GB2391273A - Expandable bearing hub arrangement - Google Patents

Expandable bearing hub arrangement Download PDF

Info

Publication number
GB2391273A
GB2391273A GB0217260A GB0217260A GB2391273A GB 2391273 A GB2391273 A GB 2391273A GB 0217260 A GB0217260 A GB 0217260A GB 0217260 A GB0217260 A GB 0217260A GB 2391273 A GB2391273 A GB 2391273A
Authority
GB
United Kingdom
Prior art keywords
annular member
bearing hub
outer annular
aperture
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0217260A
Other versions
GB0217260D0 (en
GB2391273B (en
Inventor
Ian Michael Bradshaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Priority to GB0217260A priority Critical patent/GB2391273B/en
Publication of GB0217260D0 publication Critical patent/GB0217260D0/en
Priority to US10/609,654 priority patent/US7001075B2/en
Publication of GB2391273A publication Critical patent/GB2391273A/en
Application granted granted Critical
Publication of GB2391273B publication Critical patent/GB2391273B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/183Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/905Temperature compensation

Abstract

A bearing hub 30 for a gas turbine engine (10, Fig 1) comprises an outer annular member 36 which surrounds bearing chamber 34 and has defined therein a conduit 48 receiving aperture 50 which conduit can extend in to chamber 34 and whereby the outer annular member 36 is configured so as to slidably engage conduit 48 at aperture 50 and where additionally, the outer member 36 extends around an inner annular member 38 which furthermore defines chamber 34 and is associated with the conduit. Oil X is supplied to an inner aperture 52 of the arrangement via conduit 48 and air Y is provided via delivery pipe 54 and aperture 56 to annular space 40. Outer and inner annular members 36, 38 are connected via portions 41, 42. Any stresses experienced by the arrangement during use are reduced by the allowed expansion of the outer annular member 36 (relative to sealing ring 53 and recesses 58), therefore providing bearing hubs which last longer and that can be more flexibly and reliably used.

Description

2391 273
A Bearing Hub This invention relates to bearing hubs. More 5 particularly, but not exclusively, the invention relates co bearing hubs for use in gas turbine engines, for example the bearing hubs for the bearings supporting the high and intermediate pressure turbines.
In gas turbine engines, the turbine discs for the high 10 and intermediate pressure turbines are supported by bearings held within a common bearing hub. An example of such a bearing hub is an inner annular wall enclosing the bearing, and an outer annular wall surrounding the inner wall. The region between the inner and outer walls 15 accommodates buffer sealing air to prevent leakage of oil out of the bearing chamber. It is important that the inner and outer walls are fixedly held together to provide sufficient rigidity for the respective turbines.
The outer wall is subjected to high temperatures, and 20 this can cause considerable expansion. The inner wall is, on the other hand, subjected to much lower temperatures, and expands to a lesser degree. This differential thermal expansion of the inner and outer walls creates stress and can result in failure of the bearing hub.
2S According to one aspect of the invention there is provided a bearing hub for a gas turbine engine comprising an outer annular member surrounding a bearing chamber, the outer annular member defining an aperture to receive a conduit which can extend to the bearing chamber, wherein 30 the outer annular member is configured to slidingly engage the conduit at the aperture therein.
According to another aspect of this invention, there is provided a bearing hub for a gas turbine engine comprising an inner annular member defining a bearing 35 chamber, an outer annular member extending around the inner annular member, each annular member defining an aperture
( for a conduit, which can extend to the bearing chamber, the aperture in the inner annular member allowing communication between the conduit and the bearing chamber, wherein the outer annular member is configured to slidingly engage the 5 conduit at the aperture therein. Thus, the preferred embodiment has the advantage that the sliding engagement of the outer annular member with the conduit at the aperture allows relative thermal expansion between the inner and outer annular members.
10Preferably, the outer annular member includes sealing means at said aperture, whereby the sealing means can engage the conduit to provide sealing between the outer annular member and the conduit. The sealing means is preferably a sealing ring, a brush seal, or a labyrinth 15 seal. Holding means may be provided to hold the sealing means in engagement with the conduit. In one embodiment, the holding means comprises securing means to secure the sealing means to the outer annular member. The part of the outer annular member surrounding the aperture may include a 20 shoulder defining a circumferentially extending recess to receive the sealing means. The securing means may be mounted on the outer annular member to hold the sealing means in the recess. The securing means may be in the form of an annular retaining element extending around the 25 aperture. The retaining element may be fastened to the outer annular member by fastening means. The fastening means may comprise a plurality of bolts, which may be receivable in threaded bores in the outer annular member, or threaded nuts may be provided to threadably engage the 30 bolts.
Alternatively, the holding means comprise a holding member which may be annular and which may extend around the aperture. The holding member preferably defines a recess to receive the sealing means. The holding member may have 35 a C shaped profile to define said recess.
Preferably, the inner and outer annular members are
( connected to each other by connecting means constructed to allow differential thermal expansion of the outer annular member relative to the inner annular member, in use.
Preferably, the connecting means may comprise a connecting 5 portion provided at least at one end region, and preferably at both the downstream and upstream end regions of the bearing hub. The, or each, connecting portion is preferably integral with the inner and outer annular members. 0 In one embodiment, the or each connecting portion may be integral with the inner and outer annular members.
An embodiment of the invention will now be described by way of example only, with reference to the accompanying drawings, in which: 15 Fig. 1 is a sectional side view of the upper half of a! gas turbine engine; I Fig. 2 is a sectional side view of the region marked A in Fig. 1; Fig. 3 shows an enlarged view of the bearing chamber 20 shown in Fig. 2 from the first position; and Fig. 4 shows an enlarged view of an alternative holding means for holding a sealing means.
With reference to Fig. 1, a ducted fan gas turbine engine generally indicated at 10 has a principal axis X-X.
25 The engine 10 comprises, in axial flow series, an air intake lie a propulsive fan 12, a compressor region 113 comprising an intermediate pressure compressor 13, and a high pressure compressor 14, combustion means 115 comprising a combustor 15, and a turbine region 116 30 comprising a high pressure turbine 16, an intermediate pressure turbine 17, and a low pressure turbine 18. An exhaust nozzle 19 is provided at the tail of the engine 10.
The gas turbine engine 10 works in the conventional manner so that air entering the intake 11 is accelerated by 35 the fan to produce two air flows: a first air flow into the intermediate pressure compressor 13 and a second air flow
( which provides propulsive thrust. The intermediate pressure compressor 13 compresses the air flow directed into it before delivering the air to the high pressure compressor 14 where further compression takes place.
5 The compressed air exhausted from the high pressure compressor 14 is directed into the combustor 15 where it is mixed with fuel and the mixture combusted. The resultant hot combustion products then expand through, and thereby drive the high, intermediate and low pressure turbine 16, 10 17 and 18 before being exhausted through the nozzle 19 to provide additional propulsive thrust. The high, intermediate and low pressure turbines 16, 17 and 18 respectively drive the high and intermediate pressure compressors 19 and 13 and the fan 12 by suitable 15 interconnecting shafts.
Fig. 2, is a close-up of the region marked A in Fig. 1. In Fig. 2, there is shown the high pressure turbine 16, and the intermediate pressure turbine 17. A stator vane 20 is arranged between the blades of the high pressure and 20 intermediate pressure turbines 16, 17.
The high pressure turbine 16 comprises a plurality of turbine blades 22 mounted on a disc 24. Similarly, the intermediate pressure turbine 17 comprises a plurality of turbine blades 26 mounted on a support disc 28. The high 25 pressure turbine support disc 24 and the intermediate pressure turbine support disc 2B are connected to a bearing hub 30. The bearing hub 30 comprises an outer annular member 36 and an inner annular member 38. An annular space 40 is provided between the outer and inner annular members 30 36, 38. The inner annular member 38 defines a bearing chamber 34.
A plurality of bearings 32 are rotatably mounted in the bearing chamber 34 to provide support for the high and intermediate pressure turbine discs 24 and 28.
35 The outer and inner annular members 36, 38 are connected to each other at their upstream and downstream
edges by an annular connecting portions 41, 42 respectively. The connecting portions 41, 42 are sufficiently flexible to accommodate differential thermal expansion of the inner and outer annular members 36, 38, as 5 explained below.
Referring to Fig. 3, there is shown in more detail, the bearing hub 30. The view of the bearing hub 30 shown in Fig. 3 is from a different circumferential position to that shown in Fig. 2. In Fig. 3 a bearing hub service pipe 10 48 is shown. The outer annular member 36 defines an outer aperture 50 and the inner annular member 38 defines an inner aperture 52. The pipe 48 extends through the outer aperture 50 and is attached to the inner annular member 38 in the region surrounding the inner aperture 52, such 15 attachment can be by for example welding the pipe 48 to the inner annular member 38, for example by butt welding.
Thus, the pipe 48 is in communication with the bearing chamber 30 to supply oil thereto as indicated by the arrows X in Fig. 3, or remove oil therefrom.
20 The pipe 48 shown is a sliding fit within the aperture 52. The pipe 48 is held within the aperture 52 by sealing means in the form of a sealing ring 53 which extends around the pipe 50 at the aperture 52. The bearing hub 30 may include a plurality of pipes 48 at circumferentially spaced 25 regions around the hub 34.
In addition to the service pipe or pipes 48, there is also provided an air delivery pipe 54 to deliver sealing air to the annular space 40 via an aperture 56 in the inner annular member 36, as indicated by the arrows Y. The air 30 delivery pipe 54 is fixedly attached, for example by welding, to the outer annular member 36 at the aperture 56.
The sealing ring 53 is held in sealing engagement with the pipe 48 in an annular recess 58 defined by a holding member 60 provided on the outer 35 annular member 36 surrounding the aperture 52. The holding member 60 has a generally C shaped profile, as shown.
( A structural member 61 extends radially outwardly from the outer annular member 36 for connection to another feature (not shown) of the engine. The function of the structural member 61 is not material to the 5 operation of the invention and is not described.
Referring to Fig. 4, there is shown a close up of another embodiment for holding the sealing ring 53 in engagement with the service pipe 48. As can be seen, an annular recess 62 is defined around the aperture 50 at a 10 shoulder 63 in the radially outer surface c the out=, annular member 36, to receive the sealing ring 56. An annular retaining member in the form of an annular plate 64 is secured to the outer annular member 36 around the aperture 50 by a plurality of bolts 66 which are received 15 in circumferentially spaced threaded bores 68 in the outer I annular member 36. The retaining member 64 extends over the recess 62 and engages the annular sealing ring 53 to hold the sealing ring 53 in the recess 62.
The above described embodiments will now be described 20 in operation. Referring again to Fig. 2, when the gas turbine engine 10 is in operation, air from the compressors is fed in a known manner to a region 70 between the high pressure and intermediate pressure turbine discs 24, 28.
The air supplied to the region 70 is bled from the high 25 pressure compressor 14. Similarly, sealing air is bled from the intermediate compressor 13 via the air delivery pipe 54 to the space 40 between the inner and outer annular members 36, 38.
The temperature of the air in the region 70, is 30 greater than the temperature of the sealing air in the space 40, which in turn is greater than the temperature of the oil in the bearing chamber 34. As a result of these temperature differences, the structural member 61 is subjected to large thermal expansion resulting from the 35 high temperature air from the high pressure compressor in the region 70. This contributes to causing considerable
( stresses on the outer annular member 36. The inner annular member 38 is, on the other hand heated to a much lesser degree because of the cooler oil temperature in the bearing chamber 34. Thus, the inner annular member 38 expands to a 5 much lesser degree and the stresses thereon are also significantly less.
The provision of the sealing ring 53, enables the outer annular member 36, to reduce the stresses therein by the sliding of the sealing ring 53 over the pipe 48. In 10 addition, the sealing ring 53 can accommodate circumferential movement of the pipe 48 relative to the sealing ring 53. This accommodation is effected by a clearance 55 around the sealing ring 53 in the recess 58 in the embodiment shown in Fig. 3, and by a clearance 65 15 around the sealing ring 53 in the recess 62. This has the advantage in the embodiments shown of allowing the accommodation of movement arising from thermal expansion and from tolerance build-up without compromising the sealing function. This provides an advantage of the 20 elimination of high stresses during such expansion.
In addition, the connection of the outer annular member 36 to the inner annular member 38 by the upstream and downstream annular connecting portions 4l, 42 provides sufficient flexibility to allow the outer annular member 36 25 to expand with the sealing ring 53 sliding along the pipe 48 without the creation of stresses within the hub 30.
There is thus described a simple but effective arrangement for accommodating the expansion of the outer annular member of a bearing hub preventing stresses in the 30 hub 30 thereby providing for a longer life of the hub.
Various modifications can be made without departing from the scope of the invention. For example, the flexibility of the outer annular member 36 relative to the inner annular member 38 can be effected by means other than 35 the connecting portions 41, 42. Also, the attachment of the pipe 50 to the inner annular member can be by any
( conventional means such as a friction fit, welding, brazing, or being formed as an integral part (e.g. by casting). The sealing ring 53 may be a brush seal or a labyrinth seal.
S It will be appreciated that an advantageous feature of the upstream and downstream connecting portions 41, 42 is that they are sufficiently flexible to accommodate the aforesaid differential thermal expansion of the inner and outer annular members 36, 38. Thus, the connecting ho portions 41, 42 need not be integral with the inner and outer annular members. Instead, the connecting portions could be in the form of separate plates connected to the inner and outer annular members 36, 38 by suitable fastening means, such as bolts or the like.
t5 Whilst endeavouring in the foregoing specification to
draw attention to those features of the invention believed to be of particular importance it should be understood that the Applicant claims protection in respect of any patentable feature or combination of features hereinbefore 20 referred to and/or shown in the drawings whether or not particular emphasis has been placed thereon.

Claims (22)

( Claims
1. A bearing hub (30) for a gas turbine engine (10) 5 comprising an outer annular member (36) surrounding a bearing chamber (34) the outer annular member (36) defining an aperture (50) to receive a conduit (48) which can extend to the bearing chamber (34), characterised in that the outer annular member (36) is configured to slidlugly engage 10 the conduit (48) at the aperture (50).
2. A bearing hub (30) according to claim 1 characterised by comprising an inner annular member (38) defining the bearing chamber (34) and the outer annular member (36) extending around the inner annular member (38), wherein the 15 inner annular member (38) defines a further aperture (52) to allow communication between the conduit (48) and the bearing chamber (34).
3. A bearing hub (30) according to claim 1 or 2 characterised in that the outer annular member (36) 20 includes sealing means (53) at said aperture (50), whereby the sealing means (53) can engage the conduit (48) to provide sealing between the outer annular member (36) and the conduit (48) .
4. A bearing hub (30) according to claim 3 characterised 35 in that the sealing means (53) comprises a sealing ring..
5. A bearing hub (30) according to claim 3 or 4 characterised by comprising holding means on the outer annular member (36) surrounding the aperture (50) to hold the sealing means (53).
30
6. A bearing hub (30) according to claim 5 characterised in that the holding means defines a recess (58, 62) to receive the sealing means (53).
7. A bearing hub (30) according to claim 6 characterised in that the recess (62) is defined adjacent the aperture 35 (50) at a shoulder on the outer annular member (36).
8. A bearing hub (30) according to claim 7 characterised
in that the holding means further includes a retaining member (64) retain the sealing means (53) in the recess (62).
9. A bearing hub (30) according to claim 8 characterised 5 in that the retaining member (64) comprises an annular plate and fastening means (66) to fasten the plate to the outer annular member (36).
10. A bearing hub (30) according to any of claims 2 to 9 characterised in that the outer and inner annular members 10 (36, 38) are connected to each other by connection means constructed to allow differential thermal expansion of the outer annular member (36) relative to the inner annular member (38) r in use.
11. A bearing hub (30) according to claim 10 characterised IS in that the connection means comprises a connecting portion (41, 42) provided at least one end region of the bearing hub (30).
12. A bearing hub (30) according to claim 11 characterised in that a connecting portion (41) is provided at each of 20 the upstream and downstream ends of the outer and inner annular members (36, 38).
13. A bearing hub (30) according to claim 11 or 12 characterised in that the, or each, connecting portion (41, 42) is sufficiently flexible to allow said relative thermal 25 expansion of the outer annular member (36).
14. A bearing hub (30) according to claims 11, 12 or 13 characterised in that the, or each, connecting portion (41, 42) is annular and is separate from but attachable to, the inner and outer annular members (36, 38).
30
15. A turbine arrangement comprising a turbine (16) rotatably mounted on a bearing hub (30), characterised in that the bearing hub (30) is according to any preceding claim.
16. A turbine arrangement according to claim 15 3s characterised by first and second turbines (16, 17) rotatably mounted on the bearing hub (30).
17. A turbine arrangement according to claims 16 characterized in that the first turbine is a high pressure turbine (16) and the second turbine is an intermediate pressure turbine (17).
S
18. A gas turbine engine (10) characterized in that it incorporates a turbine arrangement according to any of claims 15 to 17.
19. A bearing hub substantially as herein described with reference to the accompanying drawings.
IO
20. A turbine arrangement substantially as herein described with reference to the accompanying drawings.
21. A gas turbine engine substantially as herein described with reference to the accompanying drawings.
22. Any novel subject matter or combination including IS novel subject matter disclosed herein, whether or not within the scope of or relating to the same invention as any of the preceding claims.
GB0217260A 2002-07-25 2002-07-25 A bearing hub Expired - Fee Related GB2391273B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0217260A GB2391273B (en) 2002-07-25 2002-07-25 A bearing hub
US10/609,654 US7001075B2 (en) 2002-07-25 2003-07-01 Bearing hub

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0217260A GB2391273B (en) 2002-07-25 2002-07-25 A bearing hub

Publications (3)

Publication Number Publication Date
GB0217260D0 GB0217260D0 (en) 2002-09-04
GB2391273A true GB2391273A (en) 2004-02-04
GB2391273B GB2391273B (en) 2005-12-07

Family

ID=9941093

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0217260A Expired - Fee Related GB2391273B (en) 2002-07-25 2002-07-25 A bearing hub

Country Status (2)

Country Link
US (1) US7001075B2 (en)
GB (1) GB2391273B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2495092B (en) * 2011-09-28 2014-01-01 Rolls Royce Plc Sealing arrangement
US8366382B1 (en) 2012-01-31 2013-02-05 United Technologies Corporation Mid-turbine frame buffer system
US10273880B2 (en) * 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9601834B2 (en) 2013-03-15 2017-03-21 Wal-Mart Stores, Inc. Wide angle planar antenna assembly
WO2015030948A1 (en) * 2013-08-28 2015-03-05 United Technologies Corporation Gas turbine engine diffuser cooling and mixing arrangement
US9677423B2 (en) 2014-06-20 2017-06-13 Solar Turbines Incorporated Compressor aft hub sealing system
US10320527B2 (en) * 2015-06-09 2019-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements relating to transmission of additional information from a transmitting device to a receiving device in a wireless communications network
US11280208B2 (en) 2019-08-14 2022-03-22 Pratt & Whitney Canada Corp. Labyrinth seal assembly
CN112648295B (en) * 2019-10-09 2022-07-08 中国航发商用航空发动机有限责任公司 Bearing assembly of aircraft engine and aircraft engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3215384A1 (en) * 1982-04-24 1983-11-03 Bopp & Reuther Gmbh, 6800 Mannheim Rotating meter of vertical design
US4856915A (en) * 1987-01-12 1989-08-15 Ryan Barry F Submersible bearing and hub assembly
FR2659450A1 (en) * 1990-03-09 1991-09-13 Skf France Rolling bearing hub device fitted with a double rotational speed sensor
US5131763A (en) * 1990-04-23 1992-07-21 Skf France Bearing hub equipped with a device for detecting the rotational speed
WO1996003288A1 (en) * 1994-07-25 1996-02-08 Industriverktyg Ab Method for mounting of a bearing in a wheel hub, and a wheel manufactured by the method
US20020015545A1 (en) * 2000-07-31 2002-02-07 Skf Industrie S.P.A. Bearing-hub unit for motor vehicle wheel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB475332A (en) * 1936-06-02 1937-11-17 British Thomson Houston Co Ltd Improvements in and relating to superchargers
GB783118A (en) * 1955-03-25 1957-09-18 Napier & Son Ltd Bearing assemblies for supporting rotary shafts
US3572855A (en) * 1968-10-28 1971-03-30 Apex Bearing Co Fluid seals
GB1404149A (en) * 1971-11-04 1975-08-28 Lucas Industries Ltd Turbine power units
JP3251838B2 (en) * 1996-01-24 2002-01-28 株式会社荏原製作所 Bearing device for vertical rotating machinery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3215384A1 (en) * 1982-04-24 1983-11-03 Bopp & Reuther Gmbh, 6800 Mannheim Rotating meter of vertical design
US4856915A (en) * 1987-01-12 1989-08-15 Ryan Barry F Submersible bearing and hub assembly
FR2659450A1 (en) * 1990-03-09 1991-09-13 Skf France Rolling bearing hub device fitted with a double rotational speed sensor
US5131763A (en) * 1990-04-23 1992-07-21 Skf France Bearing hub equipped with a device for detecting the rotational speed
WO1996003288A1 (en) * 1994-07-25 1996-02-08 Industriverktyg Ab Method for mounting of a bearing in a wheel hub, and a wheel manufactured by the method
US20020015545A1 (en) * 2000-07-31 2002-02-07 Skf Industrie S.P.A. Bearing-hub unit for motor vehicle wheel

Also Published As

Publication number Publication date
US20040017958A1 (en) 2004-01-29
GB0217260D0 (en) 2002-09-04
GB2391273B (en) 2005-12-07
US7001075B2 (en) 2006-02-21

Similar Documents

Publication Publication Date Title
US6991427B2 (en) Casing section
US8371127B2 (en) Cooling air system for mid turbine frame
US7217089B2 (en) Gas turbine engine shroud sealing arrangement
US10975721B2 (en) Cooled containment case using internal plenum
EP2573329B1 (en) Air system architecture for a mid-turbine frame module
CA2944563C (en) Turbine center frame fairing assembly
US6672833B2 (en) Gas turbine engine frame flowpath liner support
US7207776B2 (en) Cooling arrangement
CA2363669C (en) Turbine interstage sealing ring
US7344354B2 (en) Methods and apparatus for operating gas turbine engines
EP1079076A2 (en) Shroud assembly having c-clip retainer
JP2017025911A (en) Shroud assembly for gas turbine engine
US20040086377A1 (en) Turbine cooling, purge, and sealing system
US7669424B2 (en) Combustor assembly
CA2952647C (en) Combustor assembly
GB2434842A (en) Cooling arrangement for a turbine blade shroud
US7770401B2 (en) Combustor and component for a combustor
US7001075B2 (en) Bearing hub
EP2971615A1 (en) Low leakage duct segment using expansion joint assembly
CA2952707C (en) Combustor assembly

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20200725