GB2471508A - Composite enclosure with specific WVTR and impact strength, used in an implantable device - Google Patents

Composite enclosure with specific WVTR and impact strength, used in an implantable device Download PDF

Info

Publication number
GB2471508A
GB2471508A GB0911489A GB0911489A GB2471508A GB 2471508 A GB2471508 A GB 2471508A GB 0911489 A GB0911489 A GB 0911489A GB 0911489 A GB0911489 A GB 0911489A GB 2471508 A GB2471508 A GB 2471508A
Authority
GB
United Kingdom
Prior art keywords
region
enclosure
thickness
polyetheretherketone
implantable device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0911489A
Other versions
GB0911489D0 (en
Inventor
Nuno Sereno
Marcus Jarman-Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invibio Ltd
Original Assignee
Invibio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Invibio Ltd filed Critical Invibio Ltd
Priority to GB0911489A priority Critical patent/GB2471508A/en
Publication of GB0911489D0 publication Critical patent/GB0911489D0/en
Priority to CN2010800290767A priority patent/CN102471475A/en
Priority to BRPI1011794-6A priority patent/BRPI1011794A2/en
Priority to KR1020117031544A priority patent/KR20120032493A/en
Priority to US13/382,071 priority patent/US20120203317A1/en
Priority to EP10731557A priority patent/EP2448995A1/en
Priority to AU2010267793A priority patent/AU2010267793A1/en
Priority to JP2012516870A priority patent/JP2012532632A/en
Priority to CA2766736A priority patent/CA2766736A1/en
Priority to PCT/GB2010/051097 priority patent/WO2011001187A1/en
Publication of GB2471508A publication Critical patent/GB2471508A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/128Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing other specific inorganic fillers not covered by A61L31/126 or A61L31/127
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3758Packaging of the components within the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/18Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Abstract

The enclosure has a 1stregion / layer having a water vapour transmission rate (WVTR) <1 g/m2/d, a 2ndregion / layer with a Notched Izod impact strength ≥1 kJ/m2, and preferably 3rd electrically insulating region / layer. The 2ndand 3rdlayers 4, 8 preferably comprise polyetherketone, especially PEEK. The 1stlayer 6 preferably comprises metal, ceramic or polymer, especially titanium.

Description

Enclosure This invention relates to an enclosure. Preferred embodiments relate to an enclosure for an implantable device for implantation in a human body and a method of making such enclosures and devices.
It is well known to provide active implantable medical devices for implantation in a human body for applying a stimulus to a part of the body, for example a tissue, for a therapeutic purpose.
Such implantable devices may be arranged to supply an electrical stimulus used in neurological therapy for stimulating nerves or muscle to combat pain or may be used as a heart pacemaker. Other applications include use in treating urinary urge incontinence by stimulating nerves close to the pelvic floor; and use in reduction of pressure sores by stimulating cavernous nerves. In addition, implantable devices are, in some cases, used to provide a chemical or mechanical stimulus.
Implantable devices may, in general terms, comprise an enclosure which includes electronic circuitry and a power source. Preferably, the enclosure defines an hermetically sealed environment so that its contents are protected from ingress of water which could be damaging.
Implantable devices are increasing in function and complexity. They may incorporate sensory loops between electrodes monitoring body/therapy behaviour and the communication of recorded data and control signals between the device and external systems. These signals are transmitted for example by means of radio frequency (RF) coupling. Moreover, devices are being developed which include batteries which are rechargeable by, for example, inductive coupling of power to a receiver coil.
The transmission of RF signals through an hermetic enclosure of an active implantable medical device may be affected by several factors, such as: a) the accuracy of the placement of the charging coil, b) the signal frequency, c) Eddy current losses in the housing, d) the charge rate of the battery and e) the Coulombic efficiency of the battery.
Current implantable devices are primarily enclosed in titanium alloy enclosure. However, a titanium alloy enclosure severely attenuates RF signals and generates increases in temperature due mainly to Eddy current losses associated with titanium material properties.
Such effects mean that low operating frequencies have to be use and the battery recharging rate is decreased which has a detrimental effect on battery life.
It is an object of the present invention to address the above described problems. Preferred embodiments have the object of facilitating higher frequency telemetry communication with active implantable devices.
According to a first aspect of the invention, there is provided an enclosure which comprises a first region having a water vapour transmission rate of less than lg.m2.d1 and a second region outside the first region, wherein said second region comprises a second material having a Notched Izod Impact Strength of at least 1.0 KJ.m2.
Water Vapour Transmission Rates (WVTR) may be measured using DIN 53122 (25°C, 75% relative humidity). Notched Izod Impact Strength (NIlS) may be measured, at 23°, as described in ASTM D256.
Said second region may comprise a said second material having a NIlS of at least 2.0 kJm2, preferably at least 3.0 kJm2, more preferably at least 4.0 kJm2. The NIlS may be less than 6.0 kJm2 or less than 5.0 kJm2.
Said second region is preferably arranged to provide the enclosure with appropriate impact strength to enable it to withstand normal forces to which it may be subjected in use. Said first region may comprise a first material which has an impact strength, for example a N IIS, of less than that of said second material.
Said second region is preferably a component of an enclosure wall of the enclosure, wherein said enclosure wall may be arranged to substantially fully enclose an internal volume in which components of an implantable device may be contained. Said second region suitably traverses at least 70%, preferably at least 90%, more preferably at least 95%, especially at least 98% of the area of said enclosure wall. Preferably, said first region substantially fully encloses said internal volume.
The thickness of the second region may be substantially constant over at least 30%, at least 50%, at least 80% or at least 90% of its area. In some areas, for example in a region of a communications window as described hereinafter, the thickness may vary.
Said second region may have a thickness of at least 100pm Said second region may have a thickness of at least 100pm over substantially its entire extent. Said second region may have a thickness of less than 1000pm, preferably over substantially its entire extent.
Said second region preferably defines an outermost surface of the housing. Suitably, said second region defines at least 70%, preferably at least 90%, more preferably at least 95%, especially at least 99% of the area of the outermost surface of the housing.
Said second region preferably comprises a polymeric material which has a moiety of formula and/or a moiety of formula CO G CO ii and/or a moiety of formula G f(1so2}) iii wherein m,r,s,t,v,w and z independently represent zero or a positive integer, E and E independently represent an oxygen or a sulphur atom or a direct link, G represents an oxygen or sulphur atom, a direct link or a -O-Ph-O-moiety where Ph represents a phenyl group and Ar is selected from one of the following moieties (i)**, (i) to (iv) which is bonded via one or more of its phenyl moieties to adjacent moieties (i)** () (ii) (iii) (iv) Unless otherwise stated in this specification, a phenyl moiety has 1,4-, linkages to moieties to which it is bonded.
In (i), the middle phenyl may be 1,4-or 1,3-substituted. It is preferably 1,4-substituted.
Said polymeric material may include more than one different type of repeat unit of formula I; and more than one different type of repeat unit of formula II; and more than one different type of repeat unit of formula Ill. Preferably, however, only one type of repeat unit of formula I, II and/or Ill is provided.
Said moieties I, II and Ill are suitably repeat units. In the polymeric material, units I, II and/or III are suitably bonded to one another -that is, with no other atoms or groups being bonded between units I, II and Ill.
Phenyl moieties in units I, II and Ill are preferably not substituted. Said phenyl moieties are preferably not cross-linked.
Where w and/or z is/are greater than zero, the respective phenylene moieties may independently have 1,4-or 1,3-linkages to the other moieties in the repeat units of formulae II and/or III.
Preferably, said phenylene moieties have 1,4-linkages.
Preferably, the polymeric chain of the polymeric material does not include a -5-moiety.
Preferably, G represents a direct link.
Suitably, a" represents the mole % of units of formula I in said polymeric material, suitably wherein each unit I is the same; b" represents the mole % of units of formula II in said polymeric material, suitably wherein each unit II is the same; and c" represents the mole % of units of formula Ill in said polymeric material, suitably wherein each unit Ill is the same. Preferably, a is in the range 45-100, more preferably in the range 45-55, especially in the range 48-52. Preferably, the sum of b and c is in the range 0-55, more preferably in the range 45-55, especially in the range 48-52. Preferably, the ratio of a to the sum of band c is in the range 0.9 to 1.1 and, more preferably, is about 1. Suitably, the sum of a, b and c is at least 90, preferably at least 95, more preferably at least 99, especially about 100. Preferably, said polymeric material consists essentially of moieties I, II and/or Ill.
Said polymeric material may be a homopolymer having a repeat unit of general formula E E CO -)_G -[-(-)_ co -E--)--IV or a homopolymer having a repeat unit of general formula E -f Ar---E G ff-)-so2_16-}-)-]_ j or a random or block copolymer of at least two different units of IV and/or V,wherein A, B, C and D independently represent 0 or 1 and E,E,G,Ar,m,r,s,t,v,w and z are as described in any statement herein.
Preferably, m is in the range 0-3, more preferably 0-2, especially 0-1. Preferably, r is in the range 0-3, more preferably 0-2, especially 0-1. Preferably t is in the range 0-3, more preferably 0-2, especially 0-1. Preferably, s is 0 or 1. Preferably v is 0 or 1. Preferably, w is 0 or 1. Preferably z isO or 1.
Preferably, said polymeric material is a homopolymer having a repeat unit of general formula IV.
Preferably Ar is selected from the following moieties (xi)** and (vii) to (x) _____ L1I (vii) co Co (viii) --In (vii), the middle phenyl may be 1,4-or 1,3-substituted. It is preferably 1,4-substituted.
Suitable moieties Ar are moieties (i), (ii), (iii) and (iv) and, of these, moieties (i), (ii) and (iv) are preferred. Other preferred moieties Ar are moieties (vii), (viii), (ix) and (x) and, of these, moieties (vii), (viii) and (x) are especially preferred.
An especially preferred class of polymeric materials are polymers (or copolymers) which consist 1 5 essentially of phenyl moieties in conjunction with ketone and/or ether moieties. That is, in the preferred class, said polymeric material does not include repeat units which include -5-, SO2 or aromatic groups other than phenyl. Preferred polymeric materials of the type described include: (a) a polymeric material consisting essentially of units of formula IV wherein Ar represents moiety (iv), E and E represent oxygen atoms, m represents 0, w represents 1, G represents a direct link, s represents 0, and A and B represent 1 (i.e. polyetheretherketone).
(b) a polymeric material consisting essentially of units of formula IV wherein E represents an oxygen atom, E represents a direct link, Ar represents a moiety of structure (i), m represents 0, A represents 1, B represents 0 (i.e. polyetherketone); (c) a polymeric material consisting essentially of units of formula IV wherein E represents an oxygen atom, Ar represents moiety (i), m represents 0, E represents a direct link, A represents 1, B represents 0, (i.e. polyetherketoneketone).
(d) a polymeric material consisting essentially of units of formula IV wherein Ar represents moiety (i), E and E represent oxygen atoms, G represents a direct link, m represents 0, w represents 1, r represents 0, s represents 1 and A and B represent 1. (i.e. polyetherketoneetherketoneketone).
(e) a polymeric material consisting essentially of units of formula IV, wherein Ar represents moiety (iv), E and E represents oxygen atoms, G represents a direct link, m represents 0, w represents 0, s, r, A and B represent 1 (i.e. polyetheretherketoneketone).
(f) a polymeric material comprising units of formula IV, wherein Ar represents moiety (iv), E and E' represent oxygen atoms, m represents 1, w represents 1, A represents 1, B represents 1, r and s represent 0 and G represents a direct link (i.e. polyether-diphenyl-ether-phenyl-ketone-phenyl-).
Said polymeric material may be amorphous or semi-crystalline. Said polymeric material is preferably semi-crystalline. The level and extent of crystallinity in a polymer is preferably measured by wide angle X-ray diffraction (also referred to as Wide Angle X-ray Scattering or WAXS), for example as described by Blundell and Osborn (Polymer 24, 953, 1983).
Alternatively, crystallinity may be assessed by Differential Scanning Calorimetry (DSC).
The level of crystallinity in said polymeric material may be at least 1%, suitably at least 3%, preferably at least 5% and more preferably at least 10%. In especially preferred embodiments, the crystallinity may be greater than 30%, more preferably greater than 40%, especially greater than 45%.
The main peak of the melting endotherm (Tm) for said polymeric material (if crystalline) may be at least 300°C.
Said polymeric material may consist essentially of one of units (a) to (f) defined above.
Said polymeric material preferably comprises, more preferably consists essentially of, a repeat unit of formula (XX) where ti, and wi independently represent 0 or 1 and vi represents 0, 1 or 2. Preferred polymeric materials have a said repeat unit wherein tl=1, vl=0 and wl=O; tl=0, vl=0 and wl=0; tl=0, w11, vl=2; ortl=0, vl=1 and w10. More preferred have tl=1, vl=0 and wl=0; or tl=0, v10 and w10. The most preferred has t11, v10 and wl=0.
In preferred embodiments, said polymeric material is selected from polyetheretherketone, polyetherketone, polyetherketoneetherketoneketone and polyetherketoneketone. In a more preferred embodiment, said polymeric material is selected from polyetherketone and polyetheretherketone. In an especially preferred embodiment, said polymeric material is polyetheretherketone.
Said polymeric material suitably has a melt viscosity (MV) of at least 0.06 kNsm2, preferably has a MV of at least 0.085 kNsm2, more preferably at least 0.12 kNsm2, especially at least 0.14 kNsm2.
MV is suitably measured using capillary rheometry operating at 400°C at a shear rate of 1000s1 using a tungsten carbide die, 0.5x3.175mm.
Said polymeric material may have a MV of less than 1.00 kNsm2, preferably less than 0.5 kNsm2.
Said polymeric material may have a MV in the range 0.09 to 0.5 kNsm2, preferably in the range 0.14 to 0.5 kNsm2.
Said polymeric material may have a tensile strength, measured in accordance with 1S0527 (specimen type ib) tested at 23°C at a rate of 50mm/minute of at least 20 MPa, preferably at least 60 MPa, more preferably at least 80 MPa. The tensile strength is preferably in the range 80-110 MPa, more preferably in the range 80-100 MPa.
Said polymeric material may have a flexural strength, measured in accordance with 1S0178 (80mm x 10mm x 4mm specimen, tested in three-point-bend at 23°C at a rate of 2mm/minute) of at least 50 MPa, preferably at least 100 MPa, more preferably at least 145 MPa. The flexural strength is preferably in the range 145-180MPa, more preferably in the range 145-164 MPa.
Said polymeric material may have a flexural modulus, measured in accordance with 1S0178 (80mm x 10mm x 4mm specimen, tested in three-point-bend at 23°C at a rate of 2mm/minute) of at least 1 GPa, suitably at least 2 GPa, preferably at least 3 GPa, more preferably at least 3.5 GPa. The flexural modulus is preferably in the range 3.5-4.5 GPa, more preferably in the range 3.5-4.1 GPa.
Said second region suitably comprises at least 60wt%, preferably at least 70wt%, more preferably at least 8Owt%, especially of at least 9Owt% of a thermoplastic polymeric material, for example a said polymeric material described above for example of formula (XX), especially polyetheretherketone. Said second region preferably consists essentially of a said polymeric material, especially polyetheretherketone.
Said second region may have a WVTR of less than the WVTR of the first region. The ratio of the WVTR of the first region to that of the second region may be at least 10, at least 100, at least 1000 or at least 10000.
Said first region is preferably arranged to electromagnetically shield an internal volume of the housing so as to reduce the effects of electromagnetic fields emanating outside the housing on electronic components contained within the housing. Additionally or alternatively, said first region is preferably arranged to substantially hermetically seal the housing thereby to substantially limit the passage of moisture into the internal volume of the housing.
Said first region may have a WVTR of less than 1x101 g.m2.d1, preferably less than 1x102 g.m2.d1, more preferably less than 1x103g.m2.d1, especially less than 1x104g.m2.d1. Said first region may be arranged to render the enclosure hermetic for a period of at least 1 year, 5 years, 10 years or 20 years when in situ in a human body.
Said first region is preferably a component of an enclosure wall of the enclosure, wherein said enclosure wall may be arranged to substantially fully enclose an internal volume in which components of an implantable device may be contained. Said first region suitably traverses at least 70%, preferably at least 90%, more preferably at least 95%, especially at least 98% of the area of said enclosure wall. Preferably, said first region substantially fully encloses said internal volume.
The thickness of the first region may be substantially constant over at least 50%, more preferably at least 80%, especially at least 90%, of its area. In some cases, for example in a region of a communications window as described hereinafter, the thickness may vary slightly.
Said first region may have a thickness of at least 1pm, suitably at least 10pm, preferably at least 2Opm, more preferably at least 5Opm, especially at least 8Opm Said first region may have a thickness of at least 1pm, 3pm or 7pm over substantially its entire extent. Said first region may have a thickness of less than 200pm, less than 150pm or less than 100pm.
Said first region may comprise or consist essentially of a metal, ceramic or plastics material. A metal may be a metal alloy; it may be aluminium or titanium with the latter being especially preferred. Said first region preferably comprises titanium. It preferably comprises a layer of titanium. Said first region preferably consists essentially of titanium.
The distance between the first and second regions may be less than 10pm or less than 5pm.
Said first and second regions may abut and/or make face to face contact. Alternatively, an adhesive layer may be provided between the first and second regions.
Said first and second regions are preferably defined by first and second layers of the materials described.
Said enclosure preferably includes a third region inwardly of the second region and preferably inwardly of the first region. Said third region is preferably arranged to electronically insulate components of the enclosure which may, in use, be contained within an internal volume of the device from other parts of the enclosure, for example from the first region which, in a preferred embodiment, comprises titanium which is an electrical conductor.
Said third region is preferably a component of an enclosure wall of the enclosure, wherein said enclosure wall may be arranged to substantially fully enclose an internal volume in which components of an implantable device may be contained. Said third region suitably traverses at least 70%, preferably at least 90%, more preferably at least 95%, especially at least 98% of the area of said enclosure wall. Preferably, said third region substantially fully encloses said internal volume.
The thickness of the third region may be substantially constant over at least 80%, preferably at least 90% of its area. In some areas, for example in a region of a communications window as described hereinafter, the thickness may vary slightly.
Said third region may have a thickness of at least 10 pm. Said third region may have a thickness of at least 5Opm over substantially its entire extent. Said third region may have a thickness of less than 500pm, preferably less than 300pm, more preferably less than 200pm.
Said third region preferably defines an inwardly facing surface of the housing. Suitably, said third region defines at least 70%, preferably at least 90%, more preferably at least 95%, especially at least 99% of the area of the inwardly facing surface of the housing.
Said third region preferably comprises a thermoplastic polymeric material. It may independently comprise a polymeric material comprising moieties I, II and/or Ill as described above and include the preferred features of said polymeric material described. It preferably comprises a repeat unit of formula (XX), especially polyetheretherketone. Said third region preferably consists essentially of polyetheretherketone.
The third region is suitably closer to the first region than to the third region. Said first region preferably spaces the second and third regions from one another.
The distance between the first and third regions may be less than 10pm or less than 5pm.
Said first and third regions may abut and/or make face to face contact. Alternatively, an adhesive layer may be provided between first and third regions.
Said enclosure preferably comprises a second region which comprises a second layer of material described, a first region inwards of the second region which comprises a second layer of material described, and a third region inwards of both the first and second regions, wherein the third region comprises a third layer of material described.
The enclosure may include a communications window which suitably comprises a region of the enclosure which is arranged to more readily transmit electromagnetic radiation between a position outside the housing and electronic components which may be provided within the housing, for example to facilitate the recharging of a battery within the housing or the passage of control signals or information between the housing and apparatus, for example a monitor, spaced from the housing. Said communications window may be defined, in part, by a communications area of the first region which is thinner (and therefore more transmissive of electromagnetic radiation) than areas of the first region which surround the communications area. The ratio of the thickness of the first region in the region of the communications area to the thickness outside the area may be in the range 0.1 to 1, suitably 0.2 to 0.8, preferably 0.2 to 0.6, more preferably 0.3 to 0.5. The thickness of the first region in the region of the communications area may be less than 200pm, preferably less than 150pm, more preferably less than 120pm. The thickness may be at least 0.Spm, at least 1pm, at least 5pm or at least 10pm. The thickness of the first region outside the area of the communications window may be at least 2Opm, preferably at least 5Opm, more preferably at least 100pm.
The thickness of the second region in the region of the communications area may be greater than the thickness of the second region in areas of the second region which surround the communications area, for example to compensate for the reduction in thickness of the first region in the region of the communications area. The ratios of the thickness of the second region in the region of the communications area to the thickness in areas of the second region which surround the communications area is preferably at least 1.05, more preferably at least 1.1, especially at least 1.2.
Said enclosure may comprise a plurality of parts which are secured to one another. Each of said parts preferably includes first, second and optional third regions described herein. A hermetic seal is preferably defined between adjacent respective first regions of the plurality of parts, for example by welding. Thus, first regions of one part of the enclosure are preferably secured to first regions of another part of the enclosure by welding. A continuous, uninterrupted hermetic seal is preferably defined between said plurality of parts of the enclosure.
According to a second aspect of the invention, there is provided an implantable device which comprises an enclosure according to the first aspect.
Said implantable device is suitably for implantation in a human body. It is preferably an active implantable device which is suitably arranged to apply a stimulus to part of the body, for example for therapeutic purposes. The device may be arranged to apply an electrical stimulus.
Said implantable device may include a communications device for communicating information to a position outside the device.
Said implantable device may include a battery, for example a rechargeable battery. The battery may be arranged to be recharged by supply of energy through the atmosphere to the device so that recharging does not consist of or include the supply of energy via electrical wiring between the device and a supply of energy for recharging.
According to a third aspect of the invention, there is provided a layered structure comprising: a first region according to the first aspect; a second region according to the first aspect; and a third region according to the first aspect.
The first, second and third regions of the third aspect may have any features of the first, second and third regions of the first aspect mutatis mutandis.
In a preferred embodiment, said first region comprises titanium, said second region comprises a polymeric material of formula (XX), especially polyetheretherketone, and said third region comprises a polymeric material of formula (XX),, especially polyetheretherketone. The first region may have a thickness in the range 1pm to 200pm, said second region may have a thickness in the range 100pm to 1000pm and said third region may have a thickness in the range 10pm to 500pm.
According to a fourth aspect of the invention, there is provided the use of an implantable device according to the second aspect for implantation into a human body for applying a stimulus to the body.
According to a fifth aspect of the invention, there is provided a method of treating a condition of a human body comprising: -selecting an implantable device according to the second aspect; -implanting the implantable device into the human body, wherein the implantable device is arranged to apply a stimulus to the body to treat the condition.
According to a sixth aspect, there is provided a method of making an implantable device according to the first aspect, the method comprising selecting an enclosure or parts thereof of the first aspect and associating means for applying a stimulus to a part of a human body with the enclosure or parts thereof. The method suitably comprises arranging the enclosure so that it is substantially hermetic.
According to a seventh aspect, there is provided a method of making a layered structure according to the third aspect, the method comprising associating means to define the first, second and third regions with one another.
Any feature of any aspect of any invention or embodiment described herein may be combined with any feature of any aspect of any other invention or embodiment described herein mutatis mutandis.
Specific embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which: Figure 1 is an exploded perspective view showing layers of a composite material for use in making an active implantable medical device; Figure 2 is a side view of a composite material during its manufacture; Figure 3 is a side view of an end of the composite material of figure 2 after further treatment; Figure 4 illustrates the impact strength of polyetheretherketone at three different film thicknesses; Figure 5 is a side view of an alternative composite material; Figure 6 is a side view showing two housing halves thermoformed out of the material of figure being presented to one another prior to forming a housing; Figure 7 is an enlarged view showing edges of the housing halves being presented to one another; Figure 8 shows edges of two housing halves secured to one another; Figure 9 shows an alternative arrangement of titanium layers at opposing edges of housing halves; Figure 10 is a representation illustrating the effect of surface treatment on joint strength of specified silicone adhesives; Figure 11 is a representation similar to figure 10; Figure 12 shows two housing halves being secured to one another; Figure 13 shows a lid being secured to the assembly of Figure 12.
Figure 14 is a plan view of a housing having a communication window; and Figure 15 is a partial cross-section along line XV-XV of figure 14.
The following materials are referred to herein PEEK-OPTIMA -referas to polyetheretherketone obtained from lnvibio Ltd. MED1511 -an implantable silicone adhesive from Nusil Referring to figures 1 to 3, a composite material 2 for use in making an active implantable medical device comprises a first layer of a polyetheretherketone film 4, a second layer of polyetheretherketone film 8 and, sandwiched therebetween, a third layer comprising titanium 6. The first, second and third layers have the same width but the length of the titanium layer may be slightly less than that of the first and second polyetheretherketone layers. In other embodiments, the length of the titanium layer may be slightly greater than that of the polyetheretheketone layers so titanium protrudes beyond opposing edges defined by polyetheretherketone layers.
The first, second and third layers are secured to one another by heat press welding using a temperature of about 400°C, a pressure of 1 to 10 bar and a welding time of 10 to 180 seconds. Alternatively or additionally the layers may be secured by means of adhesives (e.g. silicone, epoxy or cyanoacrylate adhesives). Bonding may be enhanced by prior surface treatment of the layers for example by grit blasting, chemical etching or by treatment with a plasma, corona, laser or UV light Mechanical surface roughening of the surface may be accomplished using silicon carbide or by sand or mechanical roughening. The surfaces should be first degreased with MEK or acetone, roughened and then cleaned again in order to remove debris and grease. Chemical etching of carbon fibre filled PEEK surfaces has been achieved using a composition of K2Cr2O7, H20 and H2S04, as described in Davies, P., et al., Surface treatment for adhesive bonding on carbon fibre-poly(etheretherkethone) composites. Journal of Materials Science Letters, 1991(10): p. 335-338. Cold gas plasma treatment imparts surface modification by altering the surface chemistry of a polymer and, if carried out long enough, will also have an effect on surface roughening. Typical gases used for the treatment of polymers are air, oxygen, nitrogen, helium, argon and ammonia. Corona treatment utilises a glow discharge similar to plasma treatment but operating in air and at atmospheric pressure.
Laser treatment of a material surface is accomplished by exciting either gas or a solid to emit light of a particular wavelength. This energy chemically modifies the surface and promotes surface roughening or ablation. UV-light treatment involves delivering light at wavelengths between I 72nm and 308nm to alter the surface of a material After securement of the first, second and third layers to one another, the structure shown in figure 2 may be formed wherein the layers are bonded to one another with the titanium layer 6 slightly inwards of the outer edges of the polyetheretherketone layers 4. To complete the composite material, superimposed polyetheretherketone areas 10, 12 at opposing ends of the material are heat pressed together (temperature 400°C, pressure 1 to 10 bar and welding time to 180 seconds) to define a structure illustrated in figure 3 wherein the titanium layer 6 is fully enclosed by the polyetheretherketone layers along the extent of respective edges 16, 18 of the material.
The composite material prepared can be used to make a housing of an active implantable medical device, for example by thermoforming. Where a shape formed needs to be bonded to another part in a hermetic manner, the titanium layer may be exposed and a titanium to titanium bond formed, for example by laser welding, between two composite materials of the type described. Alternatively, composite materials as described hereinafter with reference to figures 5 to 8 may be used.
The thicknesses of the first, second and third layers may be selected according to the requirements of any particular situation. Suitably, a polyetheretherketone layer which is to be an outer layer in use is arranged to provide impact strength; the titanium layer is arranged to provide hermeticity; and the polyetheretherketone layer which is an inner layer in use is arranged to provide electrical insulation. Furthermore, the arrangement of layers allows for improved RF telemetry with reduced heating resulting from Eddy current losses, the polyetheretherketone layers are selected to provide strength to the composite material and/or to be able to withstand sterilisation.
A preferred polyetherethereketone is PEEK-OPTIMA (Trade Mark) which is a safe, biocompatible and stable polymer. PEEK-OPTIMA� has been extensively tested to ISO 10993 standards and demonstrated no evidence of cytotoxicity, systematic toxicity or irritation. PEEK-OPTIMA� polymer can be repeatedly sterilized using conventional sterilization methods including steam, gamma radiation and ethylene oxide processes without the degradation of its mechanical properties or biocompatibility. PEEK-OPTIMA� polymer is naturally radiolucent and compatible to imaging techniques such as X-ray, MRI and Computer Tomography (CT). The mechanical properties of PEEK-OPTIMA (Table 1) allow for it to meet the physical demands of an AIMD enclosure under selected thickness values.
Physical properties of PEEK-OPTIMA are provided in the table below.
Property Method Value Mechanical properties Density (g.cm3) ASTM D792 1.3X10°° ISO 527Type iBat Tensile strength (MPa) 101 50mm. min1 Elastic modulus (GPa) ASTM D638 TV 3.5 ISO 527Type iBat Elongation at break (%) 20-30 50mm. min1 Flexural strength (MPa) ISO 178 174 Flexural modulus (GPa) ISO 178 4.2 Izod Notched Impact (kJ.m2) ASTM D256 4.3 Glass transition temperature (°C) DSC 142 Melt temperature (°C) DSC 344 Specific heat capacity (KJ.Kg1.°C1) DSC 2.16 Thermal conductivity coefficient ASTM C177 2.5x10°1 Furthermore, PEEK-OPTIMA is beige under translucent skin which may be highly relevant to, for example, cranial implants. Additionally, the polymer will not conduct heat nor cold which can cause discomfort.
The impact strength of films of polyetheretherketone which may be used in layers of the composite material 2 have been tested under ASTM D3763 to confirm that properties are suitable for use in medical devices described. The results of falling weight impact tests for film thickness of 0.1mm, 0.3mm as 0.5mm are shown in figure 4.
Furthermore, the electrical insulation properties of the polyetheretherketone, detailed in Table 2, are such that it may advantageously be used in medical devices in the manner described.
Table 2. PEEK electrical properties (23°C, Ibar, 100 pm film Electrical properties Conditions PEEK Conductivity (S.m1) -l.50x1015 Dielectric strength (KV.mm1) -1.98x10°2 Breakdown voltage (thickness 50 pm, kV) 9.5 Dissipation factor 1 KH 2X10°3 Volume resistivity (0cm) -4.9X1016 The titanium layer thickness may be selected to make the composite material and/or a housing made therefrom substantially hermetic; but to present electrical properties which are not significantly detrimental to the functioning of an active implantable medical device which incorporates the composite material.
To establish the thickness of a titanium layer required to limit water ingress into a medical device to such an extent that the inside of the device will not become saturated with water vapour over the lifetime of the device, water vapour transmission rates (WVTR) were tested (3TC, RH 90%, pressure 1 bar) and results are provided in Table 3. Films of polyetheretherketone display permeability values to water of the same magnitude as observed for other high performance thermoplastic polymers.
Table 3. Water vapour transmission rate (WVTR) of tested systems. One sided diffusion of water into plane film sheets (temperature 37°C, RH 90%, pressure 1 bar).
Water vapour transmission rate Film thickness Sample (WVTR) (pm) 2 1 (g.m.d) 1 1.4x10°5 Titanium ____________________ ___________________________________ <1x10°6 It has been concluded from the aforesaid values that a combination comprising a polyetheretherketone layer with a 10 pm or thicker layer of titanium will create a water vapour impermeable barrier for the lifespan of an active implantable medical device.
Although polyetheretherketone has reasonable resistance to gas permeation a composite comprising polyetheretherketone and titanium can be used to achieve exceptionally low gas permeation values having regard to the data shown in Table 4.
Table 4. Gas permeation coefficients of PEEK and Titanium (film thickness 100 pm, temperature 37°C, RH 90%, pressure ibar).
Gas permeation coefficients (cm3.m2.d1)
PEEK
Test gas Titanium polyetheretherketone Carbon Dioxide 4.24x10°2 -Helium 1.57x10°3 <7.4x10°3 (at 23°c) Hydrogen 1.43x10°3 - Nitrogen 1.5x10°1 - Oxygen 7.6x10°1 -Additionally, a composite material comprising a titanium layer is substantially impermeable to sodium ions as illustrated in Table 5, which is important in the context of any device which may be implanted.
Table 5. Sodium permeability coefficients (temperature 37°C, RH 90%, pressure 1 bar).
Sample Film thickness Sodium permeability (pm) (g.m2.d1) PEEK 100 3x1Oul Titanium 100 0 Although titanium has some advantageous properties it has disadvantageous electromagnetic compatibility (EMC) properties in general and in comparison to polyetheretherketone. As a result, titanium housings have detrimental telemetry characteristics when used for medical devices which are arranged to communicate and/or interact with electrical and/or magnetic fields outside the device. By way of example, as shown in Table 6, a titanium layer of thickness 300pm would provide a reduction in the electrical field magnitude and energy density of more than 99% for a signal frequency greater than 10 MHz. In contrast, polyetheretherketone has favourable EMC properties, as illustrated in Tables 6 and 7.
Table 6. PEEK and Titanium EMC electrical attenuation behaviour (23°C, 1 bar).
Skin depth (m) Conditions ____________ _____________ PEEK Titanium 1 MHz 1x1012 3.70x10°4 10MHz >>1 1.17x10°4 MHz >> 1 3.70x10°5 400MHz >>1 1.85x10°5 1000 MHz >> 1 1.17x10°5 Table 7. Amount of power lost by electromagnetic waves traversing through PEEK and Titanium (signal frequency 400MHz, Temp 23°C, pressure ibar).
Reduction in the electric field Reduction in the electric field Thickness magnitude (%) energy density (%) (pm) PEEK Titanium PEEK Titanium 18.5 0 63.2 0 86.5 0 >99.3 0 >99.7 Referring to table 7, considering a titanium layer with a thickness equal to the skin depth, the electric field magnitude is reduced to 36.8% of its incident value and the electric field energy density is attenuated to 13.5% of its initial value.
Compared to current devices which may operate at frequencies of less than 150KHz due to the thickness of titanium used, arrangements as described herein may allow higher frequencies, for example up to 400MHz or 800MHz to be used Another electrical property of titanium which is disadvantageous is its influence on attempts to induction charge batteries contained within implantable devices. Table 8 includes calculations on the respective influences of polyetheretherketone and titanium on induction charging, on the basis of implantable battery characteristics displayed in Table 9 and a 15mm radial enclosure.
Table 8 -Influence of PEEK and Titanium on implantable battery recharging Characteristics PEEK Titanium Eddy current loss (mW) 0 2.0x10°2 Induction heating of casing(°C) 0 4.84x10°° Battery loss to heating (mW) 3.2x10°° 3.2x10°° Battery heating (°C) 7.8x10°1 7.8x10°1 Table 9. Implantable battery characteristics.
Battery property Value Battery capacity (mAh) 1.6x 10+02 Charge rate of a medical implantable Li battery (mAh) 8.0x10°1 +00 Peak charging voltage (V) 4x10 Charging power (mW) 3.2x10°2 Coulombic efficiency (%) 9.0x10°1 It will be noted from Table 8 that, whereas titanium exhibits significant Eddy current losses and a heat rise in the casing, polyetheretherketone advantageously has a negligible effect on such properties.
An alternative to the arrangement of figures 1 to 3 is illustrated in figures 5 to 8.
Referring to figure 5, a composite material 20 comprises a first layer of a polyetheretherketone film 22, a second layer of polyetheretherketone film 24 and sandwiched in between a third layer comprising titanium 26. In contrast to the arrangement of figures 1 to 3, the titanium layer 26 protrudes from the polyetheretherketone layers 22, 24 at respective ends 28, 30. This arrangement may facilitate the production of a hermetic seal between two housing halves 40, 42 (figure 6) which may be thermoformed from the material 20. In this regard, referring to figure 7, free edges 44, 46 of respective housing halves may be juxtaposed and then the exposed titanium edges of each half can be laser welded to one another so as to define a housing with a continuous uninterrupted cylindrical wall. As shown in figure 8, a gap between the polyetheretherketone layers may be filled with filler 48 (e.g. of epoxy or silicone resin).
A further alternative is shown in figure 9. In this case titanium layers 50, 52 each include a narrow portion 54 and, at the free edges, a wider portion 56, wherein the wider portions 56 have a width which is the same as the sum of the widths of the two polyetheretherketone layers 56, 58 and the titanium layer therebetween. Accordingly when housing halves are joined, there is no area that needs filling, in contrast to the figure 8 embodiment.
In one embodiment, a hermetic joint may be defined by combining female structures of figure 2 and male structures of figure 5. The male and female structures may be engaged and welded so a continuum comprising titanium extends between the two structures.
In further embodiments, the titanium sheet may be graduated so that it is not a constant thickness. Thus, it may be of one thickness suitable for improved telemetry characteristics when bonded between PEEK sheets, but may be a different thickness when exposed at the extremities for laser bonding.
A housing may be made from a composite material comprising one polyetheretherketone and one titanium layer, or could have more layers.
Layers could alternate and vary in thicknesses.
In some cases, titanium may be provided as an outer layer and this may be beneficial if the bone bonding advantages of titanium are desired. However, if an implant is to be located at a site of soft tissue and/or may need to be removed in the future, then it is preferred that the outer surface of the housing be composed of PEEK.
As described above, titanium areas can be laser welded to other titanium areas. Several alternative methods may be used to join polyetheretherketone to other materials and/or to itself as follows: (i) fusion welding -PEEK regions having mm thicknesses can be welded to other similar regions using fusion welding to produce welds with a bond strength value of 52MPa. The welding generates acceptable levels of heat build up that are unlikely to damage heat sensitive components, for example, on a circuit board. X-ray analysis of the welds has revealed that consistent joining can be achieved.
(ii) Direct through-transmission laser welding of PEEK can be successfully achieved for 0.25-0.50mm thick layers of natural (unfilled) PEEK against black (carbon black filled) PEEK.
Hermetic welding can be achieved.
(iii) Hot plate welding of PEEK to titanium can be successfully achieved with prior treatment of the titanium surface by grit blasting. Under lap shear test, the PEEK/titanium displayed a joint strength of 0.1 MPa.
(iv) Depending on the location of an interface, adhesives such as epoxy or cyanoacrylate may be used. The surface of the materials (PEEK to PEEK, or PEEK to other material) can be further treated to enhance the bonding. Comprehensive studies evaluated the performance of different adhesives, the impact of pre-surface treatment and temperature on PEEK joint strength. Some results are provided in figure 10.
As can be observed in Figure 10 surface preparation techniques greatly improve PEEK to PEEK joint strength for a range of joining methodologies and medical grade silicone adhesives (MED 1-4013, MED 2-4013, MED 1011, Nusil Technologies, California, USA). Moreover combining surface treatments can have a synergistic effect as can be observed from Figure 11 which provides results for the joint strength using Nusil MED-1511 bonding of untreated PEEK; PEEK primed and grit blasted and PEEK primed, grit blasted and subjected to a plasma treatment. NuSil MED-1511 from NuSil Technology is a one component silicone adhesive. It contains no solvents or plasticizer and cures at room temperature to form a silicone rubber.
Consequently properties are high elasticity at moderate strength only at ambient temperature.
It is USP-Vl classified and therefore suitable for medical applications. It withstands sterilisation with ethylene oxide, dry heat or steam autoclaving. The highest joint strength observed during testing achieved for the use of adhesive bounding of PEEK on PEEK was 5.9 MPa (Mean Failure Load 1885N). This was achieved with Loctite 4035 (One-part cyanoacrylate adhesive).
Joint design is an important factor for device bond strength. Tensile strength can be increased by increasing the width of the lap shear joint.
Before and after sterilization (steam, EtO and gamma sterilisation) the joint strength of PEEK to PEEK joints with MED1511 adhesive remained unchanged.
The adhesion of PEEK to metals has been proven to generate strong bounds. Tests with implantable silicone adhesive (e.g. MED1511) registered joint strength values for PEEK to titanium of 1.7MPa and PEEK to CoCr of 1.7MPa. The metals surface was pre-treated by grit blasting.
An enclosure of an implantable device may be as shown in figures 12 and 13. It may comprise housing halves 70, 72 and a lid 74. Each structure 70, 72, 74 is of a PEEK (76) -titanium (78) -PEEK (80) sandwich construction with, in each case, titanium projecting from the PEEK layers to enable hermetic joints to be formed by welding titanium to titanium at the interfaces of structures 70, 72, 74.
A preferred embodiment of an enclosure is shown in figures 14 and 15. The enclosure 80 of an active implantable medical device includes an outer layer 82 which is made from PEEK, a middle layer 86 of titanium and an inner layer 88 of PEEK. In the region of the communications window 84 the titanium has a thickness of about 10pm whereas in regions outside the communications window the titanium thickness is about 100pm. To compensate for the reduced thickness of titanium, the PEEK layer 82 in the region of the window 84 has an increased thickness. As an alternative, the thickness of layer 82 could be constant and the thickness of layer 88 could be increased in the region of the communications window. A communications window 84 is provided above a communications device (e.g. comprising a coil) to facilitate passage of communication signals from a position outside the device to a position below the window 84 within the device.
The outer layer 82 may have a thickness (outside the region of the communications window) of about 300pm which will provide the outer surface of the housing with substantial impact resistance. By providing a thinner titanium layer in the region of the window, communications signals can enter the housing and operate the communications device provided in the housing.
By providing a thicker titanium layer in the regions outside the window, electronics within the housing may be shielded from electronic interference emanating from outside the housing.
The inner layer 88 may have a thickness of about 100pm and may be provided to electronically insulate the electronics with the housing from the titanium layer.
The invention is not restricted to the details of the foregoing embodiment(s). The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.

Claims (25)

  1. Claims 1. An enclosure which comprises a first region having a water vapour transmission rate of less than 1g.m2.d1 and a second region outside the first region, wherein said second region comprises a second material having a Notched Izod Impact Strength of at least 1.0 KJ.m2.
  2. 2. An enclosure according to claim 1, wherein said second region is a component of an enclosure wall of the enclosure wherein said enclosure wall is arranged to substantially fully enclose an internal volume in which components of an implantable device may be contained.
  3. 3. An enclosure according to claim 1 or claim 2, wherein said second region has a thickness of at least 100pm and a thickness of less than 1000pm.
  4. 4. An enclosure according to any preceding claim, wherein second region comprises a polymeric material which has a moiety of formula and/or a moiety of formula -(--j--CO G * S S S. S and/or a moiety of formula S... * S. * . .
    * -ff--s O2_-6-)---G f}-S °2_E})
    Swherein m,r,s,t,v,w and z independently represent zero or a positive integer, E and E independently represent an oxygen or a sulphur atom or a direct link, G represents an oxygen or sulphur atom, a direct link or a -O-Ph-O-moiety where Ph represents a phenyl group and Ar is selected from one of the following moieties (j)**, (i) to (iv) which is bonded via one or more of its phenyl moieties to adjacent moieties (i)** () -_CO----CO---( (ii) (iii) (iv)
  5. 5. An enclosure according to claim 4, wherein said polymeric material comprises a repeat unit of formula (XX) :::.: r 1 r ii 1 :;:;;: 15 where ti and Wi independently represent 0 or 1 and vi represents 0, 1 or 2.
    **
  6. 6. An enclosure according to claim 4 or claim 5, wherein said polymeric material is selected from polyetheretherketone, polyetherketone, polyetherketoneetherketoneketone and polyetherketoneketone
  7. 7. An enclosure according to claim 4 or claim 5, wherein said polymeric comprises polyetheretherketone.
  8. 8. An enclosure according to any preceding claim, wherein the first region is a component of an enclosure wall which is arranged to substantially fully enclose an internal volume in which components of an implantable device may be contained.
  9. 9. An enclosure according to any preceding claim, where said first region has a thickness of at least 1 pm and of less than 200 pm.
  10. 10. An enclosure according to any preceding claim, wherein said first region comprises a metal, ceramic or plastics material.
  11. 11, An enclosure according to any preceding claim, wherein said first region comprises titanium.
  12. 12, An enclosure according to any preceding claim, wherein said first and second regions are defined by first and second layers of the materials described.
  13. 13. An enclosure according to any preceding claim, which includes a third region inwardly of the second region and inwardly of the first region, wherein said third region is arranged to electronically insulate components which may, in use, be contained within an internal volume of the enclosure.
  14. 14. An enclosure according to claim 13, wherein said third region is a component of an enclosure wall of the enclosure, wherein said enclosure wall is arrange to substantially fully enclose an internal volume in which components of an implantable device may be contained.
  15. 15. An enclosure according to claim 13 or claim 14, wherein said third region has a 30 thickness of at least 10pm and a thickness of less than 500pm.
  16. 16. An enclosure according to any preceding claim, which includes a communications area comprising a region of the enclosure which is arranged to more readily transmit electromagnetic radiation between a position outside the housing and electronic components : 35 which may be provided within the housing in use. S...
  17. 17. An enclosure according to claim 16, wherein the ratio of the thickness of the first region in the region of the communications area to the thickness outside the area is in the range 0.2 to 0.8 and the ratio of the thickness of the second region in the region of the communications r area to the thickness in areas of the second region which surround the communications area is at least 1.05.
  18. 18. An enclosure according to any preceding claim, wherein said first region comprises titanium and said second region comprises polyetheretherketone.
  19. 19. An enclosure according to any of claims 13 to 15, wherein said first region comprises titanium, said second region comprises polyetheretherketone and said third region comprises polyetheretherketone.
  20. 20. A layered structure comprising: a first region according to any preceding claim; a second region according to any preceding claim; and a third region according to any of claims 13 to 15 and 19.
  21. 21. A structure according to claim 20, wherein said first region comprises titanium, said second region comprises a polymeric material of formula (XX), especially polyetheretherketone, and said third region comprises a polymeric material of formula (XX), especially polyetheretherketone.
  22. 22. An implantable device comprising an enclosure according to any of claims ito 19.
  23. 23. The use of an implantable device according to the claim 22 for implantation into a human body for applying a stimulus to the body.
  24. 24. A method of treating a condition of a human body comprising: *: -selecting an implantable device according to claim 22; *. 30 -implanting the implantable device into the human body, wherein the implantable device is arranged to apply a stimulus to the body to treat the condition. * .* * S S * S.
  25. 25. A method of making an implantable device according to claim 22, the method comprising selecting an enclosure according to any of claims I to 19 and associating means : 35 for applying a stimulus to a part of a human body with the enclosure. *.S.
GB0911489A 2009-07-02 2009-07-02 Composite enclosure with specific WVTR and impact strength, used in an implantable device Withdrawn GB2471508A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
GB0911489A GB2471508A (en) 2009-07-02 2009-07-02 Composite enclosure with specific WVTR and impact strength, used in an implantable device
PCT/GB2010/051097 WO2011001187A1 (en) 2009-07-02 2010-07-02 Enclosure
US13/382,071 US20120203317A1 (en) 2009-07-02 2010-07-02 Enclosure
BRPI1011794-6A BRPI1011794A2 (en) 2009-07-02 2010-07-02 compartment.
KR1020117031544A KR20120032493A (en) 2009-07-02 2010-07-02 Enclosure
CN2010800290767A CN102471475A (en) 2009-07-02 2010-07-02 Enclosure
EP10731557A EP2448995A1 (en) 2009-07-02 2010-07-02 Enclosure
AU2010267793A AU2010267793A1 (en) 2009-07-02 2010-07-02 Enclosure
JP2012516870A JP2012532632A (en) 2009-07-02 2010-07-02 Enclosure
CA2766736A CA2766736A1 (en) 2009-07-02 2010-07-02 Enclosure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0911489A GB2471508A (en) 2009-07-02 2009-07-02 Composite enclosure with specific WVTR and impact strength, used in an implantable device

Publications (2)

Publication Number Publication Date
GB0911489D0 GB0911489D0 (en) 2009-08-12
GB2471508A true GB2471508A (en) 2011-01-05

Family

ID=41008633

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0911489A Withdrawn GB2471508A (en) 2009-07-02 2009-07-02 Composite enclosure with specific WVTR and impact strength, used in an implantable device

Country Status (10)

Country Link
US (1) US20120203317A1 (en)
EP (1) EP2448995A1 (en)
JP (1) JP2012532632A (en)
KR (1) KR20120032493A (en)
CN (1) CN102471475A (en)
AU (1) AU2010267793A1 (en)
BR (1) BRPI1011794A2 (en)
CA (1) CA2766736A1 (en)
GB (1) GB2471508A (en)
WO (1) WO2011001187A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040505B2 (en) 2015-08-17 2021-06-22 Invibo Component Manufacturing Limited Medical device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201005122D0 (en) * 2010-03-26 2010-05-12 Invibio Ltd Medical device
DE102011116289B4 (en) * 2011-10-19 2015-02-26 Heraeus Precious Metals Gmbh & Co. Kg Method for producing an implantable device with an insulating layer
JP6133980B2 (en) * 2012-07-05 2017-05-24 エーエスエムエル ネザーランズ ビー.ブイ. Metrology for lithography
US9469437B2 (en) * 2013-01-18 2016-10-18 Cyberonics, Inc. Radiofrequency shielded container
US9035844B2 (en) * 2013-05-17 2015-05-19 Medtronic, Inc. Telemetry extension cable
GB201410221D0 (en) * 2014-06-09 2014-07-23 Victrex Mfg Ltd Polymeric materials
US10645808B2 (en) * 2018-02-22 2020-05-05 Apple Inc. Devices with radio-frequency printed circuits

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323660A1 (en) * 1987-12-31 1989-07-12 Akzo N.V. Process for manufacturing a laminate of metal sheets and filaments-reinforced synthetic layers
EP0598450A1 (en) * 1992-11-12 1994-05-25 Bristol-Myers Squibb Company Prosthetic implant and method of making same
WO2006118866A1 (en) * 2005-04-29 2006-11-09 Warsaw Orthopedic, Inc. Spinal fixation systems comprising a metal-polymer composite
US20080177387A1 (en) * 2006-11-01 2008-07-24 Warsaw Orthopedic, Inc. Implants and Related Devices for Monitoring Bony Fusion
WO2008129249A2 (en) * 2007-04-20 2008-10-30 Invibio Limited Fiducial marker
EP1992309A1 (en) * 2007-05-16 2008-11-19 Zimmer, Inc. Implant articular surface wear reduction system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433737B2 (en) * 2005-05-10 2008-10-07 Boston Scientific Neuromodulation Corporation Implantable medical device with polymer-polymer interfaces and methods of manufacture and use
ES2574664T3 (en) * 2006-09-20 2016-06-21 Woodwelding Ag Device for implantation in human or animal tissue
US20080103543A1 (en) * 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical device with titanium alloy housing
GB0723169D0 (en) * 2007-11-27 2008-01-02 Invibio Ltd Housing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323660A1 (en) * 1987-12-31 1989-07-12 Akzo N.V. Process for manufacturing a laminate of metal sheets and filaments-reinforced synthetic layers
EP0598450A1 (en) * 1992-11-12 1994-05-25 Bristol-Myers Squibb Company Prosthetic implant and method of making same
WO2006118866A1 (en) * 2005-04-29 2006-11-09 Warsaw Orthopedic, Inc. Spinal fixation systems comprising a metal-polymer composite
US20080177387A1 (en) * 2006-11-01 2008-07-24 Warsaw Orthopedic, Inc. Implants and Related Devices for Monitoring Bony Fusion
WO2008129249A2 (en) * 2007-04-20 2008-10-30 Invibio Limited Fiducial marker
EP1992309A1 (en) * 2007-05-16 2008-11-19 Zimmer, Inc. Implant articular surface wear reduction system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040505B2 (en) 2015-08-17 2021-06-22 Invibo Component Manufacturing Limited Medical device

Also Published As

Publication number Publication date
EP2448995A1 (en) 2012-05-09
US20120203317A1 (en) 2012-08-09
AU2010267793A1 (en) 2012-01-19
GB0911489D0 (en) 2009-08-12
CA2766736A1 (en) 2011-01-06
JP2012532632A (en) 2012-12-20
CN102471475A (en) 2012-05-23
KR20120032493A (en) 2012-04-05
BRPI1011794A2 (en) 2018-02-27
WO2011001187A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
GB2471508A (en) Composite enclosure with specific WVTR and impact strength, used in an implantable device
EP2038001B1 (en) Implantable medical devices having a liquid crystal polymer housing
US20130066320A1 (en) Medical Device
Joung Development of implantable medical devices: from an engineering perspective
EP2180918B1 (en) Electrodes with a power source and with connectors for coupling to an external stimulator
Lee et al. Monolithic encapsulation of implantable neuroprosthetic devices using liquid crystal polymers
US7493167B2 (en) Magnetically shielded AIMD housing with window for magnetically actuated switch
US20060212075A1 (en) Implantable microstimulator with conductive plastic electrode and methods of manufacture and use
US8165679B2 (en) Implantable medical device with polymer-polymer interfaces and methods of manufacture and use
US6411854B1 (en) Implanted ceramic case with enhanced ceramic case strength
US20090082832A1 (en) Thermal Management of Implantable Medical Devices
US20100262201A1 (en) Implantable stimulator with integrated plastic housing/metal contacts and manufacture and use
EP1072275A1 (en) Method of manufacturing an articulating bearing surface for an orthopaedic implant
US11944818B2 (en) System and method for embedding electronic components within an implant
US8229554B2 (en) Method and apparatus for solid state pulse therapy capacitor
US20170100597A1 (en) Sealed implantable medical device and method of forming same
WO2010088531A2 (en) Low temperature encapsulate welding
ES2755650T3 (en) Device with a receiving antenna and related power transfer system
US11896830B2 (en) Sealed package and method of forming same
EP4262533A1 (en) Implantable sensor electronics packaging
Nagl et al. Barrier coatings for medical electronic implants
CN114025834A (en) Implantable medical device with wireless coil configured to receive wireless power from external charger
US20230082022A1 (en) System and method for construction and implementation of an electrical stimulation enhanced surgical implant
WO2008128300A1 (en) Implant assembly

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)