GB2399616A - Diaphragm valves and diaphragms therefor - Google Patents

Diaphragm valves and diaphragms therefor Download PDF

Info

Publication number
GB2399616A
GB2399616A GB0306302A GB0306302A GB2399616A GB 2399616 A GB2399616 A GB 2399616A GB 0306302 A GB0306302 A GB 0306302A GB 0306302 A GB0306302 A GB 0306302A GB 2399616 A GB2399616 A GB 2399616A
Authority
GB
United Kingdom
Prior art keywords
diaphragm
reinforcing element
region
valve according
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0306302A
Other versions
GB0306302D0 (en
Inventor
Vicki Jane Johansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crane Process Flow Technologies Ltd
Original Assignee
Crane Process Flow Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crane Process Flow Technologies Ltd filed Critical Crane Process Flow Technologies Ltd
Priority to GB0306302A priority Critical patent/GB2399616A/en
Publication of GB0306302D0 publication Critical patent/GB0306302D0/en
Priority to PCT/GB2004/001175 priority patent/WO2004083694A1/en
Publication of GB2399616A publication Critical patent/GB2399616A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/16Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam

Abstract

A diaphragm (1) for a diaphragm valve includes a peripheral zone (2) which in use is compressed between a flange provided on a valve body and a flange provided on an operating mechanism. The diaphragm (1) includes a relatively flexible inner region (6) and a relatively rigid outer peripheral region (7). The outer peripheral region incorporates a reinforcing element (8) which is substantially completely moulded into the material of the diaphragm so that it is not visible from the exterior of the diaphragm. The reinforcing element (8) may be in the form of a perforated plate (9) of suitable metal. The reinforcing element reduces compression set of the diaphragm periphery to the extent that relatively compressible material such as butyl rubber may be used without the need for periodically re-tightening the diaphragm fixing members.

Description

239961 6 DLAPRAGM VALVES AND DIAPHRAGMS l lU;}FOIl This invention relates
to a diaphragm valve, and to a diaphragm for a diaphragm valve.
A diaphragm valve is a type of valve which includes a valve body which defines all inlet port, an outlet port, and a diaphragm opening. A diaphragm is secured to the diaphragm opening in a fluid-tight manner to define with the valve body a flow passage which extends f om the inlet port to the outlet port. An operating mechanism is provided for controlling the configuration of the diaphragm. In one extreme configuration of file diaphragm the diaphragm is pressed into engagement with a weir defined on the valve body to close the passage to fluid flow. In the opposite extreme position of the diaphragm, the diaphragm is at a rnaxrmum spacing from the weir to open the valve fully to fluid flow. In intermediate configurations a limited space is defined between the weir and the opposing surface of the diaphragm to control the flow area of the flow passage.
Diaphragm valves are a common industrial product and are available from many sources. Tile materials of dle valve body and of the diaphragm are chosen in light of the line media to be controlled. In many applications the known characteristics of isoprene isobutylene rubber (also known as IN or butyl rubber) would render it highly suitable for the construction of diaphragm valve diaphragms. Butyl rubber is a highly saturated hydrocarbon and the polymer chain structure results in physical properties which are well lmown for good vibration and shock damping characteristics. However, when compounded for use as a diaphragm to provide good flex, temperature and chemical resistance properties heretofore the application of butyl rubber in the construction of diaphragms has been limited (subject to re-tighterung) by the compression set characteristics of the material. The manner in which the diaphragm is secured to the diaphragm valve body is by providing a flange on the diaphragm valve body and a flange on the cover of the valve operating mechanism. The two flanges are secured to each other with suitable releasable fastenings with a peripheral portion of the diaphragm trapped between the flanges. Because of the compression set characteristics of butyl rubber some xc-tightening of the releasable fastenings is necessary especially after thermal cycling if an adequate seal between the diaphragm periphery and the diaphran body flange is to be maintained. lie- tightening or checking of the fasterungs torque is a time-consuming requirement in the context of industrial processing.
We have now devised a system whereby the stiffness of the peripheral region of a diaphran may be increased and the tendency of the peripheral region to suffer from compression set may be reduced. Accordingly, the present invention makes it practicable to utilize butyl rubber as a construction material for the diaphragm of a diaphragm valve. It is to be noted, however, that the present invention may be applied to a wide rsage of materials and is not!'rrited to diaphragms constructed exclusively or even partly from butyl rubber.
According to one aspect of the present invention a diaphragm valve comprises: a valve body which defines an inlet port, an outlet port, and a diaphragm opening; a diaphragm secured to the diaphragm opening in a fluid-tight manner to define with the valve body a flow passage which extends from the inlet port to the outlet port; an operating mechanism for controlling the configuration of the diaphragm between a first extreme configuration in which the diaphragm is pressed into engagement with a weir defined on the valve body to close the passage to fluid flow and a second extreme configuration in which the diaphragm is at a maximum spacing from the weir to open the valve fully to fluid flow, wherein the diaphragm incorporates a substantially rigid reinforcing element extending around substantially the entire periphery of the diaphragm, the reinforcing element being substantially completely encapsulated within the material of the diaphragm for resisting compression setting of the material of the diaphragm.
In the preferred embodiment of the invention the reinforcing element includes a first region which extends to a location adjacent one major surface of the diaphragm and a second region which extends to a location adjacently the opposite major surface of the diaphragm, the first and second regions being radially offset from each other. the preferred embodiment of the invention the first region is adjacent the outer surface of the diaphragm and the second region is adjacent the inner surface of the diaphragm, the second region being located radially outwardly of the first region. Preferably, the first and second regions are interconnected by a portion of the reinforcing element which extends substantially parallel to the first and second major surfaces of The diaphragm. Preferably, one of the first and second regions is located immediately adjacent the radial extremity of the diaphragm and the second region is located adjacent a sealing bead provided on the diaphragm spaced radially inwardly from the radially outer extremity of the diaphragm. Preferably, when viewed in transverse cross-section the reinforcing element comprises a substantially horizontal central region, a first leg extending upwardly from one extremity of the horizontal region, and a second leg extending downwardly from the opposite extremity of the horizontal region. Such a reinforcing element can readily be formed from suitable perforated material by a stamping process.
Preferably Me reinforcing element is in the form of a perforated plate to enhance the mechanical connection between We material of the plate and the material of the diaphragm. In tile preferred embodiment of the invention the diaphragm is a perforated steel plate.
In tile preferred embodiment of the invention Me reinforcing element at least partially surrounds any holes provided in the diaphragm for the passage of releasable fastenings used to secure the operating mechanism flange to the body flange of the valve.
The invention will be better understood from the following description of a preferred embodiment thereof, given by way of example only, reference being had to the accompanying drawings wherein: Figure 1 is a partly broken away side view of an embodiment diaphragm in accordance with the present invention; Figure 2 is a schematic isometric view showing a portion of a diaphragm in accordance with the present invention, Figure 3 is a bottom plan view of the diaphragm of Figures 1 and 2; Figure 4 is a side view of the reinforcing element of the diaphragm of Figures 1-3; Figure 5 is an isometric view of the reinforcing element of Figure 4, and Figure 6 is a cross-sectional view of a peripheral region of the diaphragm of Figures 1-3.
The drawings illustrate a diaphragm 1 for use in a diaphragm valve. As will be understood by those skilled in the art, in use the diaphragm 1 will be secured to a valve body by compressing the peripheral zone 2 of the diaphragm between a flange provided on the valve body (which engages the underside 3 of the diaphragm) and a flange provided on an operating mechanism, for example a bonnet assembly, which engages the upper surface 4 of the peripheral region 2.
The respective flanges are secured together using appropriate fastenings, typically releasable fastenings. The releasable fastenings may, for example, be in the form of screws which engage threaded openings in the body flange. A boss 5 is provided in the central region of the diaphragm for connection to tile operating mechanism.
Referring now to Figure 2 the diaphragm 1 includes a relatively flexible inner region 6 and a relatively rigid outer peripheral region 7. The region 6 is Epically formed of a suitable rubber compound, for example butyl rubber and may be provided with reinforcing material, for example layers of woven or non- woven fabric. The outer peripheral region incorporates a reinforcing element 8 which is substantially completely moulded into the material of the diaphragm so that it is not visible from the exterior of the diaphragm. Reinforcing material provided in the inner region 6 may extend to overlap the reinforcing element 8 or may stop short of the reinforcing element 8 so that a narrow un-reinforced area of the diaphragm exists between the flexible reinforcing material and the substantially rigid reinforcing element 8.
The reinforcing element 8 is shown in greater detail in Figures 4 and 5. It is in the form of a perforated plate 9 of suitable material, for example steel. As viewed in the drawings, the reinforcing element includes a substantially horizontal central region 10 which, as illustrated in Figure 6, extends substantially parallel to the adjacent upper surface 11 and lower surface 12 of the diaphragm. At the radially inner end of the surface 10 a first leg 13 extends upwardly to terminate in a region 14 located adjacent the upper surface 11 of the diaphragm. At the radially outer extremity of the surface 10 a second leg 15 extends downwardly to a region 16 located adjacent the lower surface 12 of the diaphragm. Preferably, the lower surface 12 of tile diaphragm incorporates a raised sealing bead 17 which has a radial location substantially corresponding to the radial location of the first leg 13 of the reinforcing element It will be noted from Figure 5 that the reinforcing element has cut-out regions 18 which correspond to through holes 19 provided in the diaphragm for the passage of bolts or screws.
It has been found that the provision of a reinforcing element in accordance with the present invention substantially enhances the mechanical properties of the peripheral region of the diaphragm. Tile peripheral region is considerably stiffened by the presence of the reinforcing element and compression set is reduced to such an extent that diaphragm materials for general engineering applications, for example butyl rubber, may now be utilized without the need for periodical retightening of the diaphragm fixing element under certain conditions. It will be noted that in the illustrated embodiment of the invention Me reinforcing element is completely encapsulated within Me material of the diaphragm. Whilst this arrangement is preferred there may be applications in which Me outer radial surface 20 of the reinforcing element may be exposed to show the presence of the reinforcing element. Additionally or alternatively Me reinforcing element preferably has a tab 21 which is over-moulded with the material of the diaphragm to provide a radial projection 22 which can carry information such as the material of the diaphragm and the fact that the diaphragm is reinforced. The stiffening of the projection 22 provided by the tab 21 will of itself provide a physical indication that the diaphragm periphery is reinforced.

Claims (11)

  1. CLAIMS: 1. A diaphragm valve comprising a valve body which defines an
    inlet port, an outlet port, and a diaphragm opening; a diaphragm secured to the diaphragm opening in a fluid-tight manner to define with the valve body a flow passage which extends from the inlet port to the outlet port; an operating mechanism for controlling the configuration of the diaphragm between a first extreme configuration in which the diaphragm is pressed into engagement with a seat defined on the valve body to close the passage to fluid flow and a second extreme configuration in which the diaphragm is at a maximum spacing from the seat to open the valve fully to fluid flow; wherein the diaphragm incorporates a substantially rigid reinforcing element extending around substantially the entire periphery of the diaphragm, the reinforcing element being substantially completely encapsulated within the material of the diaphragm for resisting compression setting of the material of the diaphragm.
  2. 2. A diaphragm valve according to Claim I wherein the reinforcing element includes a first region which extends to a location adjacent one major surface of the diaphragm and a second region which extends to a location adjacently the opposite major surface of the diaphragm, the first and second regions being radially offset from each other.
  3. 3. A diaphragm valve according to Claim 2 wherein the first region is adjacent the outer surface of the diaphragm and the second region is adjacent the inner surface of the diaphragm, the second region being located radially outwardly of the first region.
  4. 4. A diaphragm valve according to Claim 2 or Claim 3 wherein the first and second regions are interconnected by a portion of the reinforcing element which extends substantially parallel to the first and second major surfaces of the diaphragm.
  5. 5. A diaphragm valve according to any of Claims 2 - 4 wherein one of the first and second regions is located immediately adjacent the radial extremity of the diaphragm and the other of the first and second regions is located adjacent a sealing bead provided on the diaphragm spaced radially inwardly from the radially outer extremity of the diaphragm.
  6. 6. A diaphragm valve according to any preceding claim wherein when viewed in transverse cross-section the reinforcing element comprises a substantially horizontal central region, a first leg extending upwardly from one extremity of the horizontal region, and a second leg extending downwardly from the opposite extremity of the horizontal region.
  7. 7. A diaphragm valve according to any preceding claim wherein the reinforcing element is formed from perforated material by a stamping process.
  8. 8. A diaphragm valve according any preceding claim wherein the reinforcing element is in the form of a perforated plate to enhance the mechanical connection between the material of the plate and the material of the diaphragm.
  9. 9. A diaphragm valve according to Claim 8 wherein the reinforcing element is a perforated steel plate.
  10. 10. A diaphragm valve according any preceding claim wherein the reinforcing element at least partially surrounds the holes provided in the diaphragm for the passage of releasable fastenings used to secure the operating mechanism flange to the body flange of the valve.
  11. 11. A diaphragm valve substantially as hereinbefore described with reference to the accompanying drawings.
GB0306302A 2003-03-19 2003-03-19 Diaphragm valves and diaphragms therefor Withdrawn GB2399616A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0306302A GB2399616A (en) 2003-03-19 2003-03-19 Diaphragm valves and diaphragms therefor
PCT/GB2004/001175 WO2004083694A1 (en) 2003-03-19 2004-03-19 Diaphragm valves and diaphragms therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0306302A GB2399616A (en) 2003-03-19 2003-03-19 Diaphragm valves and diaphragms therefor

Publications (2)

Publication Number Publication Date
GB0306302D0 GB0306302D0 (en) 2003-04-23
GB2399616A true GB2399616A (en) 2004-09-22

Family

ID=9955084

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0306302A Withdrawn GB2399616A (en) 2003-03-19 2003-03-19 Diaphragm valves and diaphragms therefor

Country Status (2)

Country Link
GB (1) GB2399616A (en)
WO (1) WO2004083694A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686298A1 (en) * 2005-01-26 2006-08-02 GEMÜ Gebrüder Müller Apparatebau GmbH & Co. KG Diaphragm for diaphragm valve
EP1722137A3 (en) * 2005-05-10 2007-08-01 Bürkert Werke GmbH & Co. KG Valve device
WO2011049705A1 (en) * 2009-10-19 2011-04-28 Parker-Hannifin Corporation Seal assembly
EP3203124A1 (en) * 2016-02-02 2017-08-09 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaf Elastomer membrane element
DE102017128996A1 (en) * 2017-12-06 2019-06-06 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Membrane for a diaphragm valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250081A (en) * 1990-11-23 1992-05-27 Saunders Valve Co Ltd Diaphragm valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154286A (en) * 1960-11-03 1964-10-27 Hills Mccanna Co Weir valve
DE1295294B (en) * 1965-10-04 1969-05-14 Harzer Achsenwerke Kg Schweman Diaphragm valve, especially for corrosive or aggressive flow media
CH687969A5 (en) * 1992-07-24 1997-04-15 Huber+Suhner Ag Faserverstaerkte membrane.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250081A (en) * 1990-11-23 1992-05-27 Saunders Valve Co Ltd Diaphragm valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686298A1 (en) * 2005-01-26 2006-08-02 GEMÜ Gebrüder Müller Apparatebau GmbH & Co. KG Diaphragm for diaphragm valve
EP1722137A3 (en) * 2005-05-10 2007-08-01 Bürkert Werke GmbH & Co. KG Valve device
US7490812B2 (en) 2005-05-10 2009-02-17 Buerkert Werke Gmbh & Co. Kg Valve device having a valve control member formed by molding
WO2011049705A1 (en) * 2009-10-19 2011-04-28 Parker-Hannifin Corporation Seal assembly
US9109707B2 (en) 2009-10-19 2015-08-18 Parker-Hannifin Corporation Seal assembly
EP3203124A1 (en) * 2016-02-02 2017-08-09 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaf Elastomer membrane element
DE102017128996A1 (en) * 2017-12-06 2019-06-06 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Membrane for a diaphragm valve
EP3495702A1 (en) * 2017-12-06 2019-06-12 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaf Membrane for a diaphragm valve

Also Published As

Publication number Publication date
WO2004083694A1 (en) 2004-09-30
GB0306302D0 (en) 2003-04-23

Similar Documents

Publication Publication Date Title
US5582200A (en) Gate valve with spring assisted valve liner
US8794595B2 (en) Diaphragm valve with improved sealing performance and leak detection
US8202489B2 (en) Disposable cassette
US9109707B2 (en) Seal assembly
US7059578B2 (en) Diaphragm and hydraulically-operated valve using same
EP2416038B1 (en) Sealing arrangement for a diaphragm valve
US3856046A (en) Valve
CN103697179A (en) Seal disk with a plurality of hardnesses
RU2602728C2 (en) Membrane control valve with universal installation seat for membrane
KR100976300B1 (en) Membrane, membrane plate, and chamber plate for a filter press
AU2007212203A1 (en) Orifice valve for bulk solids
GB2399616A (en) Diaphragm valves and diaphragms therefor
KR20160019551A (en) Diaphragm valve
MXPA03011845A (en) Check valve floor drain.
US6745999B1 (en) Gate valve for high-density slurries, and a valve body assembly, and a solids-containing wall lining means therefor
CN112228589A (en) Valve structure and solenoid valve device
EP2088354B1 (en) Valve for liquid containers
US7597043B2 (en) Diaphragm pump
JP4672639B2 (en) Manifold structure of fluid control equipment
CN106062439B (en) The fixture construction of membrane, the diaphragm pump for possessing it and the fixing means of valve gear and membrane
JP2017155842A (en) Flexible joint
US2462372A (en) Pump
JP2020165490A (en) Diaphragm valve
JP2019132378A (en) Diaphragm valve
EP0513268A1 (en) Diaphragm valve

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)