GB2485392A - Sealing cap for debris chamber of a downhole debris removal tool - Google Patents

Sealing cap for debris chamber of a downhole debris removal tool Download PDF

Info

Publication number
GB2485392A
GB2485392A GB1019164.1A GB201019164A GB2485392A GB 2485392 A GB2485392 A GB 2485392A GB 201019164 A GB201019164 A GB 201019164A GB 2485392 A GB2485392 A GB 2485392A
Authority
GB
United Kingdom
Prior art keywords
debris
sealing means
chamber
debris chamber
extraction tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1019164.1A
Other versions
GB2485392B (en
GB201019164D0 (en
Inventor
George Telfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MI Drilling Fluids UK Ltd
Original Assignee
MI Drilling Fluids UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MI Drilling Fluids UK Ltd filed Critical MI Drilling Fluids UK Ltd
Priority to GB1019164.1A priority Critical patent/GB2485392B/en
Publication of GB201019164D0 publication Critical patent/GB201019164D0/en
Priority to US13/294,678 priority patent/US9140087B2/en
Publication of GB2485392A publication Critical patent/GB2485392A/en
Application granted granted Critical
Publication of GB2485392B publication Critical patent/GB2485392B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B27/00Containers for collecting or depositing substances in boreholes or wells, e.g. bailers, baskets or buckets for collecting mud or sand; Drill bits with means for collecting substances, e.g. valve drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/01Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B31/00Fishing for or freeing objects in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B27/00Containers for collecting or depositing substances in boreholes or wells, e.g. bailers, baskets or buckets for collecting mud or sand; Drill bits with means for collecting substances, e.g. valve drill bits
    • E21B27/005Collecting means with a strainer

Abstract

Sealing means 30, 40 for debris chambers 11 of a debris extraction tool. The end caps for the debris chamber has a cylindrical body sealed at one end and open at the other end with the open end connectable to an end of the debris enclosure 11. The caps 30 & 40 may connect to the top or bottom of the receptacle 11 to prevent debris spilling from it during removal from a wellbore. The end seals 30 & 40 may have drainage holes which can be selectively opened. The upper sealing means 30 may seal a flow tube within the chamber 11. The method for dismantling a debris extraction tool where there may be a plurality of connected debris chambers.

Description

Modular Tool for Wellbore Cleaning and Method of Use The technical field of the present invention relates to wellbore cleaning.
More particularly, the technical field of the present invention relates to sealing means for debris chambers of a debris extraction tool and a method for dismantling and handling a debris extraction tool using such sealing means.
In recent years, attention has been given to the use of debris extraction tools for wellbore cleaning. GB 2441 246B discloses a device and method for retrieving debris from a well using a venturi debris extraction tool and may be useful background art for understanding the present invention.
Venturi debris extraction tools are used to create a downhole reverse circulation' path to encourage loose debris to be drawn into a collecting chamber. This chamber may be long and requires to be dismantled when pulled from the well. The chamber often contains heavy brine which is considered hazardous on skin contact. A system and/or method for dismantling a debris extraction tool and handle its collecting chamber which would isolate this brine and avoid any skin contact would be advantageous.
In view of the prior art discussed above, there is a need to avoid unwanted fluid (brine) spillage from a of debris extraction tool. This would allow for a cleaner environment and compliance with any regulations in this regard. A further need is to be able to empty the debris extraction tool in a safe and controlled manner.
Additionally, it is desirable to avoid the cumbersome arrangements from a technical and/or economical point of view. Further, it would be an advantage to find a safe and convenient way to handle and lift debris chambers.
It is an object of the present invention to provide means and a method for dismantling a debris extraction tool. This object can be achieved by the features of the independent claims. Further embodiments are characterized by the dependent claims.
According to one embodiment, a sealing means for a debris chamber of a debris extraction tool may comprise a cylinder sealed at one end and open at the other end, the open end being connectable to an end of a debris chamber.
According to a further embodiment, the sealing means is an upper sealing means connectable to a top end of a debris chamber of a debris extraction tool, and the upper sealing means prevents debris from exiting the debris chamber when connected to the debris chamber. The upper sealing means may comprise a drain hole and a member within the cylinder for selectively sealing the drain hole. The member may move axially within the cylinder, and the axial movement may selectively seal the drain hole.
The member may be moved axially by rotation of the member or by axial movement of the member. The upper sealing means may, when connected to a debris chamber, seal a flow tube within the debris chamber.
According to a further embodiment, the sealing means is a lower sealing means connectable to a lower end of a debris chamber of a debris extraction tool, and the lower sealing means prevents debris from exiting the debris chamber when connected to the debris chamber.
In one embodiment, the sealing means comprises a grip for lifting the upper or lower sealing means.
In one embodiment a system may include any one, or both, of the upper sealing means and a debris chamber connectable with the upper and lower sealing means. The debris chamber may be sealed by the sealing means and contain heavy brine. In one embodiment the system includes that the debris chamber is sealed by the sealing means and any debris in the debris chamber may be drained from the debris chamber with the sealing means connected to the debris chamber.
According to one embodiment a method for dismantling a debris extraction tool is disclosed. The debris extraction tool comprises a plurality of connected debris chambers, using any one, or both, of the upper and lower sealing means according to any one of the previous embodiments.
The method may include the steps of connecting the sealing means to the topmost debris chamber. This step may be done before or after disconnecting the topmost debris chamber from the debris extraction tool.
According to one embodiment a method may further include the step of disconnecting the topmost debris chamber from the debris extraction tool.
According to one embodiment a method may include that the upper sealing means is connected to an upper end of the topmost debris chamber after disconnecting the topmost debris chamber from the debris extraction tool.
According to one embodiment a method may further include the step of connecting the lower sealing means to a lower end of the topmost debris chamber.
These method steps may be repeated during the dismantling of the debris extraction tool so that the content of the plurality of debris chambers is sealed by the sealing means. The sealing means may be used for handling the debris chambers. The sealing means are used to drain the debris chambers. According to embodiments, a method is disclosed that isolates and handles brine in a debris extraction tool using any one, or both, of the sealing means according to the embodiments above. In this way technical problems, such as sealing and handling at the same time, are efficiently achieved.
By sealing the top or the top and the bottom of a debris chamber the above mentioned disadvantages can be overcome. Each debris chamber can be dismantled from the string without any spillage of hazardous fluids, such as brine. Hereby hazardous fluids are prevented from spillage on the rig floor and from making contact with rig personnel. The sealing means may be used for this purpose. The sealing means may also be used to lift and handle debris chambers.
Other technical advantages of the present disclosure will be readily apparent to one skilled in the art from the following description and claims.
Various embodiments of the present application obtain only a subset of the advantages set forth. No one advantage is critical to the embodiments. Any claimed embodiment may be technically combined with any preceding claimed embodiment(s). The words "upper" and "lower" are in relation to the orientation of a debris chamber in a debris extraction tool in a wellbore.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain, by way of example, the principles of the invention.
FIG. 1 shows an exemplary embodiment of a plurality of debris chambers.
FIG. 2 shows an exemplary embodiment of an upper end of a debris chamber.
FIG. 3 shows an exemplary embodiment of a lower end of a debris chamber.
FIG. 4 shows an exemplary embodiment of a debris chamber and sealing means.
FIG. 5 shows an exemplary embodiment of an upper sealing means.
FIG. 6 shows two exemplary embodiments of an open and closed upper sealing means, respectively.
FIG. 7 shows an exemplary embodiment of a lower sealing means.
Fig I illustrates an exemplary embodiment of a debris chamber. Such a debris chamber may be part of a debris extraction tool, and especially a venturi debris extraction tool. The illustrated embodiment is longitudinal half-sectional views of a first debris chamber 11 connected to a second debris chamber 12 connected to a third debris chamber 13. These debris chambers 11-13 may be modular. The first debris chamber 11 is the upper debris chamber when considering the debris chambers 11-13 as part of a debris extraction tool positioned within a well. The third debris chamber 13 is the lower debris chamber when considering the debris chambers 11-13 as part of a debris extraction tool positioned within a well.
Any suitable amount of debris chambers may be used. The lowest debris chamber may be connected to a bottom sub for extracting debris. The upper debris chamber may be connected to a debris screening module which in turn may be connected to an engine module 15 schematically indicated in Fig 1. Such an engine module 15 may operate according to the venturi principle for circulating fluid for the debris extraction tool.
The debris extraction tool may be utilised for retrieving debris from a well, which may comprise part of a tool or tool string located in a borehole, or junk typically found down hole. The debris extraction tool may therefore be utilised in a "fishing" operation, to retrieve part of a tool which has become lodged and stuck in a casing of a borehole. The debris extraction tool may also be utilised for retrieving other debris such as cement lumps, rocks, congealed mud, oxidation lumps, metal debris, scale, slivers, shavings, burrs, water, dislodged mud cake residue, drill cuttings or the like which has accumulated in the casing of a borehole, and which is to be cleaned and removed prior to completion of a well. The debris chambers may collect fluid, such as brine, comprising such debris.
When in operation, the debris extraction tool moves fluid, brine, within the debris chambers. Debris may consequently be collected in the debris chambers 11-13. The debris chamber 11, 12, or 13 in the exemplary embodiment in Fig 1 comprises an inner flow tube 14. The inner flow tube 14 may be centrally arranged within the debris chamber 11, preferably positioned concentric within the debris chamber 11 in the axial direction of the debris chamber 11.
The fluid moves up through the debris extraction tool, up through the debris chambers 11-13W When the fluid moves through a debris chamber, the fluid may move through the inner flow tube 14. When fluid comprising debris exits a top end opening 16 of the inner flow tube 14, the velocity of the fluid slows and this allows the debris to fall into a bucket 17 of the debris chamber.
Turning to Fig 2, an exemplary embodiment of an upper end of a debris chamber 11 is illustrated. The top end opening 16 of the inner flow tube 14 ends within the bucket 17. An inner tube positioner 18 holds the inner flow tube 14 within the debris chamber 11.
Fig 3 illustrates an exemplary embodiment of a lower end of a debris chamber 11. A deflector 20 may deflect fluid flow from the top end opening 16 of the inner flow tube 14 of a subsequent modular debris chamber and may ensure that debris carried in the fluid of the inner flow tube 14 of a subsequent modular debris chamber falls out into each bucket 17, respectively, when the modular debris chamber 11 is connected with the subsequent modular debris chamber 12.
To avoid any spillage of hazardous fluids the debris chambers are modularized in such a way that they can be dismantled from the string without any spillage of hazardous fluids.
According to an embodiment, the debris chambers may be modularized in such a way that they can be dismantled from the string and handled without any spillage of hazardous fluids. This may be done by providing sealing means for the debris chamber. In one embodiment the sealing means may be a cylindrical body sealed at one end and open at the other end. The open end may be connectable to an end of the debris chamber.
The sealing means may be provided with handling means to facilitate handling of the debris chamber with debris in it.
FIG. 4 shows an exemplary embodiment of a debris chamber 11 and sealing means 30 and 40. The sealing means 30 and 40 are connectable to the ends of the debris chamber 11. According to one embodiment, an upper sealing means 30 may be connectable to the top end of the debris chamber 11. According to one embodiment, a lower sealing means 40 may be connectable to the lower end of the debris chamber 11. Upper and lower are in relation to the orientation of the debris chamber in a debris extraction tool in a wellbore. The upper end of the debris chamber 11 is to the left in Fig 4 and the lower end is to the right in Fig 4.
Fig 5 shows an exemplary embodiment of an upper sealing means 30.
This embodiment includes a cylindrical body 32 sealed at one end and open at the other end, the open end being connectable to a top end of the debris chamber 11. The upper sealing means 30 may prevent debris from exiting the debris chamber when connected to the debris chamber.
According to one embodiment, the upper sealing means may include a drain hole 31 and a member 33 within the cylindrical body 32 for selectively sealing the drain hole 31. According to one embodiment, the drain hole 31 may be located in the cylindrical body 32. The member 33 may move axially within the cylindrical body 32. Such axial movement may selectively seal the drain hole 31. Seals, for example in the form of o-rings 34, may be provided between the member 33 and the cylindrical body 32 to seal the drain hole 31. According to one embodiment, the member 33 may move axially by rotation. According to one embodiment, the member 33 may move axially by linear movement.
Fig 6 shows two exemplary embodiments of an open and closed upper sealing means 30, respectively. The upper sealing means 30 to the left in Fig 6 leaves the drain hole 31 open. The member 33 is in its upper position and does not seal the drain hole 31. The upper sealing means 30 to the right in Fig 6 seals the drain hole 31. The member 33 is in its lower position and seals the drain hole 31. An index pin 35 may be provided for guiding the movement of the member 33 within the upper sealing means 30.
According to one embodiment, the upper sealing means 30 may seal the top end opening 16 of the inner flow tube 14. By having the upper sealing means 30, when connected to a debris chamber, seal a flow tube 14 within the debris chamber, a lower sealing means 40 may not be necessary.
Fig 7 shows an exemplary embodiment of a lower sealing means. The lower sealing means 40 may be connectable to a lower end of a debris chamber. This embodiment includes a cylindrical body 42 sealed at one end and open at the other end, the open end being connectable to a top end of the debris chamber 11. The lower sealing means 40 may prevent debris from exiting the debris chamber when connected to the debris chamber.
According to one embodiment, the sealing means 30 and 40 may include a grip for handling the sealing means 30 and 40. The grip may be a lifting end 38 and 48, respectively. The lifting end 38 and 48 may be in the shape of an opening. Such lifting ends 38 and 48 may be suitable for gripping and/or handling a debris chamber when the sealing means 30 and 40 are attached to a debris chamber.
According to one embodiment, the grip may alternatively, or in combination, include an elongated neck 37 suitable for gripping and handling the sealing means 30 and 40. The elongated neck 37 may reach a suitable distance to allow gripping and handling, as illustrated in figs 5 and 6. The lower sealing means may also be provided with such an elongated neck.
By provision of gripping and/or handling means at the sealing means 30 and 40 a debris chamber may be gripped and/or handled. When the debris chamber is filled with debris and/or hazardous fluid, the sealing means isolates the debris chamber and the debris chamber can be gripped and handled without unwanted fluid spillage. The provision of an integral drain valve in the sealing means isolates the fluid in the debris chamber and unwanted fluid spillages can be avoided.
According to one embodiment a system is provided including the sealing means and a modular debris chamber. This system allows handling of debris from debris extraction tools without unwanted spillage. The system may seal the debris chamber by the sealing means and the debris chamber may contain debris, such as heavy brine. According to one embodiment, the system may seal the debris chamber by means of the sealing means and any debris in the debris chamber may be drained from the debris chamber with the sealing means connected to the debris chamber.
In use the debris extraction tool may be pulled from the well and dismantled. The sealing means may be attached to the debris chamber.
Upper sealing means 30 may be attached to the topmost debris chamber and lower sealing means 40 may be attached to the bottom of the debris chamber. Thereby any fluid within the debris chamber is contained. The inner tube empties into the well when the debris chamber is raised above the fluid level of the well. This assembly, the debris chamber with the sealing means, may then be laid down on a pipe rack and can be emptied in a safe and controlled manner. The gripping and handling means on the sealing means facilitates such dismantling.
According to one embodiment, a method for dismantling a debris extraction tool, wherein the debris extraction tool comprises a plurality of connected debris chambers, using any one, or both, of the sealing means according to any one of the preceding embodiments may include connecting the sealing means to the topmost debris chamber of the debris extraction tool. Hereafter the topmost debris chamber from the debris extraction tool may be disconnected from the tool string. According to one embodiment, the upper sealing means may be connected to an upper end of the topmost debris chamber after disconnecting the topmost debris chamber from the debris extraction tool. According to one embodiment, the lower sealing means may subsequently be connected to a lower end of the topmost debris chamber. According to one embodiment, this may not be necessary if the upper sealing means seals the inner flow tube.
These steps may be repeated during the dismantling of the debris extraction tool so that the content of the plurality of debris chambers is sealed by the sealing means. According to one embodiment, the sealing means may be used for handling the debris chambers. According to one embodiment, the sealing means may be used to drain the debris chambers.
By using the disclosed sealing means, the debris chambers may be isolated and unwanted fluid spillages avoided. Hazardous fluids may be prevented from spillage on the rig floor and from making contact with rig personnel. The embodiments comprising the integral drain valve allows for isolation of unwanted fluid spillages.
The sealing means, system, and method discussed above provide for dismantling a debris extraction tool. The invention, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While the invention has been described and is defined by reference to particular preferred embodiments of the invention, such references do not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts.
The described preferred embodiments of the invention are exemplary only, and are not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the scope of the appended claims, giving full cognizance to equivalents in all respects.

Claims (22)

  1. CLAIMS: 1. Sealing means for a debris chamber for a debris extraction tool, comprising: -a cylindrical body sealed at one end and open at the other end, the open end being connectable to an end of the debris chamber.
  2. 2. The sealing means according to claim 1, wherein the sealing means is an upper sealing means connectable to a top end of the debris chamber, and the upper sealing means prevents debris from exiting the debris chamber when connected to the debris chamber.
  3. 3. The upper sealing means according to claim 2, comprising: -a drain hole, and -a member within the cylindrical body for selectively sealing the drain hole.
  4. 4. The upper sealing means according to claim 3, wherein the drain hole is in the cylindrical body and the member moves axially within the cylindrical body, and the axial movement selectively seals the drain hole.
  5. 5. The upper sealing means according to claim 4, wherein the member moves axially by rotation of the member or by axial movement of the member.
  6. 6. The upper sealing means according to any one of the preceding claims 2 to 5, wherein the upper sealing means, when connected to a debris chamber, seals a flow tube within the debris chamber.
  7. 7. The sealing means according to claim 1, wherein the sealing means is a lower sealing means connectable to a lower end of a debris chamber, and the lower sealing means prevents debris from exiting the debris chamber when connected to the debris chamber.
  8. 8. The sealing means according to any one of the preceding claims, comprising a grip for handling the sealing means.
  9. 9. A system, comprising any one, or both, of the sealing means according to any one of the preceding claims 1 to 8, the apparatus further comprising a debris chamber connectable with the sealing means.
  10. 10. The system according to claim 9, wherein the debris chamber is sealed by the sealing means and any debris in the debris chamber may be drained from the debris chamber with the sealing means connected to the debris chamber.
  11. 11. A method for dismantling a debris extraction tool, wherein the debris extraction tool comprises a plurality of connected debris chambers, using any one, or both, of the sealing means according to any one of the preceding claims 1 to 8, comprising the step of: -connecting the sealing means to the topmost debris chamber of the debris extraction tool.
  12. 12. The method according to claim 11, further comprising the step of: -disconnecting the topmost debris chamber from the debris extraction tool.
  13. 13. The method according to claim 11, wherein the upper sealing means is connected to an upper end of the topmost debris chamber after disconnecting the topmost debris chamber from the debris extraction tool.
  14. 14. The method according to claim 12 or 13, further comprising the step of: -connecting the lower sealing means to a lower end of the topmost debris chamber.
  15. 15. The method according to any one of the claims 11 to 14, wherein the steps are repeated during the dismantling of the debris extraction tool so that the content of the plurality of debris chambers is sealed by the sealing means.
  16. 16. The method according to any one of the claims 11 to 15, wherein the sealing means are used for handling the debris chambers.
  17. 17. The method according to any one of the claims 11 to 16, wherein the sealing means are used to drain the debris chambers.
  18. 18. A method isolating and handling brine in a debris extraction tool using any one, or both, of the sealing means according to any one of the previous claims 1 to 8.
  19. 19. A method substantially as herein described and/or illustrated in the accompanying text and/or drawings.
  20. 20. An upper sealing means substantially as herein described and/or illustrated in the accompanying text and/or drawings.
  21. 21. A lower sealing means substantially as herein described and/or illustrated in the accompanying description and/or drawings.
  22. 22. A system comprising a debris chamber, and an upper and/or lower sealing means, substantially as herein described and/or illustrated in theaccompanying description and/or drawings.
GB1019164.1A 2010-11-12 2010-11-12 Modular tool for wellbore cleaning and method of use Active GB2485392B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1019164.1A GB2485392B (en) 2010-11-12 2010-11-12 Modular tool for wellbore cleaning and method of use
US13/294,678 US9140087B2 (en) 2010-11-12 2011-11-11 Modular tool for wellbore cleaning and method of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1019164.1A GB2485392B (en) 2010-11-12 2010-11-12 Modular tool for wellbore cleaning and method of use

Publications (3)

Publication Number Publication Date
GB201019164D0 GB201019164D0 (en) 2010-12-29
GB2485392A true GB2485392A (en) 2012-05-16
GB2485392B GB2485392B (en) 2016-05-25

Family

ID=43431367

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1019164.1A Active GB2485392B (en) 2010-11-12 2010-11-12 Modular tool for wellbore cleaning and method of use

Country Status (2)

Country Link
US (1) US9140087B2 (en)
GB (1) GB2485392B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2271620A1 (en) * 1999-05-14 2000-11-14 Baker Hughes (Canada) Ltd. Downhole magnetic debris collector
US20020185878A1 (en) * 2001-06-11 2002-12-12 Pratt David W. Dual function bailer
US20080023033A1 (en) * 2006-07-28 2008-01-31 Rotary Drilling Supplies Europe Limited Device for collecting debris from a well
GB2468972A (en) * 2009-03-26 2010-09-29 Smith International Magnetic downhole debris recovery tool
US20100300690A1 (en) * 2009-06-02 2010-12-02 Schlumberger Technology Corporation Apparatus and method for increasing the amount of dynamic underbalance in a wellbore

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2170355A (en) * 1937-11-08 1939-08-22 Phillips Petroleum Co Bailer
US6601889B2 (en) * 2001-10-24 2003-08-05 David W. Pratt Air-tight bailer system
GB2441246B (en) 2006-05-12 2009-05-06 Specialised Petroleum Serv Ltd Device and method for retrieving debris from a well
US7610957B2 (en) * 2008-02-11 2009-11-03 Baker Hughes Incorporated Downhole debris catcher and associated mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2271620A1 (en) * 1999-05-14 2000-11-14 Baker Hughes (Canada) Ltd. Downhole magnetic debris collector
US20020185878A1 (en) * 2001-06-11 2002-12-12 Pratt David W. Dual function bailer
US20080023033A1 (en) * 2006-07-28 2008-01-31 Rotary Drilling Supplies Europe Limited Device for collecting debris from a well
GB2468972A (en) * 2009-03-26 2010-09-29 Smith International Magnetic downhole debris recovery tool
US20100300690A1 (en) * 2009-06-02 2010-12-02 Schlumberger Technology Corporation Apparatus and method for increasing the amount of dynamic underbalance in a wellbore

Also Published As

Publication number Publication date
GB2485392B (en) 2016-05-25
US20120118584A1 (en) 2012-05-17
GB201019164D0 (en) 2010-12-29
US9140087B2 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
CA2469711C (en) Wellbore fluid recovery system & method
US20040099413A1 (en) Wellbore cleanout tool and method
NO329516B1 (en) Tools and methods for removing production waste from a well
NO20101735L (en) Downhole device for material collection
US3814180A (en) Well fishing apparatus
US11745220B2 (en) Filter extractor tool and methods thereof
JPH05506899A (en) underground liquid sampling device
CN114295411B (en) Device for underwater sewage and sludge taking
NO173521B (en) UNDERGRADUATE STOCK CONSTRUCTION FOR PROCESSING AND STORAGE OF DRILL CAKES FROM DRILL OPERATIONS IN THE SEA SOUND, AND PROCEDURE FOR USING SUCH STOCK CONSTRUCTION
KR20050001327A (en) Method For Sinking a Borehole in the Ground and Wet Boring Tool
CA2946735C (en) System and method for managing drilling fluid
EP2638237B1 (en) Modular tool for wellbore cleaning
RU2474672C1 (en) Device for liquid cleaning in well shaft
US9140087B2 (en) Modular tool for wellbore cleaning and method of use
US10815757B2 (en) System and method for cleaning a receptacle
CN108760396A (en) The sludge sampling method of this kind of sampler of rarefaction sludge depth sampler and application
US2163058A (en) Swab
RU2453676C1 (en) Device for cleaning walls of production string and bottom hole
US6973971B2 (en) Down hole well cleaning apparatus
SU1760078A1 (en) Junk basket
CN2816338Y (en) Device for fishing drops underground
RU98463U1 (en) SMALL DEVICE FOR DRILLING BREEDS FILLED WITH WATER
NO316330B1 (en) Procedure for collection of scrap in a br degree nn during the reduction of br degree n complementary equipment and production degree