GB2444617A - Powder coating material - Google Patents

Powder coating material Download PDF

Info

Publication number
GB2444617A
GB2444617A GB0723530A GB0723530A GB2444617A GB 2444617 A GB2444617 A GB 2444617A GB 0723530 A GB0723530 A GB 0723530A GB 0723530 A GB0723530 A GB 0723530A GB 2444617 A GB2444617 A GB 2444617A
Authority
GB
United Kingdom
Prior art keywords
powder
hollow elements
coating material
powder coating
spheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0723530A
Other versions
GB2444617B (en
GB0723530D0 (en
Inventor
Dale Windridge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0624387A external-priority patent/GB0624387D0/en
Priority claimed from GB0717813A external-priority patent/GB0717813D0/en
Application filed by Individual filed Critical Individual
Publication of GB0723530D0 publication Critical patent/GB0723530D0/en
Publication of GB2444617A publication Critical patent/GB2444617A/en
Application granted granted Critical
Publication of GB2444617B publication Critical patent/GB2444617B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass

Abstract

A powder coating material has a powder (epoxy, polyester, etc.) in which is bonded hollow glass or ceramic micro spheres having a melting point in excess of 200{C. The micro spheres typically have a size in the range 10 - 40 microns. The ratio of powder to micro spheres may be 5:1 by weight. Such a powder coating material has thermal insulation properties as well as anti-condensation properties. The material may be mixed with an infra red reflecting substance to provide the coating material with infra-red reflecting properties.

Description

* 2444617
POWDER COATING MATERIAL
This invention relates to a powder coating material.
Powder coatings have been applied to objects on an industrial scale since the 1970s and the global average annual growth for powder coatings is thought to have been approximately 7 -9%. Thermoplastic resins were initially employed to coat objects usually by heating the component and immersing in a fluidised bed of the thermoplastic resin. Thermosetting powders have been developed for wider fields of use, since such powders have many advantages including that they are easier to apply using electrostatic attraction. Such powder is produced by IGP IG Pulvertechnik AG of Kirchberg, Switzerland. The powder is usually placed in a fluidised bed and passed through a gun where an electrostatic charge is introduced. This means much larger and complicated shapes can be coated. l'here is less powder required during the application process; superior cured film properties, as well as being able to apply powders with a lower thickness than with thermoplastic resins.
Powder coatings are particularly, although not exclusively, used for architectural objects where it is required to coat, for example, steel railings, balustrades, stairways or staircases, fire escapes, security gates and shop fittings.
There is in the UK, Building Regulation Part M2004 which requires handrails and door handles, to be not cold to touch, i.e. they are to be warm to the touch. Such warm to touch handrails are needed where there are flights of stairs, ramps and landings, so that people are not deterred from using the rails because they are unpleasantly cold to hold on to. It is also desirable for the handrail to be slip-resistant and hard wearing.
It is known to produce a liquid paint containing a ceramic additive of high strength ceramic micro spheres to provide the liquid paint with a radiant heat reflecting, insulating, thermal barrier coating and such a paint is produced by Fly-Tech, P.O. Box 216, Melbourne, Florida 32902, U.S.A. Hitherto, however, it has not been thought possible to provide a thermo setting powder coating material with high thermal insulation properties.
According to, this invention there is provided a powder coating material including a powder having hollow elements formed therein, said hollow elements having a melting point in excess of 200 C.
Advantageously, the hollow elements have a size in the range 10 -40j.im.
Conveniently the hollow elements are one of glass or ceramic micro spheres.
Advantageously, the hollow elements are substantially evacuated, preferably to 10% or less atmospheric pressure.
Alternatively, the hollow elements are filled with a gas, which may be air or an inert gas.
Advantageously, the ratio of powder to hollow elements is in the range 90% to 60% by weight, and, preferably, approximately 5:1 by weight. Any addition of micro spheres or material that has a higher insulation value than the powder could be advantageous, in some circumstances.
Conveniently, the powder is a resin made of one of, or a combination of or a modified epoxy, polyester, polyurethane, acrylic or PVDF.
According to a feature of this invention, there is provided a method of making a powder coating material including the steps of producing a powder having a desired colour and formulation, grinding the powder to a desired size, and bonding hollow elements having a melting point in excess of 200 C to the ground powder.
Advantageously, the hollow elements have a size in the range 10 -40j.im.
Conveniently, the hollow elements are one of glass or ceramic micro spheres.
Advantageously, the hollow elements are substantially evacuated.
Prefi.rably, the ratio of powder to hollow elements is 5:1 by weight.
Such bonding is necessary because the powder is much denser than the hollow micro spheres. If the two components are mixed and not bonded, the micro spheres will float to the surface when the mixture is used in a fluidised bed for spraying, resulting in an uneven distribution of micro spheres with the powder when sprayed on to a work surface. Further, it has been found that if the micro spheres are added to the powder and the combination is then ground, the micro spheres become crushed.
Bonding is a process of adhering (bonding) the micro spheres to the powder.
When the powder has been manufactured to the desired colour and formulation, it is mixed at a ratio of approximately 5:1 with the micro spheres. The combined formulation is then stirred until an even distribution has been achieved. It is gently heated until the powder becomes tacky. The micro spheres then stick to the powder particles.
In one embodiment, graphite is added to provide the material with infra-red reflecting properties.
The evacuated glass micro spheres provide the powder coating material with improved thermal resistance by the spheres substantially reducing internal thermal conductivity. The problem in cold weather of known powder coatings having poor thermal insulation properties, where for example prolonged contact of a hand with a cold metal rail, absorbs heat from the hand, is then overcome by the use of the present invention. Thus, by increasing the thermal insulation properties of the paint coating, the heat transfer between a user's hand and a handrail, for example, is reduced making the handrail more comfortable to a user.
In cases where price is a consideration or where very good thermal insulation is not required, or where colour is unimportant, ceramic spheres which are less expensive than glass spheres may he used.
it will be understood that conversely from providing heat insulation properties to the powder coating material, the introduction of hollow elements will also provide protection from excess heat, for example from the sun. The powder coating material may also be used as an anti-condensation coating. In a development of the powder coating material, graphite is introduced to provide the material with infra-red reflecting capabilities.
The invention will now be described, by way of example.
it is known for powder coating material to be a powder of one of, or a combination of, or modification of epoxy, polyester, polyurethane, acrylic or PVDF.
Polyester, polyurethane, acrylic and PVDF are generally used for outside use; epoxy is used for internal objects, as it is not UV stable but is used as a primer, since it has good waterproof properties. It is currently expected that in this invention polyester powder coatings will he most commonly used, although the invention is not intended to be so limited.
Either, thermoplastic or thermosetting powders, known per Se, may be used in dependence upon requirement. Typically, the powder is ground to a size of about 120 microns.
The powder is mixed with hollow spheres, sometimes referred to as micro spheres or bubbles, in the ratio of five parts powder coating material to one part glass or ceramic spheres by weight until the spheres are substantially evenly distributed in the powder coating material. The glass spheres may be 3MTM ScotchliteTM glass bubbles S22, produced by 3MTM Company of St. Paul, Minneapolis, U.S.A., but it is to be understood that suitable micro spheres from other manufacturers may be used.
Glass is preferred because it does not have a pigment which means it can be used in a topcoat without alfecting its colour. Thus, glass having a very good transparency is preferred. However, if ceramics are used, the desired thermal insulation could he achieved in, for example, a primer.
The combination of powder and micro spheres are gently heated until the powder becomes tacky, whereupon the micro spheres adhere to the powder particles.
It is desired that the micro spheres have a size in the range 10 -40.tm, since otherwise the spheres will produce a roughened coarse surface when applied to an object, although in some circumstances this may be desired. The spheres may he glass or ceramic in dependence upon requirements and the spheres may be 1 5 substantially evacuated, preferably to 10% or less atmospheric pressure.
Alternatively, the spheres may be filled with a gas, such as air, or an inert gas at a pressure, which may be at, above or below atmospheric pressure in dependence upon requirements.
The ratio of powder coating material to spheres is dependent upon requirements; the more micro spheres the better the insulation, but the maximum amount of spheres that can be used will depend on the strength of the bonding agents within the paint. For example, if the paint ratio has too much glass it will become brittle and crack, or, taking it to the extreme, end up as an aggregate. Also, it is believed that if the concentration of spheres is too great, then the resistance of the resultant powder coating material to chipping will be reduced.
It will be appreciated that, as well as providing objects to which the powder coating material of this invention is used with thermal insulation, the spheres facilitate enhanced grip and reduced wear capabilities. Moreover, the material will have anti-condensation properties.
In a further embodiment, a material such as graphite is added to the powder and micro sphere combination to provide a coating material having infra-red reflecting properties. The graphite may be added prior to bonding the micro spheres or at the bonding step.

Claims (18)

  1. CLAiMS: 1. A powder coating material including a powder having hollow
    elements formed therein, said hollow elements having a melting point in excess of 200 C.
  2. 2. A material as claimed in claim 1, wherein the hollow elements have a size in the range l0-401.tm.
  3. 3. A material as claimed in claim I or 2, wherein the hollow elements are one of glass or ceramic micro spheres.
  4. 4. A material as claimed in any preceding claim, wherein the hollow elements are substantially evacuated.
  5. 5. A material as claimed in claim 4, wherein the hollow elements are substantially evacuated to 10% or less atmospheric pressure.
  6. 6. A material as claimed in any of claims I to 3, wherein the hollow elements are filled with a gas.
  7. 7. A material as claimed in claim 6, wherein the gas is one of air or an inert gas.
  8. 8. A material as claimed in any preceding claim, wherein the ratio of powder to hollow elements is in the range 90% to 60% by weight.
  9. 9. A material as claimed in any preceding claim, wherein the powder is a resin made of one of, or a combination of, or a modified epoxy, polyester, polyurethane, acrylic or PVDF.
  10. 10. A material as claimed in any preceding claim, wherein graphite is added to provide the material with infra-red reflecting properties.
  11. 11. A method of making a powder coating material including the steps of producing a powder having a desired colour and fbrmulation, grinding the powder to a desired size, and bonding hollow elements having a melting point in excess of 200 C to the ground powder.
  12. 12. A method as claimed in claim 11, wherein the hollow elements have a size in the range 10 -40tm.
  13. 13. A method as claimed in claim II or 12, wherein the hollow elements are one of glass or ceramic micro spheres.
  14. 14. A method as claimed in any of claims 11 to 13, wherein the hollow elements are substantially evacuated.
  15. 15. A method as claimed in any of claims 11 to 13, wherein the hollow elements are filled with a gas.
  16. 16. A method as claimed in any of claims 11 to 15, wherein the ratio of powder to hollow elements is 5:1 by weight.
  17. 17. A powder coating material substantially as herein described.
  18. 18. A method of making a powder coating material substantially as herein described.
GB0723530A 2006-12-06 2007-11-30 Powder coating material Expired - Fee Related GB2444617B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0624387A GB0624387D0 (en) 2006-12-06 2006-12-06 Organic powder coatings additive, to increase thermal insulation
GB0717813A GB0717813D0 (en) 2007-09-13 2007-09-13 Powder coating material

Publications (3)

Publication Number Publication Date
GB0723530D0 GB0723530D0 (en) 2008-01-09
GB2444617A true GB2444617A (en) 2008-06-11
GB2444617B GB2444617B (en) 2009-02-04

Family

ID=38962450

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0723530A Expired - Fee Related GB2444617B (en) 2006-12-06 2007-11-30 Powder coating material

Country Status (2)

Country Link
GB (1) GB2444617B (en)
WO (1) WO2008068464A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111234629A (en) * 2020-03-06 2020-06-05 浙江威廉姆节能科技有限公司 Formula and production process of heat-insulating coating on back side of metal roof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005257A1 (en) * 1994-08-09 1996-02-22 Hunting Industrial Coatings Cathodic coating compositions comprising lightweight hollow glass microspheres and zinc powder
DE19728792A1 (en) * 1997-07-05 1999-01-07 Bayer Ag Insulating spacers for metal combination profiles
JP2000336318A (en) * 1999-03-23 2000-12-05 Nippon Paint Co Ltd Composition for powdered paint and formation of coating film
WO2004018090A1 (en) * 2002-08-23 2004-03-04 James Hardie International Finance B.V. Synthetic hollow microspheres
KR20050068345A (en) * 2003-12-30 2005-07-05 주식회사 케이씨씨 Thermosetting epoxy powder coating composition for dual top coating and its coating system
EP1757639A2 (en) * 2005-08-22 2007-02-28 Rohm and Haas Company Methods for using hollow sphere polymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5303596A (en) * 1995-03-08 1996-10-08 Ronald R Savin Graphite-containing compositions
US20040241443A1 (en) * 2003-02-21 2004-12-02 Decker Owen H. Heat resistant powder coating composition having enhanced properties
EP1564263A1 (en) * 2004-01-30 2005-08-17 Arkema A thermoplastic based powder and its use to obtain a rough coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005257A1 (en) * 1994-08-09 1996-02-22 Hunting Industrial Coatings Cathodic coating compositions comprising lightweight hollow glass microspheres and zinc powder
US5792803A (en) * 1994-08-09 1998-08-11 Ronald R. Savin Cathodic coating compositions comprising lightweight hollow glass microspheres and zinc powder
DE19728792A1 (en) * 1997-07-05 1999-01-07 Bayer Ag Insulating spacers for metal combination profiles
JP2000336318A (en) * 1999-03-23 2000-12-05 Nippon Paint Co Ltd Composition for powdered paint and formation of coating film
WO2004018090A1 (en) * 2002-08-23 2004-03-04 James Hardie International Finance B.V. Synthetic hollow microspheres
KR20050068345A (en) * 2003-12-30 2005-07-05 주식회사 케이씨씨 Thermosetting epoxy powder coating composition for dual top coating and its coating system
EP1757639A2 (en) * 2005-08-22 2007-02-28 Rohm and Haas Company Methods for using hollow sphere polymers

Also Published As

Publication number Publication date
GB2444617B (en) 2009-02-04
GB0723530D0 (en) 2008-01-09
WO2008068464A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US7713590B2 (en) Photoluminescent coating formulation, method of application, and coated articles
CN103215591B (en) Preparation method of imitated-metal enameled steel sheet
US20190270895A1 (en) Decorative colored particle dispersion for use in surface coating compositions and method for making same
CA2391453C (en) Antistatic powder coating compositions and their use
CN108003758A (en) A kind of extra-weather-proof TGIC curing types powdery paints
GB2444617A (en) Powder coating material
US4920002A (en) Colored and wear-resistant decorative coating based on epoxy resin and for use on floors and on panels, and method of obtaining it
US5368885A (en) Method of applying coating powder and glass flake to produce a glass flake-containing finish
US20060013959A1 (en) Process to apply a polimeric coating on non-ferrous substrates
KR101666946B1 (en) Manufacturing method of building material by using powder coating
US20130244052A1 (en) Forming a Metallic Cladding on an Architectural Component
JP2001003002A (en) Coating material for decorating surface of building or structure
CN202416639U (en) Faux marble aluminum veneer
US6887571B2 (en) Colored silicon carbide
CN104260179A (en) Board processing technology
JPS58539B2 (en) Cement-resin finishing material layer construction method
JP7463135B2 (en) Decorative Panel
JP7202215B2 (en) veneer
EP2759528B1 (en) Method for treating cement, concrete, mortar or floor screed
JP4562552B2 (en) Method for forming a design coating film
CN106047152A (en) Thermal-insulation paint for high-density boards
GB2244438A (en) Anti-slip coating
WO2005044929A1 (en) Paste type waterbased paint composition containing metal powder and coating method of metal film using the same
US20090263666A1 (en) Process of Powder Coating and a Powder Coating Apparatus
JPH02217379A (en) Production of tile

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20171130