed position to retain the nozzle on the body.
The water tank comprises a recessed portion for storing the handle in its stowed position so that the handle does not protrude from the water tank when in its stowed position. The biasing means for biasing the handle towards its deployed position is preferably located in the recessed portion of the water tank. The biasing force is preferably in the form of a leaf spring or a torsion spring, but the biasing means may be in the form of any other spring or resilient member. The handle is preferably pivotably moveable between the stowed position and the deployed position.
The water tank may have a concave inner wall which is locatable adjacent, and 25 preferably against, the duct of the base when the water tank is mounted on the base. To increase the capacity of the water tank, the water tank may be annular in shape. The water tank may therefore have a tubular inner wall which is located over and around at least an upper section of the duct of the base when the water tank is mounted on the base. The water tank may have a cylindrical outer wall. The base preferably has a 30 cylindrical outer wall, and the water tank is preferably located on the base so that the water tank and the base are co-axial. The outer walls of the base and the water tank
10
15
20
10
preferably form the outer wall of the body. The outer wall of the water tank and the outer wall of the base preferably have the same radius so that the body has a cylindrical appearance when the water tank is mounted on the base. The outer walls of the base and the water tank are preferably flush when the water tank is mounted on the base.
5
To increase further the capacity of the water tank, the water tank preferably surrounds at least an upper part of the means for generating an air flow, which in this example is a motor and impeller unit. Therefore, in a sixth aspect the present invention provides humidifying apparatus comprising a base comprising air flow generating means for 10 generating a first air flow; a nozzle comprising at least one first air outlet for emitting the first air flow, the nozzle defining an opening through which air from outside the humidifying apparatus is drawn by air emitted from said at least one first air outlet; humidifying means for humidifying a second air flow; at least one second air outlet for emitting the second air flow; and a water tank removably mounted on the base, and 15 wherein the water tank surrounds at least an upper section of the air flow generating means.
The nozzle may be mounted on the body so that the water tank surrounds a lower section of the interior passages of the nozzle. For example, the water tank may have an 20 upper wall which is upwardly curved in shape, and the nozzle may be mounted centrally on the apparatus so that the upper wall of the water tank covers a lower part of the external surface of the nozzle. This can allow the humidifying apparatus to have a compact appearance, and can allow the capacity of the water tank to be maximised.
25 In a seventh aspect, the present invention provides humidifying apparatus comprising a base comprising air flow generating means for generating a first air flow; a nozzle comprising an interior passage for receiving the first air flow and at least one first air outlet for emitting the first air flow, the nozzle defining an opening through which air from outside the humidifying apparatus is drawn by air emitted from said at least one 30 first air outlet; humidifying means for humidifying a second air flow; at least one second air outlet for emitting the second air flow; and a water tank mounted on the base,
11
and wherein the tank has an upwardly curved upper surface and the nozzle is mounted on the apparatus so that the upper surface of the water tank at least partially covers a lower section of an external surface of the nozzle.
5 A water inlet of the water tank is preferably located on a lower surface of the water tank. To fill the water tank, the water tank is removed from the base, and inverted so that the water tank can be located beneath a tap or other water source. The upper surface of the water tank preferably comprises at least one support for supporting the water tank on a work surface, for example between filling and replacement of the water 10 tank on the base. The support(s) may be attached to the upper surface of the water tank. Alternatively, a periphery of the upper surface of the water tank may be shaped to define the support(s). The upper surface of the water tank may comprise a single curved or arcuate support. Alternatively, the upper surface of the water tank may comprise a plurality of supports located on opposite sides of the water tank. The supports are 15 preferably parallel.
The humidifying means preferably comprises a water reservoir for receiving water from the water tank, and atomizing means for atomizing water in the reservoir to humidify the second air flow. The water reservoir and the atomizing means are preferably located 20 in the base. The base preferably comprises an inlet duct for conveying the second air flow to the reservoir. The base may also comprise an outlet duct for conveying the humidified second air flow from the reservoir to the second air outlet(s). Alternatively, the water tank may comprise an outlet duct for conveying the second air flow from the reservoir.
25
The air flow generating means may comprise a first impeller and a first motor for driving the first impeller to generating the first air flow, and a second impeller for generating the second air flow. The second impeller may be driven by the first motor so that the first and second impellers are always rotated simultaneously. Alternatively, a 30 second motor may be provided for driving the second impeller. This allows the second impeller to be driven to generate the second air flow as and when it is required by the
12
user, and so allows an air flow to emitted from the fan assembly solely through the rear section of the fan. A common controller may be provided for controlling each motor. For example, the controller may be configured to actuate the second motor only if the first motor is currently actuated or if the second motor is actuated simultaneously with 5 the first motor. The second motor may be deactivated automatically if the first motor is deactivated. The controller is thus preferably configured to allow the first motor to be activated separately from the second motor.
Alternatively, the air flow generating means may comprise a motor and an impeller for 10 generating an air stream which is divided into the first air flow and the second air flow downstream from the impeller. The impeller is preferably a mixed flow impeller. An inlet port through which the second air flow enters the inlet duct for conveying the second air flow to the reservoir may be located immediately downstream from the impeller, or immediately downstream from a diffuser located downstream from the 15 impeller.
The outlet duct may be configured to convey the second air flow to the nozzle for emission therefrom. The nozzle may be arranged to emit both a humid air flow, and a separate air flow for conveying the humid air flow away from the humidifying 20 apparatus. This can enable the humid air flow to be experienced rapidly at a distance from the humidifying apparatus.
The nozzle may thus comprise at least one first air inlet, at least one first air outlet, a first interior passage for conveying the first air flow from said at least one first air inlet 25 to said at least one first air outlet, at least one second air inlet, at least one second air outlet, and a second interior passage for conveying the second air flow from said at least one second air inlet to said at least one second air outlet.
The humidified second air flow can be emitted from one or more different air outlets of 30 the nozzle. These air outlets may be positioned, for example, about the bore of the
13
nozzle to allow the humidified air flow to be dispersed relatively evenly within the first air flow.
Preferably, the first air flow is emitted at a first air flow rate and the second air flow is 5 emitted at a second air flow rate which is lower than the first air flow rate. The first air flow rate may be a variable air flow rate, and so the second air flow rate may vary with the first air flow rate.
The first air outlet(s) are preferably located behind the second air outlet(s) so that the 10 second air flow is conveyed away from the nozzle within the first air flow. Each interior passage is preferably annular. The two interior passages of the nozzle may be defined by respective components of the nozzle, which may be connected together during assembly. Alternatively, the interior passages of the nozzle may be separated by a dividing wall or other partitioning member located between common inner and outer 15 walls of the nozzle. As mentioned above, the first interior passage is preferably isolated from the second interior passage, but a relatively small amount of air may be bled from the first interior passage to the second interior passage to urge the second air flow through the second air outlet(s) of the nozzle.
20 As the flow rate of the first air flow is preferably greater than the flow rate of the second air flow, the volume of the first interior passage of the nozzle is preferably greater than the volume of the second interior passage of the nozzle.
The nozzle may comprise a single continuous first air outlet, which preferably extends 25 about the bore of the nozzle, and is preferably centred on the axis of the bore. Alternatively, the nozzle may comprise a plurality of first air outlets which are arranged about the bore of the nozzle. For example, the first air outlets may be located on opposite sides of the bore. The first air outlet(s) are preferably arranged to emit air through at least a front part of the bore. The first air outlet(s) may be arranged to emit 30 air over a surface defining part of the bore to maximise the volume of air which is
14
drawn through the bore by the air emitted from the first air outlet(s). Alternatively, the first air outlet(s) may be arranged to emit the air flow from an end surface of the nozzle.
The second air outlet(s) of the nozzle may be arranged to emit the second air flow over 5 this surface of the nozzle. Alternatively, the second air outlet(s) may be located in a front end of the nozzle, and arranged to emit air away from the surfaces of the nozzle. The first air outlet(s) may therefore be located adjacent to the second air outlet(s). The nozzle may comprise a single continuous second air outlet, which may extend about the axis of the nozzle. Alternatively, the nozzle may comprise a plurality of second air 10 outlets, which may be arranged about the front end of the nozzle. For example, the second air outlets may be located on opposite sides of the front end of the nozzle. Each of the plurality of air outlets may comprise one or more apertures, for example, a slot, a plurality of linearly aligned slots, or a plurality of apertures. The first air outlets may extend parallel to the second air outlets.
15
Features described above in connection with the first aspect of the invention are equally applicable to each of the second to seventh aspects of the invention, and vice versa.
BRIEF DESCRIPTION OF THE INVENTION
20 An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Figure 1 is a front view of a humidifying apparatus;
25 Figure 2 is a side view of the humidifying apparatus;
Figure 3 is a rear view of the humidifying apparatus;
30
Figure 4(a) is a side sectional view taken along line A-A in Figure 1, with the nozzle of the humidifying apparatus retained on the water tank, and Figure 4(b) is a similar view to Figure 4(a) but with the nozzle released from the water tank;
15
Figure 5(a) is a top sectional view taken along line B-B in Figure 1, and Figure 5(b) is a close-up of area P indicated in Figure 5(a);
5 Figure 6(a) is a perspective view, from above, of the base of the humidifying apparatus with an outer wall of the base partially removed, and Figure 6(b) is a similar view to Figure 6(a) following a partial rotation of the base;
Figure 7(a) is a perspective rear view, from above, of the water tank mounted on the 10 base, with the handle in a deployed position, and Figure 7(b) is a close-up of area R indicated in Figure 7(a);
Figure 8 is a top sectional view taken along line D-D in Figure 4(a);
15 Figure 9 is a sectional view take along line F-F in Figure 8;
Figure 10 is a rear perspective view, from below, of the nozzle;
Figure 11 is a top sectional view taken along line E-E in Figure 4(a);
20
Figure 12(a) is a front sectional view taken along line C-C in Figure 2, with the nozzle of the humidifying apparatus retained on the water tank, and Figure 12(b) is a similar view to Figure 12(a) but with the nozzle released from the water tank;
25 Figure 13 is a schematic illustration of a control system of the humidifying apparatus; and
Figure 14 is a flow diagram illustrating steps in the operation of the humidifying apparatus.
30
DETAILED DESCRIPTION OF THE INVENTION
16
Figures 1 to 3 are external views of a fan assembly. In this example, the fan assembly is in the form of a humidifying apparatus 10. In overview, the humidifying apparatus 10 comprises a body 12 comprising an air inlet through which air enters the humidifying apparatus 10, and a nozzle 14 in the form of an annular casing mounted on the body 12, 5 and which comprises a plurality of air outlets for emitting air from the humidifying apparatus 10.
The nozzle 14 is arranged to emit two different air flows. The nozzle 14 comprises a rear section 16 and a front section 18 connected to the rear section 16. Each section 16, 10 18 is annular in shape, and extends about a bore 20 of the nozzle 14. The bore 20 extends centrally through the nozzle 14 so that the centre of each section 16, 18 is located on the axis X of the bore 20.
In this example, each section 16, 18 has a "racetrack" shape, in that each section 16, 18 15 comprises two, generally straight sections located on opposite sides of the bore 20, a curved upper section joining the upper ends of the straight sections and a curved lower section joining the lower ends of the straight sections. However, the sections 16, 18 may have any desired shape; for example the sections 16, 18 may be circular or oval. In this embodiment, the height of the nozzle 14 is greater than the width of the nozzle, but 20 the nozzle 14 may be configured so that the width of the nozzle 14 is greater than the height of the nozzle 14.
Each section 16, 18 of the nozzle 14 defines a flow path along which a respective one of the air flows passes. In this embodiment, the rear section 16 of the nozzle 14 defines a 25 first air flow path along which a first air flow passes through the nozzle 14, and the front section 18 of the nozzle 14 defines a second air flow path along which a second air flow passes through the nozzle 14.
With reference also to Figure 4(a), the rear section 16 of the nozzle 14 comprises an 30 annular first outer casing section 22 connected to and extending about an annular inner casing section 24. Each casing section 22, 24 extends about the bore axis X. Each
17
casing section may be formed from a plurality of connected parts, but in this embodiment each casing section 22, 24 is formed from a respective, single moulded part. As illustrated in Figures 5(a) and 5(b), a rear portion 26 of the first outer casing section 22 is curved inwardly towards the bore axis X to define a rear end of the nozzle 5 14 and a rear part of the bore 20. During assembly the end of the rear portion 26 of the first outer casing section 22 is connected to the rear end of the inner casing section 24, for example using an adhesive. The first outer casing section 22 comprises a tubular base 28 which defines a first air inlet 30 of the nozzle 14.
The front section 18 of the nozzle 14 also comprises an annular second outer casing section 32 connected to and extending about an annular front casing section 34. Again, each casing section 32, 34 extends about the bore axis X, and may be formed from a plurality of connected parts, but in this embodiment each casing section 32, 34 is formed from a respective, single moulded part. In this example, the front casing section 34 comprises a rear portion 36 which is connected to the front end of the outer casing section 22, and a front portion 38 which is generally frusto-conical in shape and flared outwardly from the rear portion 36 away from the bore axis X. The front casing section 34 may be integral with the inner casing section 24. The second outer casing section 32 is generally cylindrical in shape, and extends between the first outer casing section 22 and the front end of the front casing section 34. The second outer casing section 32 comprises a tubular base 40 which defines a second air inlet 42 of the nozzle 14.
The casing sections 24, 34 together define a first air outlet 44 of the nozzle 14. The first air outlet 44 is defined by overlapping, or facing, surfaces of the inner casing section 24 25 and the rear portion 36 of the front casing section 34 so that the first air outlet 44 is arranged to emit air from a front end of the nozzle 14. The first air outlet 44 is in the form of an annular slot, which has a relatively constant width in the range from 0.5 to 5 mm about the bore axis X. In this example the first air outlet 44 has a width of around 1 mm. Where the inner casing sections 24, 34 are formed from respective components, 30 spacers 46 may be spaced about the first air outlet 44 for urging apart the overlapping portions of the casing sections 24, 34 to control the width of the first air outlet 44.
10
15
20
18
These spacers may be integral with either of the casing sections 24, 34. Where the casing sections 24, 34 are formed from a single component, the spacers 46 are replaced by fins which are spaced about the first air outlet 44 for connecting together the inner casing section 24 and the front casing section 34.
5
The nozzle 14 defines an annular first interior passage 48 for conveying the first air flow from the first air inlet 30 to the first air outlet 44. The first interior passage 48 is defined by the internal surface of the first outer casing section 22 and the internal surface of the inner casing section 24. A tapering, annular mouth 50 guides the first air 10 flow to the first air outlet 44. The tapering shape of the mouth 50 provides for a smooth, controlled acceleration of air as it passes from the first interior passage 48 to the first air outlet 44. A first air flow path through the nozzle 14 may therefore be considered to be formed from the first air inlet 30, the first interior passage 48, the mouth 50 and the first air outlet 40.
15
The front casing section 34 defines a plurality of second air outlets 52 of the nozzle 14. The second air outlets 52 are also formed in the front end of the nozzle 14, each on a respective side of the bore 20, for example by moulding or machining. Each of the second air outlets 52 is located downstream from the first air outlet 44. In this example, 20 each second air outlet 52 is in the form of a slot having a relatively constant width in the range from 0.5 to 5 mm. In this example each second air outlet 52 has a width of around 1 mm. Alternatively, each second air outlet 52 may be in the form of a row of circular apertures or slots formed in the front casing section 34 of the nozzle 14.
25 The nozzle 14 defines an annular second interior passage 54 for conveying the second air flow from the second air inlet 42 to the second air outlets 52. The second interior passage 54 is defined by the internal surfaces of the casing sections 32, 34, and by the front part of the external surface of the first outer casing section 22. The second interior passage 54 is isolated within the nozzle 14 from the first interior passage 48. A second 30 air flow path through the nozzle 14 may therefore be considered to be formed by the second air inlet 42, the second interior passage 54 and the second air outlets 52.
19
Returning to Figure 4(a) the body 12 is generally cylindrical in shape. The body 12 comprises a base 56. The base 56 has an external outer wall 58 which is cylindrical in shape, and which comprises an air inlet 60. In this example, the air inlet 60 comprises a 5 plurality of apertures formed in the outer wall 58 of the base 56. A front portion of the base 56 may comprise a user interface of the humidifying apparatus 10. The user interface is illustrated schematically in Figure 13, and described in more detail below. A mains power cable (not shown) for supplying electrical power to the humidifying apparatus 10 extends through an aperture formed in the base 56.
10
The base 56 comprises a first air passageway 62 for conveying a first air flow to the first air flow path through the nozzle 14, and a second air passageway 64 for conveying a second air flow to the second air flow path through the nozzle 14.
15 The first air passageway 62 passes through the base 56 from the air inlet 60 to the first air inlet 30 of the nozzle 14. With reference also to Figures 6(a) and 6(b), the base 56 comprises a bottom wall 66 connected to the lower end of the outer wall 58, and a generally cylindrical inner wall 68 connected to the outer wall 58 by a recessed annular wall 70. The inner wall 68 extends upwardly away from the annular wall 70. In this
20 example, the outer wall 58, inner wall 68 and annular wall 70 are formed as a single component of the base 56, but alternatively two or more of these walls may be formed as a respective component of the base 56. An upper wall is connected to the upper end of the inner wall 68. The upper wall has a lower frusto-conical section 72 and an upper cylindrical section 74 into which the base 28 of the nozzle 14 is inserted.
25
The inner wall 68 extends about an impeller 76 for generating a first air flow through the first air passageway 62. In this example the impeller 76 is in the form of a mixed flow impeller. The impeller 76 is connected to a rotary shaft extending outwardly from a motor 78 for driving the impeller 76. In this embodiment, the motor 78 is a DC
30 brushless motor having a speed which is variable by a drive circuit 80 in response to a speed selection by a user. The maximum speed of the motor 78 is preferably in the
20
range from 5,000 to 10,000 rpm. The motor 78 is housed within a motor bucket comprising an upper portion 82 connected to a lower portion 84. The upper portion 82 of the motor bucket comprises a diffuser 86 in the form of a stationary disc having curved blades. The diffuser 86 is located beneath the first air inlet 30 of the nozzle 14.
5
The motor bucket is located within, and mounted on, a generally frusto-conical impeller housing 88. The impeller housing 88 is, in turn, mounted on an annular support 90 extending inwardly from the inner wall 68. An annular inlet member 92 is connected to the bottom of the impeller housing 88 for guiding the air flow into the impeller housing 10 88. An annular sealing member 94 is located between the impeller housing 88 and the annular support 90 to prevent air from passing around the outer surface of the impeller housing 88 to the inlet member 92. The annular support 90 preferably comprises a guide portion 96 for guiding an electrical cable from the drive circuit 80 to the motor 78. The base 56 also includes a guide wall 98 for guiding air flow the air inlet 60 to an 15 air inlet port of the inlet member 92.
The first air passageway 62 extends from the air inlet 60 to the air inlet port of the inlet member 92. The first air passageway 62 extends, in turn, through the impeller housing 88, the upper end of the inner wall 68 and the sections 72, 74 of the upper wall.
20
An annular cavity 99 is located between the guide wall 98 and the annular wall 70. The cavity 99 has an opening which is located between the inlet member 92 and the guide wall 98 so that the cavity 99 is open to the first air passageway 62. The cavity 99 contains a static pocket of air which serves to reduce the transmission of vibrations 25 generated during use of the humidifying apparatus 10 to the outer surface of the body 12.
The second air passageway 64 is arranged to receive air from the first air passageway 62. The second air passageway 64 is located adjacent to the first air passageway 62. 30 The second air passageway 64 comprises an inlet duct 100. With reference to Figures 6(a) and 6(b), the inlet duct 100 is defined by the inner wall 68 of the base 56. The inlet
21
duct 100 is located adjacent to, and in this example radially external of, part of the first air passageway 62. The inlet duct 100 extends generally parallel to the longitudinal axis of the base 56, which is co-linear with the rotational axis of the impeller 76. The inlet duct 100 has an inlet port 102 located downstream from, and radially outward from, the 5 diffuser 86 so as to receive part of the air flow emitted from the diffuser 86, and which forms the second air flow. The inlet duct 100 has an outlet port 104 located at the lower end thereof.
The second air passageway 64 further comprises an outlet duct 106 which is arranged to 10 convey the second air flow to the second air inlet 42 of the nozzle 14. The second air flow is conveyed through the inlet duct 100 and the outlet duct 106 in generally opposite directions. The outlet duct 106 comprises an inlet port 108 located at the lower end thereof, and an outlet port located at the upper end thereof. The base 40 of the second outer casing section 32 of the nozzle 14 is inserted into the outlet port of the 15 outlet duct 106 to receive the second air flow from the outlet duct 106.
The humidifying apparatus 10 is configured to increase the humidity of the second air flow before it enters the nozzle 14. With reference now to Figures 1 to 4(a) and Figure 7, the humidifying apparatus 10 comprises a water tank 120 removably mountable on 20 the base 56 of the body 12. The water tank 120 has a cylindrical outer wall 122 which has the same radius as the outer wall 58 of the base 56 of the body 12 so that the body 12 has a cylindrical appearance when the water tank 120 is mounted on the base 56. The water tank 120 has a tubular inner wall 124 which surrounds the walls 68, 72, 74 of the base 56 when the water tank 120 is mounted on the base 56. The outer wall 122 and 25 the inner wall 124 define, with an annular upper wall 126 and an annular lower wall 128 of the water tank 120, an annular volume for storing water. The water tank 120 thus surrounds the impeller 76 and the motor 78, and so at least part of the first air passageway 62, when the water tank 120 is mounted on the base 56. The lower wall 128 of the water tank 120 engages the outer wall 58 of the base 56, and non-recessed 30 parts of the annular wall 70, when the water tank 120 is mounted on the base 56.
22
The water tank 120 preferably has a capacity in the range from 2 to 4 litres. A window 130 is provided on the outer wall 122 of the water tank 120 to allow a user to see the level of water within the water tank 120 when it is disposed on the base 56.
5 With reference to Figure 9, a spout 132 is removably connected to the lower wall 128 of the water tank 120, for example through co-operating threaded connections. In this example the water tank 120 is filled by removing the water tank 120 from the base 56 and inverting the water tank 120 so that the spout 132 is projecting upwardly. The spout 132 is then unscrewed from the water tank 120 and water is introduced into the 10 water tank 120 through an aperture exposed when the spout 132 is disconnected from the water tank 120. Once the water tank 120 has been filled, the user reconnects the spout 132 to the water tank 120, returns the water tank 120 to its non-inverted orientation and replaces the water tank 120 on the base 56. A spring-loaded valve 134 is located within the spout 132 for preventing leakage of water through a water outlet 15 136 of the spout 132 when the water tank 120 is re-inverted. The valve 134 is biased towards a position in which a skirt of the valve 134 engages the upper surface of the spout 132 to prevent water entering the spout 132 from the water tank 120.
The upper wall 126 of the water tank 120 comprises one or more supports 138 for 20 supporting the inverted water tank 120 on a work surface, counter top or other support surface. In this example, two parallel supports 138 are formed in the periphery of the upper wall 126 for supporting the inverted water tank 120.
With reference also to Figures 6(a), 6(b) and 8, the outer wall 58, inner wall 68 and the 25 recessed portion of the annular wall 70 of the base 56 define a water reservoir 140 for receiving water from the water tank 120. The base 140 comprises a water treatment chamber 142 for treating water from the water tank 120 before it enters the water reservoir 140. The water treatment chamber 142 is located to one side of the water reservoir 140, within the recessed portion of the annular wall 70. A cover 144 30 connected to the annular wall 70 comprises a water inlet 146 and a water outlet 148 of the water treatment chamber 142. In this embodiment, each of the water inlet 146 and
23
the water outlet 148 comprises a plurality of apertures. Water outlet 148 is located on an inclined surface of the cover 144 so that the water outlet 148 is located beneath the water inlet 146. The cover 144 is supported by a supporting pin 150 which extends upwardly from the annular wall 70 to engage the lower surface of the cover 144.
5
An upwardly extending pin 152 of the cover 144 is located between apertures of the water inlet 146. When the water tank 120 is mounted on the base 56, the pin 152 protrudes into the spout 132 to push the valve 134 upwardly to open the spout 132, thereby allowing water to pass under gravity through the water inlet 146 and into the 10 water treatment chamber 142. As the water treatment chamber 142 fills with water, water flows through the water outlet 148 and into the water reservoir 140. The water treatment chamber 142 houses a threshold inhibitor, such one or more beads or pellets 154 of a polyphosphate material, which becomes added to the water as it passes through the water treatment chamber 142. Providing the threshold inhibitor in a solid form 15 means that the threshold inhibitor slowly dissolves with prolonged contact with water in the water treatment chamber 142. In view of this, the water treatment chamber 142 comprises a barrier which prevents relatively large pieces of the threshold inhibitor from entering the water reservoir 140. In this example, the barrier is in the form of a wall 156 located between the annular wall 70 and the water outlet 148.
20
Within the water reservoir 140, the annular wall 70 comprises a pair of circular apertures each for exposing a respective piezoelectric transducer 160. The drive circuit 80 is configured to actuate vibration of the transducers 160 in an atomization mode to atomise water located in the water reservoir 140. In the atomization mode, the 25 transducers 160 may vibrate ultrasonically at a frequency f\, which may be in the range from 1 to 2 MHz. A metallic heat sink 162 is located between the annular wall 70 and the transducers 160 for conveying heat away from the transducers 160. Apertures 164 are formed in the bottom wall 64 of the base 56 to dissipate heat radiated from the heat sink 162. Annular sealing members form water-tight seals between the transducers 160 30 and the heat sink 162. As illustrated in Figures 6(a) and 6(b), the peripheral portions 166 of the apertures in the annular wall 70 are raised to present a barrier for preventing
24
any particles of the threshold inhibitor which have entered the water reservoir 140 from the water treatment chamber 142 from becoming lodged on the exposed surfaces of the transducers 160.
5 The water reservoir 140 also includes an ultraviolet radiation (UV) generator for irradiating water stored in the water reservoir 140. In this example, the UV generator is in the form of a UV lamp 170 located within a UV transparent tube 172 located in the water reservoir 140 so that, as the water reservoir 140 fills with water, water surrounds the tube 172. The tube 172 is located on the opposite side of the water reservoir 140 to 10 the transducers 160. One or more reflective surfaces 173 may be provided adjacent to, and preferably about, the tube 172 for reflecting ultraviolet radiation emitted from the UV lamp 170 into the water reservoir 140. The water reservoir 140 comprises baffle plates 174 which guide water entering the water reservoir 140 from the water treatment chamber 142 along the tube 172 so that, during use, the water entering the water 15 reservoir 140 from the water treatment chamber 142 is irradiated with ultraviolet radiation before it is atomized by one of the transducers 160.
A magnetic level sensor 176 is located within the water reservoir 140 for detecting the level of water within the water reservoir 140. Depending on the volume of water within 20 the water tank 120, the water reservoir 140 and the water treatment chamber 142 can be filled with water to a maximum level which is substantially co-planar with the upper surface of the pin 152. The outlet port 104 of the inlet duct 100 is located above the maximum level of water within the water reservoir 140 so that the second air flow enters the water reservoir 140 over the surface of the water located in the water 25 reservoir 140.
The outlet port 108 of the outlet duct 106 is positioned above the transducers 160 to receive a humidified air flow from the water reservoir 140. The outlet duct 106 is defined by the water tank 120. The outlet duct 106 is formed by the inner wall 124 of 30 the water tank 120 and a curved wall 180 about which the inner wall 124 extends.
25
The base 56 includes a proximity sensor 182 for detecting that the water tank 120 has been mounted on the base 56. The proximity sensor 182 is illustrated schematically in Figure 13. The proximity sensor 182 may be in the form of a reed switch which interacts with a magnet (not shown) located on the lower wall 128 of the water tank 120 5 to detect the presence, or absence, of the water tank 120 on the base 56. As illustrated in Figures 7(a), 7(b) and 11, when the water tank 120 is mounted on the base 56 the inner wall 124 and the curved wall 180 surround the upper wall of the base 56 to expose the open upper end of the upper cylindrical section 74 of the upper wall. The water tank 120 includes a handle 184 to facilitate removal of the water tank 120 from the base 56. 10 The handle 184 is pivotably connected to the water tank 120 so as to be moveable relative to the water tank 120 between a stowed position, in which the handle 184 is housed within a recessed section 186 of the upper wall 126 of the water tank 120, and a deployed position, in which the handle 184 is raised above the upper wall 126 of the water tank 120. With reference also to Figures 12(a) and 12(b), one or more resilient 15 elements 188, such as torsion springs, may be provided for biasing the handle 184 towards its deployed position, as illustrated in Figures 7(a) and 7(b).
When the nozzle 14 is mounted on the body 12, the base 28 of the first outer casing section 22 of the nozzle 14 is located over the open end of the upper cylindrical section 20 74 of the upper wall of the base 56, and the base 40 of the second outer casing section 32 of the nozzle 14 is located over the open upper end of the outlet duct 106 of the water tank 120. The user then pushes the nozzle 14 towards the body 12. As illustrated in Figure 10, a pin 190 is formed on the lower surface of the first outer casing section 22 of the nozzle 14, immediately behind the base 28 of the first outer casing section 22. As 25 the nozzle 14 moves towards the body 12, the pin 190 pushes the handle 184 towards its stowed position, against the biasing force of the resilient elements 188. When the bases 28, 40 of the nozzle 14 are fully inserted in the body 12, annular sealing members 192 form air-tight seals between the ends of the bases 28, 40 and annular ledges 194 formed in the upper cylindrical section 74 of the upper wall of the base 56, and in the outlet 30 duct 106. The upper wall 126 of the water tank 120 has a concave shape so that, when the nozzle 14 is mounted on the body 12, the water tank 120 surrounds a lower part of
26
the nozzle 14. This not only can this allow the capacity of the water tank 120 to be increased, but can also provide the humidifying apparatus 10 with a compact appearance.
5 A mechanism is provided for releasably retaining the nozzle 14 on the body 12. Figures 4(a), 11 and 12(a) illustrate a first configuration of the mechanism when the nozzle 14 is retained on the body 12, whereas Figures 4(b) and 12(b) illustrate a second configuration of the mechanism when the nozzle 14 is released from the body 12. In this example, the water tank 120 comprises the mechanism for releasably retaining the 10 nozzle 14 on the body 12. The mechanism for releasably retaining the nozzle 14 on the body 12 comprises a pair of detents 200 which are located on diametrically opposed sides of an annular housing 202 of the water tank 120. Each detent 200 has a generally L-shaped cross-section. Each detent 200 is pivotably connected to the water tank 120 for movement between a deployed position for retaining the nozzle 14 on the body 12, 15 and a stowed position. Resilient elements 204, such as torsion springs, are located within the housing 202 for biasing the detents 200 towards their deployed positions.
The housing 202 comprises a pair of diametrically opposed apertures 206 which align with similarly shaped apertures 208 formed on the upper cylindrical section 74 of the 20 upper wall of the base 56 when the water tank 120 is mounted on the base 56. The outer surface of the base 28 of the nozzle 14 comprises a pair of diametrically opposed recesses 210 which align with the apertures 206, 208 when the nozzle 14 is mounted on the body 12. When the detents 200 are in their deployed position, the ends of the detents 200 are urged through the apertures 206, 208 by the resilient elements 204 to 25 enter the recesses 210 in the nozzle 14. The ends of the detents 200 engage the recessed outer surface of the base 28 of the nozzle 14 to prevent the nozzle 14 from becoming withdrawn from the body 12, for example if the humidifying apparatus 10 is lifted by a user gripping the nozzle 14.
30 The water tank 120 comprises a depressible catch 220 which is operable to move the mechanism from the first configuration to the second configuration, by moving the
27
detents 200 away from the recesses 210 to release the nozzle 14 from the body 12. The catch 220 is annular in shape, and is located in the housing 202 of the water tank 200 beneath the detents 200. The catch 220 is mounted within the housing 202 for pivoting movement about an axis which is orthogonal to the axes about which the detents 200 5 pivot between their stowed and deployed positions. The catch 220 is moveable from a stowed position, as illustrated in Figures 4(a), 11 and 12(a), to a deployed position, as illustrated in Figures 4(b), 7(a), 7(b) and 12(b), in response to a user depressing a button 222 located on the upper wall 126 of the water tank 120 and above a front section of the catch 220. A compression spring or other resilient element may be provided beneath 10 the front section of the catch 200 for urging the catch 220 towards is stowed position. The rotational axis of the catch 220 is located proximate to to the front section of the catch so that, as the catch 220 moves towards its deployed position, the catch 220 urges the detents 200 to pivot away from the recesses 210 against the biasing force of the resilient elements 204.
15
The water tank 120 is configured to retain the catch 220 in its deployed position when the user releases the button 220. The housing 202 of the water tank 120 comprises a wedge 224 over which a hook 226 located on the rear section of the catch 220 slides as the catch 220 moves towards its deployed position. In the deployed position, the end of 20 the hook 226 snaps over the tapered side surface of the wedge 224 to engage the upper surface of the wedge 224, resulting in the catch 220 being retained in its deployed position. As the hook 226 moves over the upper surface of the wedge 224, the hook 226 engages the bottom of the handle 184 and urges the handle 184 upwardly away from the recessed section 186 of the water tank 120. This in turn causes the handle 184 25 to push the nozzle 14 slightly away from the body 12, providing a visual indication to the user that the nozzle 14 has been released from the body 12. As an alternative to having features on the water tank 120 and the catch 220 which co-operate to retain the catch 220 in its deployed position, one or more magnets may be used to retain the catch 220 in its deployed position.
30
28
In its deployed position, the catch 220 holds the detents 200 in their stowed positions, as illustrated in Figures 4(b) and 12(b), to allow the user to remove the nozzle 14 from the body 12. As the nozzle 14 is lifted from the body 12, the resilient element 188 urges the handle 184 to its deployed position. The user can then use the handle 184 to lift the 5 water tank 120 from the base 56 to allow the water tank 120 to be filled or cleaned as required.
Once the water tank 120 has been filled or cleaned, the user replaces the water tank 120 on the base 56, and then replaces the nozzle 14 on the body 12. As the bases 28, 40 of 10 the nozzle 14 are pushed into the body 12 the pin 190 on the nozzle 14 engages the handle 184 and pushes the handle 184 back to its stowed position within the recessed section 186 of the water tank 120. As the handle 184 moves to its stowed position, it engages the hook 226 on the catch 220 and pushes the hook 226 away from the upper surface of the wedge 224 to release the catch 220 from its deployed position. As the 15 hook 226 moves away from the wedge 224, the resilient elements 204 urge the detents 200 towards their deployed positions to retain the nozzle 14 on the body 12. As the detents 200 move towards their deployed position, the detents 200 move the catch 220 back to its stowed position.
20 A user interface for controlling the operation of the humidifying apparatus is located on the outer wall 58 of the base 56 of the body 12. Figure 13 illustrates schematically a control system for the humidifying apparatus 10, which includes this user interface and other electrical components of the humidifying apparatus 10. In this example, the user interface comprises a plurality of user-operable buttons 240a, 240b and 240c, and a 25 display 242. The first button 240a is used to activate and deactivate the motor 78, and the second button 240b is used to set the speed of the motor 78, and thus the rotational speed of the impeller 76. The third button 240c is used to set a desired level for the relative humidity of the environment in which the humidifying apparatus 10 is located, such as a room, office or other domestic environment. For example, the desired relative 30 humidity level may be selected within a range from 30 to 80% at 20°C through repeated
29
actuation of the third button 240c. The display 242 provides an indication of the currently selected relative humidity level.
The user interface further comprises a user interface circuit 244 which outputs control 5 signals to the drive circuit 80 upon actuation of one of the buttons, and which receives control signals output by the drive circuit 80. The user interface may also comprise one or more LEDs for providing a visual alert depending on a status of the humidifying apparatus. For example, a first LED 246a may be illuminated by the drive circuit 80 indicating that the water tank 120 has become depleted, as indicated by a signal 10 received by the drive circuit 80 from the level sensor 176.
A humidity sensor 248 is also provided for detecting the relative humidity of air in the external environment, and for supplying a signal indicative of the detected relative humidity to the drive circuit 80. In this example the humidity sensor 248 may be 15 located immediately behind the air inlet 60 to detect the relative humidity of the air flow drawn into the humidifying apparatus 10. The user interface may comprise a second LED 246b which is illuminated by the drive circuit 80 when an output from the humidity sensor 248 indicates that the relative humidity of the air flow entering the humidifying apparatus 10, HD, is at or above the desired relative humidity level, Hs, set 20 by the user.
With reference also to Figure 14, to operate the humidifying apparatus 10, the user actuates the first button 240a. The operation of the button 240a is communicated to the drive circuit 80, in response to which the drive circuit 80 actuates the UV lamp 170 to 25 irradiate water stored in the water reservoir 140. In this example, the drive circuit 80 simultaneously activates the motor 78 to rotate the impeller 76. The rotation of the impeller 76 causes air to be drawn into the body 12 through the air inlet 60. An air flow passes through the impeller housing 88 and the diffuser 86. Downstream from the diffuser 86, a portion of the air emitted from the diffuser 86 enters the inlet duct 100 30 through the inlet port 102, whereas the remainder of the air emitted from the diffuser 86 is conveyed along the first air passageway 62 to the first air inlet 30 of the nozzle 14.
30
The impeller 76 and the motor 78 may thus be considered to generate a first air flow which is conveyed to the nozzle 14 by the first air passageway 70 and which enters the nozzle 14 through the first air inlet 30.
5 The first air flow enters the first interior passage 48 at the base of the rear section 16 of the nozzle 14. At the base of the first interior passage 48, the air flow is divided into two air streams which pass in opposite directions around the bore 20 of the nozzle 14. As the air streams pass through the first interior passage 48, air enters the mouth 50 of the nozzle 14. The air flow into the mouth 50 is preferably substantially even about the 10 bore 20 of the nozzle 14. The mouth 50 guides the air flow towards the first air outlet 44 of the nozzle 14, from where it is emitted from the humidifying apparatus 10.
The air flow emitted from the first air outlet 40 causes a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the 15 region around the first air outlet 44 and from around the rear of the nozzle 14. Some of this secondary air flow passes through the bore 20 of the nozzle 14, whereas the remainder of the secondary air flow becomes entrained within the air flow emitted from the first air outlet in front of the nozzle 14.
20 As mentioned above, with rotation of the impeller 76 air enters the second air passageway 64 through the inlet port 102 of the inlet duct 100 to form a second air flow. The second air flow passes through the inlet duct 100 and is emitted into the water reservoir 140 through the outlet port 104. The emission of the second air flow from the outlet port 104 agitates the water stored in the water reservoir 140 to generate 25 movement of water along and around the UV lamp 170, increasing the volume of water which is irradiated by the UV lamp 170. The presence of the threshold inhibitor within the stored water causes a thin layer of the threshold inhibitor to be formed on the surfaces of the tube 172 and the transducers 160 which are exposed to the stored water, inhibiting the precipitation of limescale on those surfaces. This can both prolong the 30 working life of the transducers 160 and inhibit any degradation in the illumination of the stored water by the UV lamp 160.
31
In addition to the agitation of the water stored in the water reservoir 140 by the second air flow, the agitation may also be performed by the vibration of the transducers 160 in an agitation mode which is insufficient to cause atomization of the stored water.
5 Depending, for example on the size and the number of transducers 160 of the base 56, the agitation of the stored water may be performed solely by vibration of the transducers 160 at a reduced second frequency fz, and/or at a reduced amplitude, or with a different duty cycle. In this case, the drive circuit 80 may be configured to actuate the vibration of the transducers 160 in this agitation mode simultaneously with the irradiation of the 10 stored water by the UV lamp 170.
The agitation and irradiation of the stored water continues for a period of time sufficient to reduce the level of bacteria within the water reservoir 140 by a desired amount. In this example, the water reservoir 140 has a maximum capacity of 200 ml, and the 15 agitation and irradiation of the stored water continues for a period of 60 seconds before atomization of the stored water commences. The duration of this period of time may be lengthened or shortened depending on, for example, the degree of agitation of the stored water, the capacity of the water reservoir 140, and the intensity of the irradiation of the stored water, and so depending on these variables the duration of this period of time 20 may take any value in the range of 10 to 300 seconds to achieve the desired reduction in the number of bacteria within the stored water.
At the end of this period of time, the drive circuit 80 actuates the vibration of the transducers 160 in the atomization mode to atomize water stored in the water reservoir 25 140. This creates airborne water droplets above the water located within the water reservoir 140. In the event that the stored water was agitated previously by vibration of the transducers 160 alone, the motor 78 is also activated at this end of this period of time.
30 As water within the water reservoir 140 is atomized, the water reservoir 140 is constantly replenished with water received from the water tank 120 via the water
32
treatment chamber 142, so that the level of water within the water reservoir 140 remains substantially constant while the level of water within the water tank 120 gradually falls. As water enters the water reservoir 140 from the water treatment chamber 142, in which the threshold inhibitor is added to the water, it is guided by the walls 174 to flow along 5 the tube 172 so that it is irradiated with ultraviolet radiation before it is atomized.
With rotation of the impeller 76, airborne water droplets become entrained within the second air flow emitted from the outlet port 104 of the outlet duct 100. The - now moist - second air flow passes upwardly through the outlet duct 106 of the second air 10 passageway 64 to the second air inlet 42 of the nozzle 14, and enters the second interior passage 54 within the front section 18 of the nozzle 14.
At the base of the second interior passage 54, the second air flow is divided into two air streams which pass in opposite directions around the bore 20 of the nozzle 14. As the 15 air streams pass through the second interior passage 54, each air stream is emitted from a respective one of the second air outlets 52 located in the front end of the nozzle 14 in front of the first air outlet 44. The emitted second air flow is conveyed away from the humidifying apparatus 10 within the air flow generated through the emission of the first air flow from the nozzle 14, thereby enabling a humid air current to be experienced 20 rapidly at a distance of several metres from the humidifying apparatus 10.
The moist air flow is emitted from the nozzle 14 until the relative humidity Hn of the air flow entering the humidifying apparatus 10, as detected by the humidity sensor 248, is 1% at 20°C higher than the relative humidity level Hs, selected by the user using the 25 third button 240c. The emission of the moistened air flow from the nozzle 14 may then be terminated by the drive circuit 80, preferably by changing the mode of vibration of the transducers 160. For example, the frequency of the vibration of the transducers 160 may be reduced to a frequency f}, where f\>fz> 0, below which atomization of the stored water is not performed. Alternatively the amplitude of the vibrations of the 30 transducers 160 may be reduced. Optionally, the motor 78 may also be stopped so that no air flow is emitted from the nozzle 14. However, when the humidity sensor 248 is
33
located in close proximity to the motor 78 it is preferred that the motor 78 is operated continually to avoid undesirable temperature fluctuation in the local environment of the humidity sensor 248. Also, it is preferred to continue to operate the motor 78 to continue agitating the water stored in the water reservoir 140. Operation of the UV 5 lamp 170 is also continued.
As a result of the termination of the emission of a moist air flow from the humidifying apparatus 10, the relative humidity HD detected by the humidity sensor 248 will begin to fall. Once the relative humidity of the air of the environment local to the humidity 10 sensor 248 has fallen to 1% at 20°C below the relative humidity level Hs selected by the user, the drive circuit 80 re-activates the vibration of the transducers 160 in the atomization mode. If the motor 78 has been stopped, the drive circuit 80 simultaneously re-activates the motor 78. As before, the moist air flow is emitted from the nozzle 14 until the relative humidity H\) detected by the humidity sensor 170 is 1% 15 at 20°C higher than the relative humidity level H$ selected by the user.
This actuation sequence of the transducers 160 (and optionally the motor 78) for maintaining the detected humidity level around the level selected by the user continues until button 240a is actuated again, or until a signal is received from the level sensor 20 176 indicating that the level of water within the water reservoir 140 has fallen below the minimum level. If the button 240a is actuated, or upon receipt of this signal from the level sensor 17, the drive circuit 80 deactivates the motor 78, the transducers 160 and the UV lamp 172 to switch off the humidifying apparatus 10. The drive circuit 80 also deactivates these components of the humidifying apparatus 10 in response to signal 25 received from the proximity sensor 178 indicating that the water tank 120 has been removed from the base 56.
34

Claims (1)

1. Humidifying apparatus comprising:
5 means for generating a first air flow and a second air flow;
a removable nozzle comprising at least one first air outlet for emitting the first air flow, the nozzle defining an opening through which air from outside the humidifying apparatus is drawn by air emitted from said at least one first air outlet;
humidifying means for humidifying the second air flow;
10 at least one second air outlet for emitting the second air flow; and a water tank having a handle which is moveable between a stowed position and a deployed position, and biasing means for urging the handle towards the deployed position;
wherein the nozzle is configured to urge the handle towards the stowed position.
15
2. Humidifying apparatus as claimed in claim 1, wherein the water tank comprises a recessed portion for storing the handle in its stowed position.
3. Humidifying apparatus as claimed in claim 2, wherein the biasing means is 20 located in the recessed portion of the water tank.
4. Humidifying apparatus as claimed in any preceding claim, wherein the handle is pivotably moveable between the stowed position and the deployed position.
25 5. Humidifying apparatus as claimed in any preceding claim, wherein the water tank is annular in shape.
6. Humidifying apparatus as claimed in any preceding claim, wherein the water tank extends at least partially about a duct for conveying the first air flow to the nozzle.
30
35
7. Humidifying apparatus as claimed in claim 6, wherein the water tank surrounds said duct.
8. Humidifying apparatus as claimed in claim 6 or claim 7, wherein the nozzle 5 comprises an inlet section which is at least partially insertable into said duct.
9. Humidifying apparatus as claimed in any of claims 6 to 8, comprising a base upon which the water tank is locatable, the base comprising said air flow generating means and said duct.
10
10. Humidifying apparatus as claimed in claim 9, wherein the humidifying means comprises a water reservoir for receiving water from the water tank and atomizing means for atomizing water in the reservoir to humidify the second air flow, and wherein the base comprises the water reservoir and the atomizing means.
15
11. Humidifying apparatus as claimed in claim 10, wherein the base comprises an inlet duct for conveying the second air flow to the reservoir, and the water tank comprises an outlet duct for conveying the second air flow from the reservoir.
20 12. Humidifying apparatus as claimed in claim 11, wherein the nozzle comprises said at least one second air outlet for emitting the second air flow.
13. Humidifying apparatus as claimed in claim 12, wherein the nozzle comprises at least one first air inlet for receiving the first air flow, a first interior passage for
25 conveying the first air flow to said at least one first air outlet, at least one second air inlet for receiving the second air flow, and a second interior passage for conveying the second air flow air to said at least one second air outlet.
14. Humidifying apparatus as claimed in claim 13, wherein the first interior passage 30 is isolated from the second interior passage.
36
15. Humidifying apparatus as claimed in claim 13 or claim 14, wherein the first interior passage surrounds the bore of the nozzle.
16 Humidifying apparatus as claimed in any of claims 13 to 15, wherein the second interior passage surrounds the bore of the nozzle.
17. Humidifying apparatus as claimed in any of claims 13 to 16, wherein said at least one second air outlet is located in a front end of the nozzle.
18. Humidifying apparatus as claimed in claim 17, wherein said at least one second air outlet comprises a plurality of air outlets located about the bore.
19. Humidifying apparatus as claimed in any preceding claim, wherein said at least one first air outlet is arranged to emit the first air flow through at least a front part of the bore of the nozzle.
20. Humidifying apparatus as claimed in any preceding claim, wherein said at least one first air outlet comprises a plurality of first air outlets located about the bore of the nozzle.
GB1203894.9A 2012-03-06 2012-03-06 A Humidifying Apparatus Expired - Fee Related GB2500009B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB1203894.9A GB2500009B (en) 2012-03-06 2012-03-06 A Humidifying Apparatus
EP13155040.2A EP2636962A3 (en) 2012-03-06 2013-02-13 Humidifying apparatus
US13/786,313 US20130234347A1 (en) 2012-03-06 2013-03-05 Humidifying apparatus
TW102203975U TWM472758U (en) 2012-03-06 2013-03-05 Humidifying apparatus
CN2013201012280U CN203272072U (en) 2012-03-06 2013-03-06 Humidifying device
JP2013062875A JP5572732B2 (en) 2012-03-06 2013-03-06 Humidifier
CN201310070642.4A CN103306948B (en) 2012-03-06 2013-03-06 Damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1203894.9A GB2500009B (en) 2012-03-06 2012-03-06 A Humidifying Apparatus

Publications (3)

Publication Number Publication Date
GB201203894D0 GB201203894D0 (en) 2012-04-18
GB2500009A true GB2500009A (en) 2013-09-11
GB2500009B GB2500009B (en) 2015-08-05

Family

ID=46003177

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1203894.9A Expired - Fee Related GB2500009B (en) 2012-03-06 2012-03-06 A Humidifying Apparatus

Country Status (6)

Country Link
US (1) US20130234347A1 (en)
EP (1) EP2636962A3 (en)
JP (1) JP5572732B2 (en)
CN (2) CN103306948B (en)
GB (1) GB2500009B (en)
TW (1) TWM472758U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928400A (en) * 2020-09-13 2020-11-13 深圳市几素科技有限公司 Air humidifier

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2414738B1 (en) 2009-03-04 2013-10-09 Dyson Technology Limited Humidifying apparatus
GB2493506B (en) 2011-07-27 2013-09-11 Dyson Technology Ltd A fan assembly
RU2576735C2 (en) 2011-07-27 2016-03-10 Дайсон Текнолоджи Лимитед Fan assembly
GB201119500D0 (en) 2011-11-11 2011-12-21 Dyson Technology Ltd A fan assembly
GB2500012B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500010B (en) 2012-03-06 2016-08-24 Dyson Technology Ltd A humidifying apparatus
SG11201405367VA (en) 2012-03-06 2014-10-30 Dyson Technology Ltd A fan assembly
GB2500017B (en) 2012-03-06 2015-07-29 Dyson Technology Ltd A Humidifying Apparatus
GB2500005B (en) 2012-03-06 2014-08-27 Dyson Technology Ltd A method of generating a humid air flow
GB2500011B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500009B (en) * 2012-03-06 2015-08-05 Dyson Technology Ltd A Humidifying Apparatus
AU350140S (en) 2013-01-18 2013-08-13 Dyson Technology Ltd Humidifier or fan
AU350181S (en) 2013-01-18 2013-08-15 Dyson Technology Ltd Humidifier or fan
BR302013003358S1 (en) 2013-01-18 2014-11-25 Dyson Technology Ltd CONFIGURATION APPLIED ON HUMIDIFIER
RU2672433C2 (en) 2013-01-29 2018-11-14 Дайсон Текнолоджи Лимитед Fan assembly
GB2510195B (en) 2013-01-29 2016-04-27 Dyson Technology Ltd A fan assembly
CA152656S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
BR302013004394S1 (en) 2013-03-07 2014-12-02 Dyson Technology Ltd CONFIGURATION APPLIED TO FAN
CA152657S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152655S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152658S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA154723S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
CA154722S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
USD728769S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
GB2518638B (en) 2013-09-26 2016-10-12 Dyson Technology Ltd Humidifying apparatus
GB2528708B (en) 2014-07-29 2016-06-29 Dyson Technology Ltd A fan assembly
GB2528709B (en) 2014-07-29 2017-02-08 Dyson Technology Ltd Humidifying apparatus
GB2528704A (en) 2014-07-29 2016-02-03 Dyson Technology Ltd Humidifying apparatus
TWD173930S (en) * 2015-01-30 2016-02-21 戴森科技有限公司 A fan
TWD173929S (en) * 2015-01-30 2016-02-21 戴森科技有限公司 A fan
TWD173932S (en) * 2015-01-30 2016-02-21 戴森科技有限公司 A fan
TWD179707S (en) * 2015-01-30 2016-11-21 戴森科技有限公司 A fan
TWD173928S (en) * 2015-01-30 2016-02-21 戴森科技有限公司 A fan
TWD173931S (en) * 2015-01-30 2016-02-21 戴森科技有限公司 A fan
USD804007S1 (en) * 2015-11-25 2017-11-28 Vornado Air Llc Air circulator
CN105841231B (en) * 2016-03-28 2018-10-23 广东美的制冷设备有限公司 Air conditioner indoor unit
CN106500226A (en) * 2016-12-19 2017-03-15 长江大学 A kind of ultrasonic air conditioner type health care bladeless fan
US11384956B2 (en) 2017-05-22 2022-07-12 Sharkninja Operating Llc Modular fan assembly with articulating nozzle
CN108224653A (en) * 2017-12-30 2018-06-29 中山泰坦工艺品有限公司 A kind of ring atomizing humidifier
US10926210B2 (en) 2018-04-04 2021-02-23 ACCO Brands Corporation Air purifier with dual exit paths
USD913467S1 (en) 2018-06-12 2021-03-16 ACCO Brands Corporation Air purifier
KR102585889B1 (en) * 2021-09-15 2023-10-06 엘지전자 주식회사 Blower

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783117A (en) * 1997-01-09 1998-07-21 Hunter Fan Company Evaporative humidifier
GB2473037A (en) * 2009-08-28 2011-03-02 Dyson Technology Ltd Humidifying apparatus comprising a fan and a humidifier with a plurality of transducers

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488467A (en) * 1947-09-12 1949-11-15 Lisio Salvatore De Motor-driven fan
JPH0748020B2 (en) * 1989-06-16 1995-05-24 三洋電機株式会社 humidifier
JPH0612467Y2 (en) * 1989-10-05 1994-03-30 三洋電機株式会社 humidifier
JPH04106440U (en) * 1991-02-19 1992-09-14 積水化成品工業株式会社 humidifier
US5483616A (en) * 1994-12-21 1996-01-09 Duracraft Corporation Humidifier tank with improved handle
JP2000055419A (en) * 1998-08-11 2000-02-25 Aiwa Co Ltd Water supply mechanism and humidifier using the same
JP3094083U (en) * 2002-11-15 2003-05-30 豐元機電有限公司 Humidifier structure
CA2688920C (en) * 2005-10-21 2012-04-10 Compumedics Limited Apparatus for delivery of pressurised gas
JP2009275925A (en) * 2008-05-12 2009-11-26 Tiger Vacuum Bottle Co Ltd Humidifier
JP2010046411A (en) * 2008-08-25 2010-03-04 Panasonic Electric Works Co Ltd Mist generator
JP5452267B2 (en) * 2009-02-09 2014-03-26 パナソニック株式会社 Electric heater
GB2468312A (en) * 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
EP2414738B1 (en) * 2009-03-04 2013-10-09 Dyson Technology Limited Humidifying apparatus
CN201739198U (en) * 2010-05-27 2011-02-09 李德正 Bladeless electric fan
GB2482548A (en) * 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
CN102095236B (en) * 2011-02-17 2013-04-10 曾小颖 Ventilation device
CN102287357A (en) * 2011-09-02 2011-12-21 应辉 Fan assembly
GB2500009B (en) * 2012-03-06 2015-08-05 Dyson Technology Ltd A Humidifying Apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783117A (en) * 1997-01-09 1998-07-21 Hunter Fan Company Evaporative humidifier
GB2473037A (en) * 2009-08-28 2011-03-02 Dyson Technology Ltd Humidifying apparatus comprising a fan and a humidifier with a plurality of transducers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928400A (en) * 2020-09-13 2020-11-13 深圳市几素科技有限公司 Air humidifier
CN111928400B (en) * 2020-09-13 2021-01-12 深圳市几素科技有限公司 Air humidifier

Also Published As

Publication number Publication date
EP2636962A3 (en) 2013-12-11
TWM472758U (en) 2014-02-21
GB2500009B (en) 2015-08-05
US20130234347A1 (en) 2013-09-12
JP2013185818A (en) 2013-09-19
CN103306948A (en) 2013-09-18
JP5572732B2 (en) 2014-08-13
CN103306948B (en) 2016-06-29
GB201203894D0 (en) 2012-04-18
EP2636962A2 (en) 2013-09-11
CN203272072U (en) 2013-11-06

Similar Documents

Publication Publication Date Title
AU2013229287B2 (en) Humidifying apparatus
AU2013229286B2 (en) Humidifying apparatus
AU2013229285B2 (en) Humidifying apparatus
AU2013229284B2 (en) A fan assembly
US20130234347A1 (en) Humidifying apparatus
EP2823237B1 (en) Humidifying apparatus
EP2823232B1 (en) Humidifying apparatus
GB2500007A (en) Bladeless fan with removable nozzle
GB2500008A (en) Bladeless fan with removable nozzle

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20200306