GB2372559A - A heat exchanger - Google Patents

A heat exchanger Download PDF

Info

Publication number
GB2372559A
GB2372559A GB0104340A GB0104340A GB2372559A GB 2372559 A GB2372559 A GB 2372559A GB 0104340 A GB0104340 A GB 0104340A GB 0104340 A GB0104340 A GB 0104340A GB 2372559 A GB2372559 A GB 2372559A
Authority
GB
United Kingdom
Prior art keywords
heat exchanger
sheet
hot
edge portions
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0104340A
Other versions
GB0104340D0 (en
GB2372559B (en
Inventor
James Ian Oswald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Priority to GB0104340A priority Critical patent/GB2372559B/en
Publication of GB0104340D0 publication Critical patent/GB0104340D0/en
Priority to US10/060,298 priority patent/US6585034B2/en
Publication of GB2372559A publication Critical patent/GB2372559A/en
Application granted granted Critical
Publication of GB2372559B publication Critical patent/GB2372559B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

The spiral heat exchanger (10) has a hot end (16) and a cold end (18) arranged at opposite ends of the heat exchanger (10). A first, relatively hot, fluid is supplied to the hot end (16) of the heat exchanger (10) and the first fluid is removed from the cold end (18) of the heat exchanger (10). The heat exchanger (10) comprises first and second metal sheets (12,14). Each metal sheet (12,14) has hot and cold edge portions (18,20) at the hot and cold ends (16,18) respectively of the heat exchanger (10). Both of the hot and cold edge portions (18) of the first metal sheet (12) are thinner and have a greater diameter than the remainder of the first metal sheet (12) such that both of the hot and cold edge portions (18) contact the hot and cold edge portions (20) of the second sheet (14). The hot and cold edge portions (18) of the first metal sheet are joined to the hot and cold edge portions (20) of the second metal sheet (14).

Description

A HEAT EXCHANGER
The present invention relates to a heat exchanger and in particular to a plate fin heat exchanger or a primary surface heat exchanger.
5 Plate fin type heat exchangers generally comprise a plurality of plates, and a plurality of fins extend between and may be secured to each adjacent pair of plates. The fins may be secured to the plates by brazing, welding, diffusion bonding etc. Alternatively the fins may not be 10 secured to the plates. The fins are defined by corrugated plates. In plate fin type heat exchangers the fins define the passages for the flow of fluids to be put into heat exchange relationship.
Primary surface type heat exchangers generally 15 comprise a plurality of plates and a plurality of spacers extend between each adjacent pair of plates to separate the plates. In primary surface type heat exchangers the plates define passages for the flow of fluids to be put into heat exchange relationship.
20 Gas turbine engines comprise a compressor, a combustion chamber and a turbine arranged in flow series.
The compressor compresses air and supplies it to the combustion chamber. Fuel is burnt in air in the combustion chamber to produce hot gases, which drive the turbine. The 25 turbine drives the compressor and also drives a generator, a pump, a shaft or other load.
Heat exchangers are used in industrial gas turbine engines to return heat from the hot gases leaving the gas turbine engine to the compressed air leaving the compressor 30 before it enters the combustion chamber. These heat exchangers are also known as recuperators, or regenerators.
The recuperator heat exchanger increases the efficiency of the gas turbine engine and the hotter the air entering the combustion chamber the greater is the fuel saving.
35 The use of a spiral heat exchanger for a gas turbine engine recuperator is known from our European Patent
EP0753712B1 and this may be a plate fin type heat exchanger or a primary surface heat exchanger.
A spiral heat exchanger, for example, is manufactured from two sheets of metal which are wound together into a 5 spiral and the edges of the sheets of metal are joined together. The sheets of metal may be stainless steel for low temperature spiral heat exchangers or nickel base alloy for high temperature spiral heat exchangers.
One problem with the manufacture of spiral heat 10 exchangers is ensuring close contact between the edges of the sheets of metal to enable the sheets of metal to be joined together to form a seal.
Accordingly the present invention seeks to provide a novel heat exchanger which reduces, preferably overcomes, 15 the above mentioned problems.
Accordingly the present invention provides a heat exchanger having a hot end and a cold end, the heat exchanger comprising a first sheet and a second sheet, the first and second sheets being wound around an axis, the hot 20 and cold ends of the heat exchanger being arranged at the axial ends of the heat exchanger, each sheet having hot and cold edge portions at the hot and cold ends respectively of the heat exchanger, at least one of the hot and cold edge portions of the first sheet being thinner and having a 25 greater diameter than the remainder of the first sheet such that the at least one of the hot and cold edge portions of the first sheet contacts at least one of the hot and cold edge portions of the second sheet, the hot and cold edge portions of the first sheet being joined to the hot and 30 cold edge portions of the second sheet.
Preferably both of the hot and cold edge portions of the first sheet are thinner and have a greater diameter than the remainder of the first sheet such that both of the hot and cold edge portions of the first sheet contact the 35 hot and cold edge portions of the second sheet.
The heat exchanger may be a primary surface heat exchanger. Alternatively the heat exchanger may be a plate fin heat exchanger. At least one corrugated sheet may be arranged between the first end second sheets.
5 Preferably the edge portions of the sheets are joined by welded joints, brazed joints, bonded joints, crimped joints or glued joints.
Preferably the first sheet comprises a metal or alloy.
Preferably the second sheet comprises a metal or alloy.
10 Preferably the alloy comprises a nickel base alloy or steel. Preferably the alloy comprises stainless steel.
Preferably the heat exchanger is a spiral heat exchanger. The present invention also provides a method of IS manufacturing a heat exchanger, the heat exchanger having a hot end and a cold end, the hot and cold ends of the heat exchanger being arranged at the axial ends of the heat exchanger, comprising forming a first sheet, the first sheet having hot and cold edge portions, thinning at least 20 one of the hot and cold edge portions of the first sheet such that the at least one of the hot and cold edge portions is thinner and longer than the remainder of the first sheet, forming a second sheet, the second sheet having hot and cold edge portions, winding the first and 25 second sheets together around an axis such that the first sheet is within the second sheet and such that the at least one of the hot and cold edge portions of the first sheet has a greater diameter than the remainder of the first sheet such that the at least one of the hot and cold edge 30 portions of the first sheet contacts the at least one of the hot and cold edge portions of the second sheet, and joining the hot and cold edge portions of the first sheet to the hot and cold edge portions of the second sheet.
Preferably the method comprises thinning both of the 35 hot and cold edge portions of the first sheet such that both of the hot and cold edge portions are thinner and have
a greater diameter than the remainder of the first sheet such that both of the hot and cold edge portions of the first sheet contact the hot and cold edge portions of the second sheet.
5 The heat exchanger may be a primary surface heat exchanger. Alternatively the heat exchanger may be a plate fin heat exchanger. The method may comprise placing at least one corrugated sheet between the first and second sheets and winding the first and second sheets and the at 10 least one corrugated sheet into a spiral.
Preferably the joining of the edge portions of the first and second sheets comprises welding, brazing, bonding, crimping or gluing.
Preferably the method comprises forming the first 15 sheet from a metal or alloy. Preferably the method comprises forming the second sheet from a metal or alloy.
Preferably the alloy comprises a nickel base alloy or steel. Preferably the alloy comprises stainless steel.
Preferably the thinning of the at least one hot and 20 cold edge portion of the first sheet comprises rolling or hammering. Preferably the first and second sheets are wound into a spiral to form a spiral heat exchanger.
The present invention will be more fully described by 25 way of example with reference to the accompanying drawings in which: Figure 1 shows a heat exchanger according to the present invention.
Figure 2 is a radial cross-sectional view through the 30 heat exchanger shown in figure 1.
Figure 3 is an enlarged axial cross-sectional view through a portion of the heat exchanger shown in figures 1 and 2.
Figure 4 is an alternative radial cross-sectional view 35 through the heat exchanger shown in figure 1.
Figure 5 is a further radial cross-sectional view through the heat exchanger shown in figure 1.
A spiral heat exchanger 10 suitable for a gas turbine engine intercooler, regenerator or recuperator is shown in 5 figures 1, 2 and 3. The spiral heat exchanger 10 is annular and comprises a first metal sheet 12 and a second metal sheet 14, which are arranged in a spiral. The spiral heat exchanger 10 has a hot end 16 and a cold end 18 arranged at opposite axial ends of the spiral heat 10 exchanger 10. A first, relatively hot, fluid is supplied to the hot end 16 of the spiral heat exchanger 10 and the first fluid is removed from the cold end 18 of the spiral heat exchanger 10.
The first and second metal sheets 12 and 14 15 respectively form a primary surface type heat exchanger, as shown in figure 2. The first fluid is supplied to an axially extending passage 15 defined between two confronting surfaces of the first and second metal sheets 12 and 14 respectively. A second fluid is supplied to an 20 axially extending passage 17 defined between the other two confronting surfaces of the first and second metal sheets 12 and 14.
Alternatively the first and second metal sheets 12 and 14 respectively may form a plate fin type heat exchanger 25 lOB as shown in figure 4. The first fluid is supplied to axially extending passages 15 defined by a corrugated sheet 11 between the two confronting surfaces of the first and second metal sheets 12 and 14 respectively. A second fluid is supplied to axially extending passages 17 defined by a 30 corrugated sheet 13 between the other two confronting surfaces of the first and second metal sheets 12 and 14.
Alternatively the first and second metal sheets 12 and 14 respectively may form a combination of a plate type and a plate fin type heat exchanger lOC as shown in figure 5.
35 The first fluid is supplied to axially extending passage 15 defined between the two confronting surfaces of the first
and second metal sheets 12 and 14 respectively. A second fluid is supplied to axially extending passages 17 defined by a corrugated sheet 13 between the other two confronting surfaces of the first and second metal sheets 12 and 14.
5 The first metal sheet 12 is radially within the second metal sheet 14 at each respective turn around the axis X of the spiral heat exchanger 10. The first metal sheet 12 has a hot edge portion 20 and a cold edge portion at the hot and cold ends 16 and 18 respectively of the spiral heat 10 exchanger 10, figure 3 only shows the hot end 16 of the spiral heat exchanger 10. The second metal sheet 14 has a hot edge portion 22 and a cold edge portion at the hot and cold ends 16 and 18 respectively of the spiral heat exchanger 10. The hot edge portions 20 and 22 of the first 15 and second metal sheets 12 and 14 are joined together to form a seal by a spiral joint 24. The joint 22 may be a welded joint, a brazed joint, a bonded joint or a glued joint. Similarly the cold edge portions (not shown) of the first and second metal sheets 12 and 14 are joined together 20 to form a seal by a spiral joint. This joint may be a welded joint, a brazed joint, a bonded joint or a glued joint. The hot and cold edge portions 20 of the first metal sheet 12, at each radial plane through the spiral heat 25 exchanger 10, are thinner, circumferentially longer and hence at a greater diameter than the remainder of the first metal sheet 12. In contrast the hot and cold edge portions 22 of the second metal sheet 14, at each radial plane through the spiral heat exchanger 10, are the same 30 thickness, the same circumferential length and hence the same diameter as the remainder of the second metal sheet 14. Therefore the hot and cold edge portions 20 of the first metal sheet 12 extend radially outwardly towards the 35 hot and cold edge portions 22 respectively of the second metal sheet 14. The thinned hot and cold edge portions 20
of the first metal sheet 12 enable close contact between the hot and cold edge portions 20 of the first metal sheet 12 and the hot and cold edge portions 22 respectively of the second metal sheet 14. This enables the hot and cold 5 edge portions 20 of the first metal sheet 12 to be joined more easily to the hot and cold edge portions 22 respectively of the second metal sheet 14.
Preferably the second fluid is supplied to the axially extending passage 17 by one or more apertures, passages or 10 manifolds 24 extending radially through the first and second metal sheets 12 and 14 at one axial end of the spiral heat exchanger 10. Similarly the second fluid may be removed from the axially extending passage 17 by one or more apertures, passages or manifolds (not shown) extending 15 radially through the first and second metal sheets 12 and 14 at the other axial end of the spiral heat exchanger 10.
This is described more fully in our European patent EP0753712B1.
Alternatively the second fluid is supplied to the 20 axially extending passage 17 by one or more manifolds (not shown) extending radially at one axial end of the spiral heat exchanger 10. Similarly the second fluid may be removed from the axially extending passage 17 by one or more manifolds (not shown) extending radially at the other 25 axial end of the spiral heat exchanger 10. These radially extending manifolds supply or remove the second fluid through radially extending, angularly spaced zones, or sectors, where the hot and cold edge portions 20 and 22 are not joined together to allow the flow of the second fluid 30 axially into or out of the axially extending passage 17.
The hot and cold edge portions 20 and 22 may have pieces cut away or pieces bent to allow this. This is described more fully in European patent EP0798527B1.
The first and second metal sheets 12 and 14 have a 35 thickness of up to lmm but preferably have a thickness of 0.25mm or less.
The spiral heat exchanger 10 is manufactured by forming the first and second metal sheets 12 and 14 from a suitable metal or suitable alloy. The first and second metal sheets 12 and 14 respectively have hot and cold edge 5 portions 20 and 22. The hot and cold edge portions 20 of the first metal sheet 12 are formed, such that the hot and cold edge portions 20 are thinner and longer than the remainder of the first metal sheet 10.
The first and second metal sheets 10 and 12 are wound 10 together into a spiral such that the first metal sheet 12 is within the second metal sheet 14. Thus the hot and cold edge portions 20 of the first metal sheet 12 have a greater diameter than the remainder of the first metal sheet 12 such that the hot and cold edge portions 20 of the first IS metal sheet 12 contact the hot and cold edge portions 22 of the second metal sheet 14. The hot and cold edge portions 20 of the first metal sheet 12 are then joined to the hot and cold edge portions 22 of the second metal sheet 14.
In the case of a plate fin type heat exchanger a 20 corrugated metal sheet is placed between the first and second metal sheets 12 and 14 and the first and second metal sheets 12 and 14 and the at least one corrugated sheet are wound together into a spiral.
The hot and cold edge portions 20 and 22 of the first 25 and second metal sheets 12 and 14 respectively are joined by welding, brazing, bonding, crimping or gluing.
The alloy comprises a nickel base alloy or steel, preferably the steel comprises a stainless steel.
The hot and cold edge portions 18 of the first metal 30 sheet 12 are thinned by rolling or hammering.
The spiral heat exchanger 10 is able to accommodate the difference in thermal expansion coefficients of the metals, or alloys, of the first and second metal sheet portions 20 and 22 because the spiral heat exchanger 10 is 35 manufactured from the curved first and second metal sheets 12 and 14 and this gives it excellent thermal flexibility.
Li 9 Although the invention has been described with reference to a recuperator, the invention may be applied to an intercooler or other type of heat exchanger. Although the invention has been described with reference to a gas 5 turbine engine heat exchanger, the invention may be applicable to heat exchangers for other engines or other purposes. Although the invention has been described with reference to metal sheets the invention may be applied to 10 other sheets, for example plastic sheets or ceramic sheets.
Although the invention has described both of the hot and cold edge portions of the first metal sheet being thinner and having a greater diameter than the remainder of the first metal sheet it may be possible for only one of 15 the hot and cold edge portions to be thinner and have a greater diameter than the remainder of the first metal sheet. Although the invention has described the whole of both of the hot and cold edge portions of the first metal sheet 20 being in contact with the whole of the hot and cold edge portions of the second metal sheet, it may be possible for only one or more portions of one of the hot and cold edge portions of the first metal sheet to be in contact with a respective portion of the hot and cold edges of the second 25 metal sheet.
Although the invention has been described with reference to a spiral heat exchanger the invention is applicable to other heat exchangers in which the metal sheets are formed to produce a curve, for example each 30 sheet may be formed into a circle, or an ellipse, and the metal sheets are arranged concentrically. Thus the metal sheets are wound around an axis to produce a spiral heat exchanger or a circular heat exchanger etc.

Claims (1)

  1. Cla ms: 1. A heat exchanger having a hot end and a cold end, the heat
    exchanger comprising a first sheet and a second sheet, the first and second sheets being wound around an axis, the s hot and cold ends of the heat exchanger being arranged at the axial ends of the heat exchanger, each sheet having hot and cold edge portions at the hot and cold ends respectively of the heat exchanger, at least one of the hot and cold edge portions of the first sheet being thinner and 10 having a greater diameter than the remainder of the first sheet such that the at least one of the hot and cold edge portions of the first sheet contacts at least one of the hot and cold edge portions of the second sheet, the hot and cold edge portions of the first sheet being joined to the 15 hot and cold edge portions of the second sheet.
    2. A heat exchanger as claimed in claim 1 wherein both of the hot and cold edge portions of the first sheet being thinner and having a greater diameter than the remainder of the first sheet such that both of the hot and cold edge 20 portions of the first sheet contact the hot and cold edge portions of the second sheet.
    3. A heat exchanger as claimed in claim 1 or claim 2 wherein the heat exchanger is a primary surface heat exchanger. 25 4. A heat exchanger as claimed in claim 1 or claim 2 wherein the heat exchanger is a plate fin heat exchanger.
    5. A heat exchanger as claimed in claim 4 wherein at least one corrugated sheet is arranged between the first and second sheets.
    30 6. A heat exchanger as claimed in any of claims 1 to 5 wherein the edge portions of the sheets are joined by welded joints, brazed joints, bonded joints, crimped joints or glued joints.
    7. A heat exchanger as claimed in any of claims 1 to 6 35 wherein the first sheet comprises a metal or an alloy.
    8. A heat exchanger as claimed in any of claims 1 to 6 wherein the second sheet comprises a metal or alloy.
    9. A heat exchanger as claimed in claim 7 or 8 wherein the alloy comprises a nickel base alloy or steel.
    5 10. A heat exchanger as claimed in claim 9 wherein the alloy comprises stainless steel.
    11. A heat exchanger as claimed in any of claims 1 to 10 wherein the heat exchanger is a spiral heat exchanger, the first and second sheets are wound in a spiral.
    10 12. A heat exchanger substantially as hereinbefore described with reference to figures 1, 2 and 3 of the accompanying drawings.
    13. A heat exchanger substantially as hereinbefore described with reference to figures 1, 2 and 4 of the IS accompanying drawings.
    14. A heat exchanger substantially as hereinbefore described with reference to figures 1, 2 and 5 of the accompanying drawings.
    15. A gas turbine engine comprising a heat exchanger as 20 claimed in any of claims 1 to 14.
    16. A method of manufacturing a heat exchanger, the heat exchanger having a hot end and a cold end, the hot and cold ends of the heat exchanger being arranged at the axial ends of the heat exchanger, comprising forming a first sheet, 25 the first sheet having hot and cold edge portions, thinning at least one of the hot and cold edge portions of the first sheet such that the at least one of the hot and cold edge portions is thinner and longer than the remainder of the first sheet, forming a second sheet, the second sheet 30 having hot and cold edge portions, winding the first and second sheets together around an axis such that the first sheet is within the second sheet and such that the at least one of the hot and cold edge portions of the first sheet has a greater diameter than the remainder of the first 35 sheet such that the at least one of the hot and cold edge portions of the first sheet contacts the at least one of
    the hot and cold edge portions of the second sheet, and joining the hot and cold edge portions of the first sheet to the hot and cold edge portions of the second sheet.
    17. A method as claimed in claim 16 comprising thinning 5 both of the hot and cold edge portions of the first sheet such that both of the hot and cold edge portions are thinner and have a greater diameter than the remainder of the first sheet such that both of the hot and cold edge portions of the first sheet contact the hot and cold edge 10 portions of the second sheet.
    18. A method as claimed in claim 16 or claim 17 wherein the heat exchanger is a primary surface heat exchanger.
    19. A method as claimed in claim 16 or claim 17 wherein the heat exchanger is a plate fin heat exchanger.
    15 20. A method as claimed in claim 19 comprising placing at least one corrugated sheet between the first and second sheets and winding the first and second sheets and the at least one corrugated sheet into a spiral.
    21. A method as claimed in any of claims 16 to 20 wherein 20 the joining of the edge portions of the first and second sheets comprises welding, brazing, bonding, crimping or gluing. 22. A method as claimed in any of claims 16 to 21 comprising forming the first sheet from a metal or alloy.
    25 23. A method as claimed in any of claims 16 to 22 comprising forming the second sheet from a metal or alloy.
    24. A method as claimed in claim 22 or 23 wherein the alloy comprises a nickel base alloy or steel.
    25. A method as claimed in claim 24 wherein the alloy 30 comprises stainless steel.
    26. A method as claimed in any of claims 16 to 25 wherein the thinning of the at least one hot and cold edge portion of the first sheet comprises rolling or hammering.
    27. A method as claimed in any of claims 16 to 26 35 comprising the first and metal sheets into a spiral to form a spiral heat exchanger.
    28. A method of manufacturing a heat exchanger substantially as hereinbefore described with reference to figures 1, 2 and 3 of the accompanying drawings.
    29. A method of manufacturing a heat exchanger substantially as hereinbefore described with reference to figures 1, 2 and 4 of the accompanying drawings.
    30. A method of manufacturing a heat exchanger substantially as hereinbefore described with reference to figures 1, 2 and 5 of the accompanying drawings.
GB0104340A 2001-02-21 2001-02-21 A heat exchanger Expired - Lifetime GB2372559B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0104340A GB2372559B (en) 2001-02-21 2001-02-21 A heat exchanger
US10/060,298 US6585034B2 (en) 2001-02-21 2002-02-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0104340A GB2372559B (en) 2001-02-21 2001-02-21 A heat exchanger

Publications (3)

Publication Number Publication Date
GB0104340D0 GB0104340D0 (en) 2001-04-11
GB2372559A true GB2372559A (en) 2002-08-28
GB2372559B GB2372559B (en) 2005-01-05

Family

ID=9909250

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0104340A Expired - Lifetime GB2372559B (en) 2001-02-21 2001-02-21 A heat exchanger

Country Status (2)

Country Link
US (1) US6585034B2 (en)
GB (1) GB2372559B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600316B2 (en) 2003-08-12 2009-10-13 Rolls-Royce Plc Heat exchanger and a method of manufacturing a heat exchanger

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807300B2 (en) * 2006-01-31 2010-10-05 Medtronic, Inc. Resistance-stabilizing additives for electrolyte
US6854509B2 (en) * 2001-07-10 2005-02-15 Matthew P. Mitchell Foil structures for regenerators
US7191824B2 (en) * 2003-11-21 2007-03-20 Dana Canada Corporation Tubular charge air cooler
US7717166B2 (en) * 2004-05-21 2010-05-18 United Aluminum Corporation Fin stock for a heat exchanger and a heat exchanger
DE102004041785A1 (en) * 2004-08-21 2006-02-23 Gast, Karl Heinz, Dipl.-Ing. (FH) Method and device for operating systems with aggregate state changing media
US7775031B2 (en) * 2008-05-07 2010-08-17 Wood Ryan S Recuperator for aircraft turbine engines
US20110146226A1 (en) * 2008-12-31 2011-06-23 Frontline Aerospace, Inc. Recuperator for gas turbine engines
US8474515B2 (en) * 2009-01-16 2013-07-02 Dana Canada Corporation Finned cylindrical heat exchanger
US20100193168A1 (en) * 2009-02-02 2010-08-05 Johnson Jr Alfred Leroy Heat exchanger
US8944155B2 (en) * 2010-07-15 2015-02-03 Dana Canada Corporation Annular axial flow ribbed heat exchanger
FR2982662B1 (en) * 2011-11-15 2014-01-03 Faurecia Sys Echappement SPIRAL-SHAPED EXCHANGER AND METHOD OF MANUFACTURING SUCH EXCHANGER
USD763418S1 (en) * 2014-07-23 2016-08-09 Dhiti Towiwat Heat exchanger
CN104501632B (en) * 2014-12-15 2016-08-24 洛阳瑞昌石油化工设备有限公司 A kind of arc plate type heat exchanger
GB201513415D0 (en) * 2015-07-30 2015-09-16 Senior Uk Ltd Finned coaxial cooler
WO2017058385A1 (en) 2015-09-29 2017-04-06 Exxonmobil Chemical Patents Inc. Polymerization using a spiral heat exchanger
WO2018044395A1 (en) 2016-08-31 2018-03-08 Exxonmobil Chemical Patents Inc. Spiral heat exchanger as a preheater in polymer devolatilization processes
JP2019095119A (en) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 Heat exchange device
SG11202004486XA (en) 2018-02-12 2020-08-28 Exxonmobil Chemical Patents Inc Metallocene catalyst feed system for solution polymerization process
WO2021086584A1 (en) 2019-10-29 2021-05-06 Exxonmobil Chemical Patents Inc. Reactor for polymerization processes
WO2021086678A1 (en) 2019-10-29 2021-05-06 Exxonmobil Chemical Patents Inc. Reactor for polymerization process
WO2023114813A1 (en) 2021-12-17 2023-06-22 Exxonmobil Chemical Patents Inc. Processes for making propylene-based copolymers having broad cds and mwds
WO2023114815A1 (en) 2021-12-17 2023-06-22 Exxonmobil Chemical Patents Inc. Processes for making polyolefins with composition control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203205A (en) * 1976-12-27 1980-05-20 Spirec l'Echangeur Spirale Ever Clean Method and apparatus for the manufacture of a heat exchanger
GB2156961A (en) * 1984-04-05 1985-10-16 Apv Int Ltd Spiral heat exchanger
EP0239490A1 (en) * 1986-03-24 1987-09-30 Etienne Jouet Spiral heat exchanger and method of making it
EP0798527A1 (en) * 1996-08-05 1997-10-01 Hubert Antoine Spiral heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657018A (en) * 1948-12-06 1953-10-27 Modine Mfg Co Heat exchanger
US3007680A (en) * 1959-07-02 1961-11-07 William E Harris Heat exchange device
US4301862A (en) * 1979-01-24 1981-11-24 Mcalister Roy E Multiple fluid medium system and improved heat exchanger utilized therein
DE69610589T2 (en) * 1995-07-12 2001-02-08 Rolls Royce Plc Heat exchanger
EP0933608B1 (en) * 1996-10-17 2003-04-02 Honda Giken Kogyo Kabushiki Kaisha Heat exchanger
WO1998044305A1 (en) * 1997-04-02 1998-10-08 Creare Inc. Radial flow heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203205A (en) * 1976-12-27 1980-05-20 Spirec l'Echangeur Spirale Ever Clean Method and apparatus for the manufacture of a heat exchanger
GB2156961A (en) * 1984-04-05 1985-10-16 Apv Int Ltd Spiral heat exchanger
EP0239490A1 (en) * 1986-03-24 1987-09-30 Etienne Jouet Spiral heat exchanger and method of making it
EP0798527A1 (en) * 1996-08-05 1997-10-01 Hubert Antoine Spiral heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600316B2 (en) 2003-08-12 2009-10-13 Rolls-Royce Plc Heat exchanger and a method of manufacturing a heat exchanger
US7918268B2 (en) 2003-08-12 2011-04-05 Rolls-Royce Plc Heat exchanger

Also Published As

Publication number Publication date
GB0104340D0 (en) 2001-04-11
US6585034B2 (en) 2003-07-01
US20020112844A1 (en) 2002-08-22
GB2372559B (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US6585034B2 (en) Heat exchanger
US7918268B2 (en) Heat exchanger
JP3868503B2 (en) Heat exchanger
JP3998938B2 (en) Heat exchanger and manufacturing method thereof
US8028410B2 (en) Gas turbine regenerator apparatus and method of manufacture
US7147050B2 (en) Recuperator construction for a gas turbine engine
US4229868A (en) Apparatus for reinforcement of thin plate, high pressure fluid heat exchangers
JP2007303813A (en) Self-braking radiator side plate
US11906249B2 (en) Tube bank heat exchanger
JPH05505231A (en) Stress relief for annular double water device
CN101398274B (en) Heat exchanger tube assembly welded by laser
WO2010087801A1 (en) Heat exchanger
US6904961B2 (en) Prime surface gas cooler for high temperature and method for manufacture
Antoine et al. The ACTE spiral recuperator for gas turbine engines
JP2006292353A (en) Heat exchanger and manufacturing method for it
WO2005045345A2 (en) Recuperator construction for a gas turbine engine
US20030116311A1 (en) High temperature primary surface recuperator air cell
US6769479B2 (en) Primary surface recuperator sheet
JP4352504B2 (en) Plate-fin heat exchanger
US11879691B2 (en) Counter-flow heat exchanger
JP2004069255A (en) Multipipe heat exchanger
JP6617477B2 (en) Stainless steel clad for gasket
JP2006098035A (en) Regenerative heat exchanger
JPH04324030A (en) Gas turbine combustion device
JP2004093038A (en) High-temperature service heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Expiry date: 20210220