GB2353095A - Autonomous vacuum cleaner with top-mounted, side-looking obstacle sensor - Google Patents

Autonomous vacuum cleaner with top-mounted, side-looking obstacle sensor Download PDF

Info

Publication number
GB2353095A
GB2353095A GB9917913A GB9917913A GB2353095A GB 2353095 A GB2353095 A GB 2353095A GB 9917913 A GB9917913 A GB 9917913A GB 9917913 A GB9917913 A GB 9917913A GB 2353095 A GB2353095 A GB 2353095A
Authority
GB
United Kingdom
Prior art keywords
cleaner
vehicle
sensor
sensors
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9917913A
Other versions
GB2353095B (en
GB9917913D0 (en
Inventor
David Lindsey Bisset
Michael David Aldred
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Notetry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Notetry Ltd filed Critical Notetry Ltd
Publication of GB9917913D0 publication Critical patent/GB9917913D0/en
Publication of GB2353095A publication Critical patent/GB2353095A/en
Application granted granted Critical
Publication of GB2353095B publication Critical patent/GB2353095B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/902Application using ai with detail of the ai system
    • Y10S706/903Control
    • Y10S706/905Vehicle or aerospace

Abstract

An autonomous vacuum cleaner has a plurality of sensors for detecting obstacles in the vicinity of the vehicle, characterised in that at least one sensor (212) is located on the vehicle and directioned so as to detect the presence of obstacles located to one side of the vehicle at or near an uppermost extremity of the vehicle. The sensor (212) is ultrasonic and is provided to enable the cleaner to follow the line of an object, eg a sofa, which is too low for the cleaner to pass freely beneath. The cleaner also comprises a brush bar which protrudes on one side of the cleaner, one of the sensors being arranged to detect obstacles located on this side of the cleaner.

Description

2353095 Sensors The invention relates to an arrangement of sensors for an
autonomous vehicle, particularly but not exclusively for an autonomous vacuum cleaner.
It is an object of the present invention to provide an autonomous vehicle having a plurality of sensors for detecting obstacles in the path of the vehicle in which the arrangement and nature of the sensors is selected so as to give improved performance of the vehicle during operation. It is a further object of the invention to provide an autonomous vehicle whose sensor arrangement is capable of detecting obstacles in its path with a high degree of accuracy. It is a still further object of the invention to provide an autonomous vehicle which is capable of autonomous operation with a high degree of safety.
The invention provides an autonomous vehicle having a plurality of sensors for detecting obstacles in the vicinity of the vehicle, characterised in that at least one sensor is located on the vehicle and directioned so as to detect the presence of obstacles located to one side of the vehicle at or near an uppermost extremity of the vehicle.
Advantageous and preferred features of the invention are set out in the subsidiary claims.
An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, wherein: Figure I is a perspective view of an autonomous vehicle, specifically a vacuum cleaner, according to the invention; Figure 2 is a front view of the autonomous vehicle of Figure 1; Figure 3 is a rear view of the autonomous vehicle of Figure 1; Figures 4a and 4b are side views, taken from the right and left sides respectively, of the autonomous vehicle of Figure 1; 2 Figures 5a and 5b are underneath and plan views respectively of the autonomous vehicle of Figure 1; Figure 6 is a schematic view illustrating the positioning of infra-red sensors on the autonomous vehicle of Figure 1; Figure 7 is a schematic view illustrating the grouping of infra-red sensors on the autonomous vehicle of Figure 1; Figure 8 is a schematic view illustrating the positioning of ultra-sonic sensors on the autonomous vehicle of Figure 1; and Figure 9 is a schematic view illustrating the positioning of further infra-red sensors on the autonomous vehicle of Figure 1.
The embodiment illustrated takes the form of an autonomous vacuum cleaner. The vacuum cleaner 100 shown in the said drawings has a supporting chassis 102 which is generally circular in shape and is supported on two driven wheels 104 and a castor wheel 106. The chassis 102 is preferably manufactured from high-strength moulded plastics material, such as ABS, but can equally be made from metal such as aluminium or steel. The chassis 102 provides support for the components of the cleaner 100 which will be described below. The driven wheels 104 are arranged at either end of a diameter of the chassis 102, the diameter lying perpendicular to the longitudinal axis of the cleaner 100. Each driven wheel 104 is moulded from a high-strength plastics material and carries a comparatively soft, ridged band around its circumference to enhance the grip of the wheel 104 when the cleaner 100 is traversing a smooth floor. The soft, ridged band also enhances the ability of the wheels 104 to mount and climb over small obstacles. The driven wheels 104 are mounted independently of one another via support bearings (not shown) and each driven wheel 104 is connected directly to a motor 105 which is capable of driving the respective wheel 104 in either a forward direction or a reverse direction. By driving both wheels 104 for-ward at the same speed, the cleaner 100 can be driven in a forward direction. By driving both wheels 104 in a reverse direction at the same speed, the cleaner 100 can be driven in a backward direction. By driving the wheels 104 in opposite directions, the cleaner 100 can be made to rotate about its own central axis so as to effect a turning manoeuvre. The aforementioned 3 method of driving a vehicle is well known and will not therefore be described any further here.
The castor wheel 106 is significantly smaller in diameter than the driven wheels 104 as can be seen from, for example, Figures 4a and 4b. The castor wheel 106 is not driven and merely serves to support the chassis 102 at the rear of the cleaner 100. The location of the castor wheel 106 at the trailing edge of the chassis 102, and the fact that the castor wheel 106 is swivellingly mounted on the chassis by means of a swivel joint I 10, allows the castor wheel 106 to trail behind the cleaner 100 in a manner which does not hinder the manoeuvrability of the cleaner 100 whilst it is being driven by way of the driven wheels 104. The castor wheel 106 can be made from a moulded plastics material or can be formed from another synthetic material such as Nylon.
Mounted on the underside of the chassis 102 is a cleaner head 122 which includes a suction opening 124 facing the surface on which the cleaner 100 is supported. The suction opening 124 is essentially rectangular and extends across the majority of the width of the cleaner head 122. A brush bar 125 is rotatably mounted in the suction opening 124 and a motor (not shown) is mounted on the upper surface of the cleaner head 122 for driving the brush bar 125 by way of a drive belt (not shown) extending between a shaft of the motor and the brush bar 125. The cleaner head 122 is mounted on the chassis 102 in such a way that the cleaner head 122 is able to float on the surface to be cleaned. This is achieved in this embodiment in that the cleaner head 122 is pivotally connected to an arm (not shown) which in turn is pivotally connected to the underside of the chassis 102. The double articulation of the connection between the cleaner head 122 and the chassis 102 allows the cleaner head to move freely in a vertical direction with respect to the chassis 102. This enables the cleaner head to climb over small obstacles such as books, magazines, rug edges, etc. Obstacles of up to approximately 25mm in height can be traversed in this way. A flexible or telescopic conduit is located between a rear portion of the cleaner head 122 and an inlet port located in the chassis 102.
4 As can be seen from Figures 5a and 5b, the cleaner head 122 is asymmetrically mounted on the chassis 102 so that one side of the cleaner head 122 protrudes beyond the general circumference of the chassis 102. This allows the cleaner 100 to clean up to the edge of a room on the side of the cleaner 100 on which the cleaner head 122 protrudes.
The chassis 102 carries a plurality of sensors which are designed and arranged to detect obstacles in the path of the cleaner 100 and its proximity to, for example, a wall or other boundary such as a piece of furniture. The sensors comprise several ultra-sonic sensors and several infra-red sensors. The array of sensors will be described in more detail below. Control software, comprising navigation controls and steering devices for navigating and manoeuvring the cleaner 100 around a defined area in order to clean the carpet or other surface within the area, is housed within a housing 142 located beneath a control panel 144 or elsewhere within the cleaner 100. The specific design of the control software does not form part of the present invention. In the manner of known autonomous vehicles, the control software is able to receive the outputs of the sensors and to drive the motors 105 so that obstacles are avoided whilst following a path specified by algorithms appropriate to the nature of the vehicle. Any appropriate software can be used in this way to navigate the cleaner 100 around a room to be cleaned.
The vacuum cleaner 100 also includes a motor and fan unit 150 supported on the chassis 102 for drawing dirty air into the vacuum cleaner 100 via the suction opening 124 in the cleaner head 122. The chassis 102 also carries a cyclonic separator 152 for separating dirt and dust from the air drawn into the cleaner 100. The inlet port which communicates with the rear portion of the cleaner head 122 via the conduit mentioned above forms the inlet to the cyclonic separator 152. The cyclonic separator, which preferably comprises two cyclones in series, need not be described any further here, being known technology and described adequately elsewhere.
The cyclonic separator 152 is releasable from the chassis 102 in order to allow emptying of the cyclonic separator 152. A hooked catch (not shown) is provided by means of which the cyclonic separator 152 is held in position when the cleaner 100 is in use. When the hooked catch is released (by manual pressing of a button 134 located in the control panel 144), the cyclonic separator 152 can be lifted away from the chassis 102 by means of gripper portions 170. The cyclonic separator 152 can then be emptied.
Two battery packs 160 are located on the chassis 102 on either side of the cyclonic separator 152. The battery packs 160 are identical and are spaced from the central axis of the vacuum cleaner 100 by a significant distance, say between 50 and 150 mm.
The vacuum cleaner 100 described above operates in the following manner. In order for the cleaner 100 to traverse the area to be cleaned, the wheels 104 are driven by the motors 105 which, in turn, are powered by the batteries 160. The direction of movement of the cleaner 100 is determined by the control software which communicates with the sensors which are designed to detect any obstacles in the path of the cleaner 100 so as to navigate the cleaner 100 around the area to be cleaned. The normal forward direction of the cleaner 100 is such that the cleaner head 122 trails behind the driven wheels 104. The battery packs 160 also power the motor and fan unit 150 which draws air into the cleaner 100 via the cleaner head 122 and passes it to the cyclonic separator 152 where the dirt and dust is separated from the airflow. The battery packs 160 are also used to power the motor which drives the brush bar 125 which, in turn assists with pick-up, particularly on carpets. The air which exits the cyclonic separator 152 is passed across the motor and fan unit 150 by appropriate ducting, as is common in many appliances, including vacuum cleaners.
The sensor array forming part of the vacuum cleaner 100 will now be described in more detail. The array comprises a plurality of ultra-sonic sensors and a plurality of infra-red sensors. The majority of the sensors are located in a forward surface 180 of the vacuum cleaner 100. The forward surface 180 is substantially semi-circular in plan view, as can be seen from Figures 5a and 5b. However, further sensors are located at the uppermost 6 extremity of the cleaner 100, at the rear of the cleaner 100, immediately over the brush bar 122, and on the underside of the cleaner 100. Details are given below.
Three ultra-sonic sensors 202, 204 and 206, each consisting of an ultrasonic emitter and an ultra-sonic receiver, are positioned in the forward surface 180. A first of the said ultra-sonic sensors 202, comprising an emitter 202a and a receiver 202b, is directed in a forward direction so that the emitted signals are transmitted in the normal forward direction of travel of the cleaner 100. A second ultra-sonic sensor 204, comprising an emitter 204a and a receiver 204b, is directed such that the emitted signals are transmitted outwardly to the left of the cleaner 100 in a direction which is perpendicular to the direction of transmission by the ultra-sonic sensor 202. A third ultra-sonic sensor 206, comprising an emitter 206a and a receiver 206b, is directed such that the emitted signals are transmitted outwardly to the right of the cleaner 100 in a direction which is perpendicular to the direction of transmission by the ultra-sonic sensor 202 and opposite to the direction of transmission by the ultra-sonic sensor 204, A fourth ultra-sonic sensor 208, comprising an emitter 208a and a receiver 208b, is located in the rear of the cleaner 100 (see Figure 3) and is directed rearwardly so that the emitted signals are transmitted parallel to the normal forward direction of travel of the cleaner 100 but in the opposite direction. These four sensors 202, 204, 206, 208 detect the presence of walls and obstacles to the front, left, right and rear of the cleaner 100.
A fifth ultra-sonic sensor 210 is located in the forward surface 180. The fifth ultra-sonic sensor 210 comprises an emitter 21 Oa and a receiver 21 Ob. The fifth ultra-sonic sensor 2 10 is positioned so that the emitter 21 Oa transmits at an angle which is substantially midway between the directions in which the forward- and left-looking sensors 202, 204 transmit. In the embodiment, the sensor 210 transmits in a direction of 45'to the normal forward direction of travel of the vacuum cleaner 100. As can be seen from Figure 1, the sensor 210 transmits to the side of the cleaner 100 on which the cleaner head 122 protrudes.
7 Figure 8 shows schematically the arrangement of ultra-sonic sensors 202, 204, 206, 208 and 2 10 on the vacuum cleaner 100 if the normal direction of forward travel is along the arrow F. In the arrangement shown, the angle a is 45', although variations to this arrangement are possible.
The inclusion of the sensor 2 10 provides the vehicle 100 with greater angular control as it moves along a wall or other obstacle with the cleaner head 122 thereagainst or parallel thereto. The sensor 210 is able to detect the presence of a wall or similar large obstacle and, if the wall or other obstacle alongside which the vehicle is moving disappears (for example, when a comer is encountered), then the vehicle 100 is made aware of the change earlier than it would have been if the sensor 210 had not been present. This allows the vehicle to take account of corners and other changes in its environment with greater accuracy and manoeuvrablity.
A sixth ultrasonic sensor 212 is positioned on the upper surface of the housing 142. The sensor 212 is arranged in its own housing 214 which is located so as to ensure that the sensor 212 is level with the uppermost extremity of the vehicle 100. The sensor 212 comprises an emitter 212a and a receiver 212b, both of which are directioned so that they send and receive signals to and from an area directly to the side of the vehicle 100. The side of the vehicle 100 to and from which signals are sent and received is the same side of the vehicle 100 on which the cleaner head 122 protrudes. This allows the vehicle 100 to follow the line of an object which is too low for the cleaner to pass freely beneath but whose boundary does not extend to a level sufficiently close to the surface being cleaned for other sensors to be effective. A specific example is a sofa which has a seat base which is too low for the vacuum cleaner 100 to pass freely underneath but which is supported on legs at each comer. The cleaner must be able to treat the edge of the sofa seat base as a boundary without trying to enter the space beneath the seat base where it could become lodged or damaged. The other sensors (to be described below) which are normally used to cause the cleaner 100 to follow a wall or other boundary will not be effective if the seat base does not extend below a level which is about 15-20 8 cm above the level of the surface to be cleaned and therefore the sixth sensor 212 provides an advantage in this respect.
A plurality of infra-red sensors are also included in the forward surface 180. The infrared sensors comprise emitters 220 and receivers 230. Most of the emitters 220 are arranged in four groups of three which are spaced substantially evenly around the forward surface 180. A first emitter group 220a comprises a central emitter 222a and two side emitters 224a. A second emitter group 220b comprises a central emitter 222b and two side emitters 224b. A third emitter group 220c comprises a central emitter 222c and two side emitters 224c and a fourth emitter group 220d comprises a central emitter 222d and two side emitters 224d. One of the emitter groups 220b is illustrated in Figure 7. Each side emitter 224b is arranged at an angle b of approximately 60' to the central emitter 222b. Each emitter 222b, 224b has a beam angle e of approximately 50'. This arrangement creates a field of relatively even emitted signals covering an angle of substantially 170' to 180'. It will be appreciated that a similar field can be created by providing a larger number of emitters, each having a smaller beam angle than the arrangement illustrated in Figure 7.
Figure 6 illustrates the arrangement of the emitter groups 220a, 220b, 220c, 220d on the cleaner 100. As will be seen from the figure, the first emitter group 220a is located at the end of a radial line extending at an angle d of 30' to the transverse axis 190 of the cleaner 100 on the left side thereof. The fourth emitter group 220d is located at the end of a radial line also extending at an angle d of 30' to the transverse axis 190 but on the right side of the cleaner 100. The second and third emitter groups 220b, 220c are located at the ends of radial lines extending at an angle e of 60' to the transverse axis 190 on the left and right sides of the cleaner 100 respectively. The third emitter group 220c is identical to the second emitter group 220b as illustrated in Figure 7. However, the first and fourth emitter groups 220a, 220d each have one side emitter 224a', 224d' which is specifically directioned so that the signal emitted is parallel to the transverse axis 190. This is achieved, in this specific case, by varying the angle b between the relevant central emitter 222a, 222d and the respective side emitter 224a', 224d' from 9 600 to 300. It will be appreciated that, if either of the angles b and d differ from the values given above, then the extent of the variation in angle b between the relevant central emitter 222a, 222d and the respective side emitter 224a, 224d will need to be adjusted so that the side emitter 224a', 224d' remains directed outwardly in a direction parallel to the transverse axis 190, Two additional emitters 226 are positioned close to the central axis of the cleaner 100 and are directioned so that they emit signals in a substantially forward direction with respect to the normal direction of travel.
The first and fourth emitter groups 220a, 220d are located in a horizontal plane which is vertically spaced from the horizontal plane in which the second and third emitter groups 220b, 220c are located. The first and fourth emitter groups 220a, 220d are located at a higher level than the second and third emitter groups 220b, 220c. The additional emitters 226 are also spaced vertically from the two aforementioned horizontal planes. The arrangement is symmetrical about the longitudinal axis of the cleaner 100. The whole of the array of emitters is designed so that at least two of the emitters will send signals directly to any point in the path of the cleaner (in the forward direction). (This will not apply, of course, to points which are extremely close to the cleaner itself.) The receivers 230 are spaced substantially evenly around the forward surface 180. A first receiver 230a is located adjacent each of the emitters 224a, 224d which are directioned parallel to the transverse axis 190 so as to receive signals therefrom. These receivers 230a are specifically paired with the emitters 224a, 224d. The remaining receivers 230b are spaced substantially evenly around the forward surface 180 and are not paired with any of the emitters at all. The receivers 230b are all located in a single horizontal plane with the exception of two central receivers 230b which are located adjacent the forward-looking emitters 226. The lack of pairing of the receivers with the emitters gives the cleaner 100 an enhanced ability to detect its position within an environment and with respect to objects and obstacles.
A passive infra-red detector 240, comprising an emitter 240a and a receiver 240b, is located in the forward surface 180 for the purpose of detecting heat sources such as humans, animals and fires. The passive infra-red detector 240 is directioned so that it looks in a forward direction to detect heat sources in its path.
Two forward-looking ultra-sonic sensors 250, each comprising an emitter 250a and a receiver 250b, are positioned at an uppermost extremity of the cleaner 100 so that they are able to sense obstacles immediately in front of the cleaner and at or near an uppermost extremity thereof. In this case, the sensors 250 are positioned in the casing of the fan and motor unit 150 so that they both look along the uppermost edge of the cyclonic separator 152. The direction of each sensor 250 is parallel to the direction of the other sensor 250. The sensors 250 are able to detect any obstacles which are at a sufficiently high level not to be detected by the sensors arranged in the forward surface 180 but which would constitute an obstruction to the forward movement of the cleaner 100. Rearward-looking sensors could also be provided at a high level if required, but none is shown in the embodiment illustrated in the drawings. It will be appreciated that a similar effect can be achieved using sensors (preferably ultra-sonic sensors) positioned lower on the cleaner than the uppermost extremity but directioned so as to look towards the appropriate area adjacent the uppermost extremity in front of the cleaner 100.
Further infra-red sensors 260, 262 are positioned on the chassis 102 immediately above the protruding end of the cleaner head 122. Each sensor 260, 262 comprises an emitter 260a, 262a and a receiver 260b, 262b. The first of these sensors 260 is directioned so that the emitter 260a emits a signal in a direction parallel to the longitudinal axis of the cleaner head 122 or of the brush bar 125. The direction of the signal from the sensor 260 is therefore perpendicular to the forward direction of travel and parallel to the direction of the signal emitted by emitter 224a'. The sensor 260 is thus able to detect the distance of a wall or other obstacle along which the cleaner 100 is intended to travel. In combination with the emitter 224a' and the receiver 230a, the sensor 260 is also able to maintain the direction of travel of the cleaner 100 parallel with the wall or other obstacle along which the cleaner 100 is intended to travel. This is achieved by way of the parallel signals being maintained essentially identical. Any variation between the two signals can be easily recognised and the path of the cleaner 100 can then be 11 adjusted to compensate for the discrepancy. The arrangement is illustrated in Figure 9. As will be seen from the figure, the distance between the directions of the two signals is approximately one half of the length of the cleaner 100, although this can be varied to a considerable extent. Preferably, the distance will not be less than a quarter of the length of the vehicle nor more than three quarters thereof The second of the further infra-red sensors 262 is directioned so that the emitter 262a sends a signal rearwardly in a direction parallel to the direction of travel of the cleaner 100. The sensor 262 is able to detect the presence of an obstacle on which the cleaner head 122 may become lodged if the cleaner 100 were traveling in a rearward direction or turning or rotating about a vertical axis.
Infra-red sensors 270, 272 are provided on the underside of the cleaner 100. Each sensor 270, 272 is directioned so that it looks downwardly towards the surface across which the cleaner 100 travels and which the cleaner 100 is intended to clean. Two downward- looking sensors 270 are provided in the chassis 102 immediately in front of each of the driven wheels 104. A further downward-looking sensor 272 is provided at the front edge of the chassis 102 and on or close to the longitudinal axis of the cleaner 100. Each sensor 270, 272 comprises an emitter and a receiver. In the embodiment illustrated, the outermost component of each sensor 270 is a receiver and the innennost component is an emitter. Each of the sensors 270, 272 is capable of detecting the presence or absence of the surface across which the cleaner 100 travels. A signal is sent to the control software to bring the cleaner 100 to a halt, or to turn, immediately one of the sensors 270, 272 detects that the surface is absent. This is likely to be due to the presence of a stairway or other edge of the surface. The cleaner 100 is thus prevented from falling from a height in the event that a stairway or other edge is encountered. For safety reasons, each of the sensors located in front of each wheel is connected to the control software via different circuits so that, should one circuit fail, the other sensor will still be functional in order to avoid an accident occurring.
12 The invention is not limited to the precise details of the embodiment illustrated and described above. Although the vehicle described is a vacuum cleaner, it will be appreciated that the sensor arrangement can be applied to any other type of autonomous vehicle which is required to propel itself across a surface without human intervention and without colliding with obstacles or objects in its path. Domestic appliances are becoming increasingly sophisticated and it is envisaged that domestic appliances other than vacuum cleaners will become autonomous over the years. The sensor arrangement described above will be equally applicable thereto.
13

Claims (7)

Claims:
1. An autonomous vehicle having a plurality of sensors for detecting obstacles in the vicinity of the vehicle, characterised in that at least one sensor is located on the vehicle and directioned so as to detect the presence of obstacles located to one side of the vehicle at or near an uppermost extremity of the vehicle.
2. An autonomous vehicle as claimed in claim 1, wherein the or each said sensor is located at or near an uppermost extremity of the vehicle and is directioned so as to detect an obstacle substantially on the same level as the sensor.
3. An autonomous vehicle as claimed in claim 2, wherein the or each said sensor is located at or level with the highest point of the vehicle so as to detect any obstacle beneath which the vehicle cannot pass.
4. An autonomous vehicle as claimed in any one of the preceding claims, wherein the or each sensor is an ultrasonic sensor.
5. An autonomous vehicle as claimed in any one of the preceding claims, wherein the autonomous vehicle comprises a vacuum cleaner.
6. An autonomous vehicle as claimed in claim 5, wherein the vacuum cleaner has a generally circular shape and a brush bar which protrudes beyond the generally circular shape on one side of the vacuum cleaner, at least one of the said sensors being arranged and located so as to detect the presence of obstacles located on the side of the vacuum cleaner on which the cleaner head protrudes.
7. An autonomous vehicle substantially as hereinbefore described with reference to the accompanying drawings.
GB9917913A 1998-12-18 1999-08-02 Sensors Expired - Fee Related GB2353095B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9827758A GB2344888A (en) 1998-12-18 1998-12-18 Obstacle detection system

Publications (3)

Publication Number Publication Date
GB9917913D0 GB9917913D0 (en) 1999-09-29
GB2353095A true GB2353095A (en) 2001-02-14
GB2353095B GB2353095B (en) 2003-08-20

Family

ID=10844378

Family Applications (2)

Application Number Title Priority Date Filing Date
GB9827758A Withdrawn GB2344888A (en) 1998-12-18 1998-12-18 Obstacle detection system
GB9917913A Expired - Fee Related GB2353095B (en) 1998-12-18 1999-08-02 Sensors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB9827758A Withdrawn GB2344888A (en) 1998-12-18 1998-12-18 Obstacle detection system

Country Status (9)

Country Link
US (1) US6493612B1 (en)
EP (1) EP1141803B1 (en)
JP (1) JP4545318B2 (en)
AT (1) ATE237834T1 (en)
AU (1) AU754477B2 (en)
DE (1) DE69907025T2 (en)
ES (1) ES2197693T3 (en)
GB (2) GB2344888A (en)
WO (1) WO2000038026A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027183A1 (en) * 2005-06-07 2006-12-14 Alfred Kärcher Gmbh & Co. Kg Mobile floor cleaning machine
EP1657612A3 (en) * 2004-11-11 2009-07-08 LG Electronics Inc. Moving distance sensing apparatus for robot cleaner and method therefor
US8621521B2 (en) 2001-08-03 2013-12-31 Comcast Ip Holdings I, Llc Video and digital multimedia aggregator
US9078014B2 (en) 2000-06-19 2015-07-07 Comcast Ip Holdings I, Llc Method and apparatus for targeting of interactive virtual objects
US9286294B2 (en) 1992-12-09 2016-03-15 Comcast Ip Holdings I, Llc Video and digital multimedia aggregator content suggestion engine
EP3112897A4 (en) * 2014-12-12 2018-04-18 Jiangsu Midea Cleaning Appliances Co., Ltd. Intelligent robot, and sensor assembly and obstacle detection method for same
US10349096B2 (en) 2001-08-03 2019-07-09 Comcast Ip Holdings I, Llc Video and digital multimedia aggregator content coding and formatting

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2344888A (en) * 1998-12-18 2000-06-21 Notetry Ltd Obstacle detection system
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6883201B2 (en) * 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
EP2287696B1 (en) * 2001-06-12 2018-01-10 iRobot Corporation Method and system for multi-code coverage for an autonomous robot
US7429843B2 (en) 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
WO2003026474A2 (en) * 2001-09-26 2003-04-03 Friendly Robotics Ltd. Robotic vacuum cleaner
IL145680A0 (en) 2001-09-26 2002-06-30 Friendly Robotics Ltd Robotic vacuum cleaner
SE0200197L (en) * 2002-01-23 2003-07-24 Electrolux Ab Procedure for a device on wheels
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US6838671B2 (en) * 2002-04-12 2005-01-04 Northrop Grumman Corporation Device and method for the detection of buried objects
DE10231386B4 (en) * 2002-07-08 2004-05-06 Alfred Kärcher Gmbh & Co. Kg Sensor device and self-propelled floor cleaning device with a sensor device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
DE10261788B3 (en) * 2002-12-23 2004-01-22 Alfred Kärcher Gmbh & Co. Kg Mobile tillage device
US7805220B2 (en) 2003-03-14 2010-09-28 Sharper Image Acquisition Llc Robot vacuum with internal mapping system
US20040204792A1 (en) * 2003-03-14 2004-10-14 Taylor Charles E. Robotic vacuum with localized cleaning algorithm
US20040200505A1 (en) * 2003-03-14 2004-10-14 Taylor Charles E. Robot vac with retractable power cord
US7801645B2 (en) * 2003-03-14 2010-09-21 Sharper Image Acquisition Llc Robotic vacuum cleaner with edge and object detection system
US7237298B2 (en) * 2003-09-19 2007-07-03 Royal Appliance Mfg. Co. Sensors and associated methods for controlling a vacuum cleaner
US7424766B2 (en) * 2003-09-19 2008-09-16 Royal Appliance Mfg. Co. Sensors and associated methods for controlling a vacuum cleaner
US7599758B2 (en) * 2003-09-19 2009-10-06 Royal Appliance Mfg. Co. Sensors and associated methods for controlling a vacuum cleaner
US8015661B2 (en) 2003-12-08 2011-09-13 Shop Vac Corporation Vacuum with rechargeable battery
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
WO2006002385A1 (en) 2004-06-24 2006-01-05 Irobot Corporation Programming and diagnostic tool for a mobile robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7706917B1 (en) * 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US11209833B2 (en) 2004-07-07 2021-12-28 Irobot Corporation Celestial navigation system for an autonomous vehicle
KR20060023068A (en) * 2004-09-08 2006-03-13 삼성전자주식회사 A cleaner and a cleaning method utilizing the cleaner
JP2008519657A (en) * 2004-11-12 2008-06-12 テナント・カンパニー Movable floor cleaner data communication
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
ES2346343T3 (en) 2005-02-18 2010-10-14 Irobot Corporation AUTONOMOUS SURFACE CLEANING ROBOT FOR DRY AND WET CLEANING.
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
KR100669892B1 (en) * 2005-05-11 2007-01-19 엘지전자 주식회사 Moving robot having function of avoidance obstacle and its method
US20070113188A1 (en) * 2005-11-17 2007-05-17 Bales Christopher E System and method for providing dynamic content in a communities framework
EP2816434A3 (en) 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
EP2544066B1 (en) 2005-12-02 2018-10-17 iRobot Corporation Robot system
ES2413862T3 (en) 2005-12-02 2013-07-17 Irobot Corporation Modular robot
ES2522926T3 (en) * 2005-12-02 2014-11-19 Irobot Corporation Autonomous Cover Robot
US7441298B2 (en) 2005-12-02 2008-10-28 Irobot Corporation Coverage robot mobility
JP2009518071A (en) * 2005-12-02 2009-05-07 テナント・カンパニー Remote configuration of mobile surface maintenance machine settings
US8868237B2 (en) 2006-03-17 2014-10-21 Irobot Corporation Robot confinement
TWI303754B (en) * 2006-05-09 2008-12-01 Ind Tech Res Inst Obstacle and cliff avoiding system and method thereof
US8087117B2 (en) 2006-05-19 2012-01-03 Irobot Corporation Cleaning robot roller processing
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
KR101458752B1 (en) 2007-05-09 2014-11-05 아이로보트 코퍼레이션 Compact autonomous coverage robot
US8146695B1 (en) * 2009-04-28 2012-04-03 Ernie Lance Ramshur Automated garbage receptacle conveyance system
GB2484629B (en) * 2009-07-01 2014-01-15 Racine Ind Inc Combination of carpet-cleaning machine and platform for transporting the machine
JP5647269B2 (en) 2010-02-16 2014-12-24 アイロボット コーポレイション Vacuum cleaner brush
CN101972128B (en) * 2010-04-15 2012-03-28 雷学军 Bionic intelligent air purification robot
DE102010046915A1 (en) * 2010-09-29 2012-03-29 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Motor vehicle with warning system
CN201840417U (en) * 2010-10-11 2011-05-25 洋通工业股份有限公司 Self-walking dust collector with barrier detection function
JP5832553B2 (en) 2010-12-30 2015-12-16 アイロボット コーポレイション Coverage robot navigation
CN102113853B (en) * 2011-02-28 2013-01-02 莱克电气股份有限公司 Method for cleaning intelligent dust collector
EP3306449B1 (en) 2011-03-04 2022-03-09 Apple Inc. Linear vibrator providing localized and generalized haptic feedback
PL394570A1 (en) 2011-04-15 2012-10-22 Robotics Inventions Spólka Z Ograniczona Odpowiedzialnoscia Robot for raised floors and method for raised floor maintenance
US9218727B2 (en) * 2011-05-12 2015-12-22 Apple Inc. Vibration in portable devices
US9710061B2 (en) 2011-06-17 2017-07-18 Apple Inc. Haptic feedback device
GB2494443B (en) * 2011-09-09 2013-08-07 Dyson Technology Ltd Autonomous surface treating appliance
GB2494446B (en) * 2011-09-09 2013-12-18 Dyson Technology Ltd Autonomous cleaning appliance
KR101887055B1 (en) * 2011-11-14 2018-09-11 삼성전자주식회사 Robot cleaner and control method for thereof
US8706363B2 (en) 2012-07-30 2014-04-22 Caterpillar Inc. System and method for adjusting a boundary for a machine
US8700272B2 (en) 2012-07-30 2014-04-15 Caterpillar Inc. System and method for detecting a crest
US9234750B2 (en) 2012-07-30 2016-01-12 Caterpillar Inc. System and method for operating a machine
JP6202544B2 (en) 2012-08-27 2017-09-27 アクティエボラゲット エレクトロラックス Robot positioning system
US9098087B2 (en) 2013-02-04 2015-08-04 Caterpillar Inc. System and method for adjusting the operation of a machine
TWI508692B (en) * 2013-02-08 2015-11-21 Self-propelled trailing machine
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
CN105101855A (en) 2013-04-15 2015-11-25 伊莱克斯公司 Robotic vacuum cleaner with protruding sidebrush
US9097520B2 (en) 2013-06-12 2015-08-04 Caterpillar Inc. System and method for mapping a raised contour
KR102137857B1 (en) 2013-12-19 2020-07-24 에이비 엘렉트로룩스 Robotic cleaning device and method for landmark recognition
WO2015090397A1 (en) 2013-12-19 2015-06-25 Aktiebolaget Electrolux Robotic cleaning device
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
KR102124235B1 (en) 2013-12-19 2020-06-24 에이비 엘렉트로룩스 Robotic cleaning device with perimeter recording function
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
EP3082539B1 (en) 2013-12-20 2019-02-20 Aktiebolaget Electrolux Dust container
US9396629B1 (en) 2014-02-21 2016-07-19 Apple Inc. Haptic modules with independently controllable vertical and horizontal mass movements
US9594429B2 (en) 2014-03-27 2017-03-14 Apple Inc. Adjusting the level of acoustic and haptic output in haptic devices
EP3126921B1 (en) 2014-03-31 2021-02-24 iRobot Corporation Autonomous mobile robot
US10133351B2 (en) 2014-05-21 2018-11-20 Apple Inc. Providing haptic output based on a determined orientation of an electronic device
US9886090B2 (en) 2014-07-08 2018-02-06 Apple Inc. Haptic notifications utilizing haptic input devices
EP3167341B1 (en) 2014-07-10 2018-05-09 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
EP3190938A1 (en) 2014-09-08 2017-07-19 Aktiebolaget Electrolux Robotic vacuum cleaner
US9605415B2 (en) 2014-09-12 2017-03-28 Caterpillar Inc. System and method for monitoring a machine
US9360334B2 (en) 2014-09-12 2016-06-07 Caterpillar Inc. System and method for setting an end location of a path
US9516806B2 (en) 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
US9510505B2 (en) 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
CN106154278B (en) * 2014-12-12 2019-08-02 江苏美的清洁电器股份有限公司 Intelligent robot and sensor module and obstacle detection method for it
WO2016091320A1 (en) 2014-12-12 2016-06-16 Aktiebolaget Electrolux Side brush and robotic cleaner
US9420741B2 (en) 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
CN107003669B (en) 2014-12-16 2023-01-31 伊莱克斯公司 Experience-based road sign for robotic cleaning devices
JP6532530B2 (en) 2014-12-16 2019-06-19 アクチエボラゲット エレクトロルックス How to clean a robot vacuum cleaner
US9538702B2 (en) 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
CN105816102B (en) * 2015-01-06 2019-01-18 江苏美的清洁电器股份有限公司 The control method of domestic robot and domestic robot
JP6743828B2 (en) 2015-04-17 2020-08-19 アクチエボラゲット エレクトロルックス Robot vacuum and method for controlling the robot vacuum
US20170024010A1 (en) 2015-07-21 2017-01-26 Apple Inc. Guidance device for the sensory impaired
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
KR102445064B1 (en) 2015-09-03 2022-09-19 에이비 엘렉트로룩스 system of robot cleaning device
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US10772394B1 (en) 2016-03-08 2020-09-15 Apple Inc. Tactile output for wearable device
JP7035300B2 (en) 2016-03-15 2022-03-15 アクチエボラゲット エレクトロルックス Robot Cleaning Devices, Methods for Performing Escarpment Detection in Robot Cleaning Devices, Computer Programs, and Computer Program Products
US10585480B1 (en) 2016-05-10 2020-03-10 Apple Inc. Electronic device with an input device having a haptic engine
WO2017194102A1 (en) 2016-05-11 2017-11-16 Aktiebolaget Electrolux Robotic cleaning device
US9829981B1 (en) 2016-05-26 2017-11-28 Apple Inc. Haptic output device
US10649529B1 (en) 2016-06-28 2020-05-12 Apple Inc. Modification of user-perceived feedback of an input device using acoustic or haptic output
US10845878B1 (en) 2016-07-25 2020-11-24 Apple Inc. Input device with tactile feedback
US10372214B1 (en) 2016-09-07 2019-08-06 Apple Inc. Adaptable user-selectable input area in an electronic device
US10437359B1 (en) 2017-02-28 2019-10-08 Apple Inc. Stylus with external magnetic influence
WO2018219473A1 (en) 2017-06-02 2018-12-06 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10775889B1 (en) 2017-07-21 2020-09-15 Apple Inc. Enclosure with locally-flexible regions
US10768747B2 (en) 2017-08-31 2020-09-08 Apple Inc. Haptic realignment cues for touch-input displays
US11054932B2 (en) 2017-09-06 2021-07-06 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US10556252B2 (en) 2017-09-20 2020-02-11 Apple Inc. Electronic device having a tuned resonance haptic actuation system
WO2019063066A1 (en) 2017-09-26 2019-04-04 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
US10768738B1 (en) 2017-09-27 2020-09-08 Apple Inc. Electronic device having a haptic actuator with magnetic augmentation
US11525921B2 (en) 2018-04-03 2022-12-13 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same
US10942571B2 (en) 2018-06-29 2021-03-09 Apple Inc. Laptop computing device with discrete haptic regions
CN211933894U (en) 2018-08-01 2020-11-17 尚科宁家运营有限公司 Robot vacuum cleaner
US10936071B2 (en) 2018-08-30 2021-03-02 Apple Inc. Wearable electronic device with haptic rotatable input
US10613678B1 (en) 2018-09-17 2020-04-07 Apple Inc. Input device with haptic feedback
US10966007B1 (en) 2018-09-25 2021-03-30 Apple Inc. Haptic output system
CN109814114B (en) * 2019-01-15 2021-12-24 北京百度网讯科技有限公司 Ultrasonic radar array, obstacle detection method and system
CN110101340A (en) * 2019-05-24 2019-08-09 北京小米移动软件有限公司 Cleaning equipment, clean operation execute method, apparatus and storage medium
US11024135B1 (en) 2020-06-17 2021-06-01 Apple Inc. Portable electronic device having a haptic button assembly
CN112881029B (en) * 2021-01-11 2022-04-05 深圳市康士柏实业有限公司 Vehicle chassis detection method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007056A1 (en) * 1986-05-16 1987-11-19 Denning Mobile Robotics, Inc. Obstacle avoidance system
GB2225221A (en) * 1988-11-16 1990-05-30 Unilever Plc Nozzle arrangement on robot vacuum cleaning machine
EP0562559A1 (en) * 1992-03-24 1993-09-29 SANYO ELECTRIC Co., Ltd. A robot and a method of controlling the robot for cleaning the floor of a railroad vehicle
EP0649709A2 (en) * 1993-10-25 1995-04-26 International Business Machines Corporation Device for moving a mobile robot
EP0913751A1 (en) * 1997-11-03 1999-05-06 Volkswagen Aktiengesellschaft Autonomous vehicle and guiding method for an autonomous vehicle

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859301A (en) * 1973-04-25 1975-01-07 Du Pont Urea derivatives of 2-imidazolidone
JPS60249076A (en) * 1984-05-25 1985-12-09 Casio Comput Co Ltd Detection of obstruction
JPS62179003A (en) * 1986-01-31 1987-08-06 Casio Comput Co Ltd Autonomous mobile robot
US4815008A (en) * 1986-05-16 1989-03-21 Denning Mobile Robotics, Inc. Orientation adjustment system and robot using same
US5009501A (en) * 1986-11-27 1991-04-23 Fenner David F A remotely controllable position indicator system
DE3709627A1 (en) * 1987-03-24 1988-10-13 Fraunhofer Ges Forschung SELF-DRIVING VEHICLE
US5377106A (en) * 1987-03-24 1994-12-27 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Process for navigating an unmanned vehicle and a vehicle for the same
JP2525046B2 (en) * 1988-10-19 1996-08-14 株式会社ロボテック研究所 Mobile remote control system
JPH02249522A (en) * 1989-03-23 1990-10-05 Mitsubishi Electric Corp Self-traveling cleaner
FR2695342B1 (en) 1989-06-07 1995-07-21 Onet SELF - CONTAINED APPARATUS FOR AUTOMATIC FLOOR CLEANING BY EXECUTING PROGRAMMED MISSIONS USING A POSITIONING SYSTEM.
FR2648071B1 (en) * 1989-06-07 1995-05-19 Onet SELF-CONTAINED METHOD AND APPARATUS FOR AUTOMATIC FLOOR CLEANING BY EXECUTING PROGRAMMED MISSIONS
DE4013341A1 (en) * 1990-04-26 1991-10-31 Anschuetz & Co Gmbh METHOD AND DEVICE FOR DETERMINING THE POSITION OF AN OBJECT RELATIVELY MOVING TO AN OBSTACLE
US5170352A (en) * 1990-05-07 1992-12-08 Fmc Corporation Multi-purpose autonomous vehicle with path plotting
JP2782923B2 (en) * 1990-06-21 1998-08-06 松下電器産業株式会社 Self-propelled vacuum cleaner
US5165064A (en) * 1991-03-22 1992-11-17 Cyberotics, Inc. Mobile robot guidance and navigation system
US5321614A (en) 1991-06-06 1994-06-14 Ashworth Guy T D Navigational control apparatus and method for autonomus vehicles
WO1993003399A1 (en) * 1991-08-07 1993-02-18 Aktiebolaget Electrolux Obstacle detecting assembly
JPH0546239A (en) * 1991-08-10 1993-02-26 Nec Home Electron Ltd Autonomously travelling robot
JP3094547B2 (en) * 1991-09-25 2000-10-03 松下電器産業株式会社 Step detecting device for self-propelled vacuum cleaner
US5279672A (en) * 1992-06-29 1994-01-18 Windsor Industries, Inc. Automatic controlled cleaning machine
SE9302874L (en) * 1992-09-08 1994-03-09 Gold Star Co Device for self-propelled vacuum cleaner
DE4415736C2 (en) * 1994-05-04 2002-11-14 Siemens Ag Collision avoidance method using a steering angle field for an autonomous mobile unit
SE514791C2 (en) * 1994-06-06 2001-04-23 Electrolux Ab Improved method for locating lighthouses in self-propelled equipment
US5652593A (en) * 1994-09-29 1997-07-29 Von Schrader Company Method and apparatus for guiding a machine
US5548512A (en) * 1994-10-04 1996-08-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Autonomous navigation apparatus with neural network for a mobile vehicle
JP3660042B2 (en) * 1996-02-01 2005-06-15 富士重工業株式会社 Cleaning robot control method
SE506907C2 (en) * 1996-04-30 1998-03-02 Electrolux Ab Self-orientating device system and device
JPH10105236A (en) * 1996-09-30 1998-04-24 Minolta Co Ltd Positioning device for traveling object and its method
US6076226A (en) * 1997-01-27 2000-06-20 Robert J. Schaap Controlled self operated vacuum cleaning system
JP3375843B2 (en) * 1997-01-29 2003-02-10 本田技研工業株式会社 Robot autonomous traveling method and autonomous traveling robot control device
JPH10240343A (en) * 1997-02-27 1998-09-11 Minolta Co Ltd Autonomously traveling vehicle
US5995884A (en) * 1997-03-07 1999-11-30 Allen; Timothy P. Computer peripheral floor cleaning system and navigation method
JPH10260727A (en) * 1997-03-21 1998-09-29 Minolta Co Ltd Automatic traveling working vehicle
US6055042A (en) * 1997-12-16 2000-04-25 Caterpillar Inc. Method and apparatus for detecting obstacles using multiple sensors for range selective detection
WO2000007492A1 (en) * 1998-07-31 2000-02-17 Volker Sommer Household robot for the automatic suction of dust from the floor surfaces
GB2344888A (en) * 1998-12-18 2000-06-21 Notetry Ltd Obstacle detection system
US6338013B1 (en) * 1999-03-19 2002-01-08 Bryan John Ruffner Multifunctional mobile appliance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007056A1 (en) * 1986-05-16 1987-11-19 Denning Mobile Robotics, Inc. Obstacle avoidance system
GB2225221A (en) * 1988-11-16 1990-05-30 Unilever Plc Nozzle arrangement on robot vacuum cleaning machine
EP0562559A1 (en) * 1992-03-24 1993-09-29 SANYO ELECTRIC Co., Ltd. A robot and a method of controlling the robot for cleaning the floor of a railroad vehicle
EP0649709A2 (en) * 1993-10-25 1995-04-26 International Business Machines Corporation Device for moving a mobile robot
EP0913751A1 (en) * 1997-11-03 1999-05-06 Volkswagen Aktiengesellschaft Autonomous vehicle and guiding method for an autonomous vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9286294B2 (en) 1992-12-09 2016-03-15 Comcast Ip Holdings I, Llc Video and digital multimedia aggregator content suggestion engine
US9078014B2 (en) 2000-06-19 2015-07-07 Comcast Ip Holdings I, Llc Method and apparatus for targeting of interactive virtual objects
US9813641B2 (en) 2000-06-19 2017-11-07 Comcast Ip Holdings I, Llc Method and apparatus for targeting of interactive virtual objects
US8621521B2 (en) 2001-08-03 2013-12-31 Comcast Ip Holdings I, Llc Video and digital multimedia aggregator
US10140433B2 (en) 2001-08-03 2018-11-27 Comcast Ip Holdings I, Llc Video and digital multimedia aggregator
US10349096B2 (en) 2001-08-03 2019-07-09 Comcast Ip Holdings I, Llc Video and digital multimedia aggregator content coding and formatting
EP1657612A3 (en) * 2004-11-11 2009-07-08 LG Electronics Inc. Moving distance sensing apparatus for robot cleaner and method therefor
US7706921B2 (en) 2004-11-11 2010-04-27 Lg Electronics Inc. Moving distance sensing apparatus for robot cleaner and method therefor
DE102005027183A1 (en) * 2005-06-07 2006-12-14 Alfred Kärcher Gmbh & Co. Kg Mobile floor cleaning machine
EP3112897A4 (en) * 2014-12-12 2018-04-18 Jiangsu Midea Cleaning Appliances Co., Ltd. Intelligent robot, and sensor assembly and obstacle detection method for same

Also Published As

Publication number Publication date
EP1141803A1 (en) 2001-10-10
GB2353095B (en) 2003-08-20
ATE237834T1 (en) 2003-05-15
US6493612B1 (en) 2002-12-10
WO2000038026A1 (en) 2000-06-29
JP4545318B2 (en) 2010-09-15
EP1141803B1 (en) 2003-04-16
DE69907025D1 (en) 2003-05-22
GB9917913D0 (en) 1999-09-29
JP2002533796A (en) 2002-10-08
GB2344888A (en) 2000-06-21
ES2197693T3 (en) 2004-01-01
GB9827758D0 (en) 1999-02-10
AU754477B2 (en) 2002-11-14
AU1576600A (en) 2000-07-12
DE69907025T2 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
GB2353095A (en) Autonomous vacuum cleaner with top-mounted, side-looking obstacle sensor
US6601265B1 (en) Vacuum cleaner
US11141032B2 (en) Autonomous vacuum
CA2427804C (en) Robotic vacuum with removable portable vacuum and semi-automated environment mapping
US20050055792A1 (en) Autonomous vacuum cleaner
US8032978B2 (en) Robotic cleaning device
US7237298B2 (en) Sensors and associated methods for controlling a vacuum cleaner
US20050166356A1 (en) Self-propelled vacuum cleaner
EP1198192A1 (en) Robotic floor cleaning device
US20210038033A1 (en) Bumper with viewing window for autonomous cleaner
GB2357028A (en) Barrier for robotic floor cleaning device
JP4107999B2 (en) Robot vacuum cleaner with removable portable suction machine for semi-automated environment mapping
JPH0829133B2 (en) Electric vacuum cleaner
JPH01293837A (en) Cleaning robot
GB2522456A (en) Canister vacuum cleaner

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20090802