GB2346300A - Filtering a plurality of data signals - Google Patents

Filtering a plurality of data signals Download PDF

Info

Publication number
GB2346300A
GB2346300A GB9901900A GB9901900A GB2346300A GB 2346300 A GB2346300 A GB 2346300A GB 9901900 A GB9901900 A GB 9901900A GB 9901900 A GB9901900 A GB 9901900A GB 2346300 A GB2346300 A GB 2346300A
Authority
GB
United Kingdom
Prior art keywords
data signals
data
signal
input terminal
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9901900A
Other versions
GB2346300B (en
GB9901900D0 (en
Inventor
John Mansbridge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roke Manor Research Ltd
Original Assignee
Roke Manor Research Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roke Manor Research Ltd filed Critical Roke Manor Research Ltd
Priority to GB9901900A priority Critical patent/GB2346300B/en
Publication of GB9901900D0 publication Critical patent/GB9901900D0/en
Priority to US09/494,053 priority patent/US6842497B1/en
Publication of GB2346300A publication Critical patent/GB2346300A/en
Application granted granted Critical
Publication of GB2346300B publication Critical patent/GB2346300B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Abstract

In the field of Acousto-Optic processors, it is desirable to sample and multiplex a large quantity of time varying data generated by a photodiode array (200). However, current multiplexers cannot sample at a high enough rate in order to process all of the data generated in real time, resulting in a reduced sampling bandwidth and therefore a loss of information. The present invention overcomes this problem by providing a channel selection logic unit (242) which instructs a multiplexer (208) to only sample data generated which is above a predetermined threshold value, thereby omitting to sample data which is of little information value.

Description

DATA FILTERING APPARATUS AND METHOD OF FILTERING A PLURALITY OF DATA SIGNALS The present invention relates to an information filtering apparatus, for example, of the type used with multiplexing units coupled to a sources of a plurality of data signals, such as a photodiode array. The present invention also relates to a method of filtering the plurality of data signals received.
In the field of Acousto-Optic (AO) processors, it is known to optically process an electronic signal, having a bandwidth B, using a Bragg cell disposed between a collimated light source and a lens, the lens being arranged to perform a Fourier transform on light propagating from the Bragg cell. Generally speaking, the spatial distribution of light at the focus of the lens (hereinafter referred to as the'Fourier distribution') is the Fourier transform of the spatial distribution of the light at the aperture of the lens. The Fourier distribution at the focus of the lens is detected by an array of photodetectors. The electronic signal is therefore converted into N frequency channels, where N is the number of photodetectors in the array of photodetectors, each frequency channel having a nominal bandwidth of B/N. Additionally, the Bragg cell can be modulated in order to produce a varying Fourier distribution at the array of photodetectors.
The array of photodetectors is typically packaged as an integrated circuit comprising a line of, for example, 1000 photo-lithographically produced photodetector elements. Thus, if the bandwidth B of the electronic signal is 1 GHz, the signal generated by each photodetector element has a bandwidth of 1MHz (1 GHz/I 000). The number of photodetector elements is usually far greater than the number of pins possessed by the integrated circuit, thereby necessitating the provision of a multiplexer in the same package as the array of photodetectors.
The multiplexer samples each photodetector element and transfers the voltage/charge on the photodetector element to an output buffer coupled to other electronic circuitry via the pins.
Currently available multiplexers will take around 100 gs to scan all the photodetector elements (1000), which implies an output bandwidth of 5 kHz for each photodetector element; this is much less than the bandwidth of 1MHz of the signals generated by the photodetector elements. Therefore, it can be seen that a great deal of information is received by each photodetector element is being lost.
Furthermore, in some applications information relating to only a small number of frequencies in the bandwidth of the electronic signal may be required. Thus, processing information relating to frequencies, other than those required, is a waste of multiplexer resources.
It is therefore an object of the present invention to obviate or at least mitigate the above described problems associated with AO processors.
According to the present invention, there is provided a data filtering apparatus for a multiplexing unit arranged to receive a plurality of data signals, the apparatus comprising input means for receiving the plurality of data signals, processing means arranged to identify at least one data signal from the plurality of data signals conforming to a predetermined criteria and transmit an identifying signal corresponding to the identified at least one data signal to the multiplexing unit for selective processing of the at least one data signal from the plurality of data signals.
It is thus possible to provide filtering data apparatus capable of enabling the multiplexing unit to sample data signals at the full bandwidth of the data signals.
Preferably, the processing means comprises level detection means, for example, an array of comparator means arranged to determine whether each of the plurality of data signals is above a predetermined threshold.
Additionally, the processing means can include means for receiving an external control signal, for example, an instruction relating to the selective processing of the plurality of data signals.
The data filtering apparatus can form part of a photodiode array processing unit, for example, a Acousto-Optic processor comprising the data filtering apparatus as claimed in any one of the preceding claims.
In a preferred embodiment of the invention, the data filtering apparatus may be a channel selection logic unit for a multiplexing unit. The logic unit may comprise an input port for receiving receive a plurality of data signals, a processing unit including a plurality of level detectors coupled to the input port and arranged to determine whether each of the plurality of data signals is above a predetermined threshold, and generate an identifying signal indicative of each of the plurality of data signals being above the predetermined threshold, and an output port for coupling to the multiplexing unit in order to transmit the identified at least one data signal to the multiplexing unit for selective processing of the at least one data signal from the plurality of data signals.
According to the present invention, there is also provided a method of filtering a plurality of data signals for a multiplexing unit, the method comprising the steps of : receiving the plurality of data signals, identifying at least one data signal from the plurality of data signals conforming to a predetermined criteria, and transmitting an identifying signal corresponding to the identified at least one data signal to the multiplexing unit for selective processing of the at least one data signal from the plurality of data signals.
Preferably, the method further comprises identifying the at least one data signal from the plurality of data signals conforming to the predetermined criteria by determining whether each of the plurality of data signals is above a predetermined threshold.
At least one embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which: Figure 1 is a schematic diagram of a known AO processor arrangement; Figure 2 is a schematic diagram of an apparatus constituting an embodiment of the invention; Figure 3 is a schematic diagram of the apparatus of Figure 2 in more detail; Figure 4 is a schematic diagram of a logic unit shown in Figure 3, and Figure 5 is a flow diagram of a method for use with the apparatus of Figures 2 and 3.
Throughout the description identical reference numerals shall be used to identify like parts of the apparatus.
An AO processor 100 comprises a coherent light source, for example, a laser 102, a Bragg cell 106, and a first lens 104 positioned between the Bragg cell 106 and the laser 102. A second lens 108 is located in the optical path of the Bragg cell 106 in order to Fourier transform and focus light onto a photodetector unit 110.
A transducer 112 is coupled to the Bragg cell 106 in order to convert electrical energy to acoustic energy. The electrical energy is provided by a power amplifier 114 having an input terminal (not shown) for receiving a Radio Frequency (RF) input signal 116.
The photodetector unit 110 (Figure 2) comprises a plurality of photodetector elements, for example, 1000 photo-lithographically produced photodiodes disposed on an integrated circuit as a linear photodiode array 200.
Each photodiode of the photodiode array 200 is typically 10 p wide. Although in this example, the integrated circuit comprises 1000 photodiodes, the integrated circuit can comprise a fewer or greater number of photodetector elements, not limited to photodiodes.
Each photodiode of the photodiode array 200 is coupled respectively to a first, second and N"* input terminal 202,204,206 of a multiplexer unit 208, the multiplexer unit 208 having a first, second and Mhoutput terminal 210,212,214 (for example, more than six) coupled to a respective first, second and Input terminal 216,218,220 of an output buffer unit 222. The output buffer unit 222 comprises a first, second and M'buffer 224, 226,228, each respectively coupled to the first, second and M'input terminals 216,218,220; the first, second and Output buffers 224,226,228 have a respective first, second and M'output terminal 230,232,234.
Each photodiode of the photodiode array 200 is also coupled to a respective first, second and N'input terminal 236,238,240 of a channel selection unit 242, the channel selection unit 242 being coupled to the multiplexer unit 208 by an output data bus 244.
Referring to Figure 3, a more detailed example of the above described embodiment is disclosed. The first, second and Input terminals 236,238,240 of the channel selection unit 242 are coupled to a respective first, second and N'' input terminal 300,302,304 of an input-stage buffer unit 306 comprising a first, second and N'pre-amplifier or input buffer 308,310,312. The first, second and N'input buffers 308,310,312 have a respective first, second and N"output terminal 314,316,318 coupled to the first, second and N'input terminals 202, 204,206 of the multiplexer unit, for example, an analogue multiplexer 208. The first, second and N output terminals 314,316,318 are also coupled to a respective first, second and Input terminal 320,322,324 of a comparator unit 326, the comparator unit 326 comprising a. first, second and N'comparator 328, 330,332 having a respective first, second and N"inverting input terminal 333, 335,337 and a first, second and N'h non-inverting input terminal 317, 319, 321.
The first, second and Nth inverting input terminals 333,335,337 are respectively coupled to the first, second and N"input terminals 320,322,324. The first, second and N'inverting terminals 317,319,321 are respectively coupled to a first, second and N"threshold voltage source (not shown) V,,, V, V,. A first second and Output terminal 334,336,338 of the first, second and Nth comparator 328,330,332 are coupled to a corresponding first, second and N' input terminal 340,341,345 of a digital logic unit 346, the digital logic unit 346 having an external control bus 348. The digital control unit 346 is coupled to the analogue multiplexer 208 via the output data bus 244. The analogue multiplexer 208 is coupled to the buffer unit 222 in the manner already described above.
Although, previously, the above example has been described in relation to N channels, for the purposes of clarity of description, the digital logic unit 346 will now be described in relation to the six input terminals 340,341,342,343, 344,345. However, it should be appreciated that the circuit described hereinbelow can be appropriately modified by a skilled person according to the value of N, i. e. the number of channels.
The digital logic unit 346 (Figure 4) comprises a first gate circuit 400, a second gate circuit 402, a third gate circuit 404, and a fourth gate circuit 406. The first gate circuit 400 comprises a first AND gate 408 having a first, inverting, input terminal 416, a second, non-inverting, input terminal 418, a third, noninverting input terminal 420, and a first output terminal 422 connected to a first input terminal 430 of a first exclusive-OR gate 414. A second input terminal 432 of the exclusive-OR gate 414 is connected to an output terminal 428 of a second AND gate 410 having a first, non-inverting, input terminal 424 and a second, inverting, input terminal 426. The exclusive-OR gate 414 has an output terminal 434 connected to a first, inverting, input terminal 436 of a third AND gate 412, the third AND gate 412 having a second, non-inverting, input terminal 438 coupled to the second input terminal 341 of the digital logic unit 346. An output terminal 440 of the third AND gate 412 is coupled to the output data bus 244 according to any known method in the art.
The second gate circuit 402 comprises a first AND gate 407 having a first, inverting, input terminal 415, a second, non-inverting, input terminal 417, a third, non-inverting, input terminal 419, and an output terminal 421, the output terminal 421 being connected to a first input terminal 431 of an exclusive-OR gate 413 having a second input terminal 433 connected to an output terminal 429 of a second AND gate 409. The second AND gate 409 has a first, non-inverting, input terminal 423, a second, non-inverting, input terminal 425, and a third, inverting, input terminal 427. An output terminal 435 of the exclusive-OR gate 413 is connected to a first, inverting, input terminal 437 of a third AND gate 411 having a second, non-inverting, input terminal 439 connected to the third input terminal 342 of the digital logic unit 436, and an output terminal 441 coupled to the output data bus 244 according to any known method in the art.
The third gate circuit 404 comprises a first AND gate 442 having a first, inverting, input terminal 450, a second, non-inverting, input terminal 452, a third, non-inverting, input terminal 454 and an output terminal 458, the output terminal 458 being connected to a first input terminal 470 of an exclusive-OR gate 448. A second input terminal 472 of the exclusive-OR gate 448 is connected to an output terminal 468 of a second AND gate 444 having a first, non-inverting, input terminal 460, a second, non-inverting, input terminal 462 and a third, inverting, input terminal 464. An output terminal 474 of the exclusive-OR gate 448 is connected to a first, inverting, input terminal 476 of a third AND gate 446 having a second, non-inverting, input terminal 478 connected to the fourth input terminal 343 of the digital logic unit 346. An output terminal 480 of the third AND gate 446 is coupled to the output data bus 244 according to any known method in the art.
The fourth gate circuit 406 comprises a first AND gate 443 having a first, inverting, input terminal 451, a second, non-inverting, input terminal 453 and an output terminal 455, the output terminal 455 being connected to a first input terminal 465 of an exclusive-OR gate 449. A second input terminal 467 of the exclusive-OR gate 449 is connected to an output terminal 463 of a second AND gate 445 having a first, non-inverting, input terminal 457, a second, non-inverting, input terminal 459 and a third, inverting, input terminal 461. An output terminal 469 of the exclusive-OR gate 449 is connected to a first, inverting, input terminal 471 of a third AND gate 447 having a second, non-inverting, input terminal 473 connected to the fifth input terminal 344 of the digital logic unit 346. An output terminal 475 of the third AND gate 447 is coupled to the output data bus 244 according to any known method in the art.
The first input terminal 340 of the digital logic unit 346 is connected to the first input terminals 416,424 of the first and second AND gates 408,410, respectively, of the first gate circuit 400 and the second input terminal 425 of the second AND gate 409 of the second gate circuit 402. The second input terminal 341 of the digital logic unit 346 is connected to the first input terminals 415,423 of the first and second AND gates 407,409, respectively, of the second gate circuit 402, and the second input terminal 462 of the second AND gate 444 of the third gate circuit 404. The third input terminal 342 of the digital logic unit 346 is connected to the third input terminal 426 of the second AND gate 410, the first input terminals 450,460 of the first and second AND gates 442,444, and the second input terminal 459 of the second AND gate 445. The fourth input terminal 343 of the digital logic unit 346 is connected to the second input terminal 418 of the first AND gate 408, the third input terminals 419,427 of the first and second AND gates 407,409, and the first input terminals 451,457 of the first and second AND gates 443,445. The fifth input terminal 344 of the digital logic unit 346 is connected to the second input terminal 417 of the first AND gate 407, and the third input terminals 454,464 of the first and second AND gates 442,444. The sixth input terminal 345 of the digital logic unit 346 is connected to the second input terminal 452 of the first AND gate 442, the second input terminal 453 of the first AND gate 443, and the third input terminal 461 of the second AND gate 445.
A truth table corresponding to the third gate circuit 404 is shown below.
341 342 343 344 345 480 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 000110 100110 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 Table 1 Given that in some applications, only information relating to a small range of frequencies of the RF input signal 116 is required, the above described AO processor 100 identifies a spatial distribution 109 (Figure 1) and then identifies the small range of frequencies required; only information relating to the small number of frequencies is multiplexed.
An example of an application where information relating to a small range of frequencies of the RF input signal 116 is required is where the RF input signal 116 is such that, it is desirable only to identify the peak intensity of the spatial distribution 109 corresponding to the RF input signal 116. In this application, the peak intensity of the spatial distribution 109 is known to be located at the centre of the spatial distribution 109. Thus, information corresponding other than to the centre of the spatial distribution 109 has no information value to the application, and so only serves to reduce the efficiency of the multiplexer unit 208.
Therefore, the AO processor 100 is arranged to identify the spatial distribution 109 and then locate the centre of the spatial distribution 109 as this is where the peak intensity of the spatial distribution 109 is known to lie in this particular application.
Operation of the above described apparatus will now be described in the context of the above application where it is desirable to identify a peak intensity 118 of a small spatial distribution 119 (Figure 1). The small spatial distribution 119 has been selected to illustrate this application in a simple and clear way with respect to the operation of the digital logic unit 346. It should be appreciated that this application is equally applicable to other spatial distributions, such as the spatial distribution 109; the number of levels of logic contained in the digital logic unit 346 simply needs to be increased to cope with the larger number of signals being processed. However, the construction of such"expanded"circuitry based upon the techniques described hereinbelow is within the ability of the skilled person.
Referring to Figure 5, the laser 102 generates a beam of coherent light which is collimated by the first lens 104. The collimated light 105 propagates through the Bragg cell 106 which is modulated by acoustic waves (not shown) passing through the Bragg cell 106 to produce spatially modulated light 107. The acoustic waves are generated by the transducer 112, which is supplied with electrical energy from the amplifier 114, the amplifier 114 amplifying the RF input signal 116.
The spatially modulated light 107 propagates through the second lens 108, whereby the small spatial distribution 119 of the propagated light is generated at the focus of the second lens 108, the small spatial distribution 119 corresponding to the temporal spectrum of the RF input signal 116.
As the RF signal 116 varies in time, the temporal distribution at the focus of the second lens 108 varies correspondingly. However, for reasons of clarity and simplicity of description, operation will only be described in relation to the small spatial distribution 119 incident upon the photodiode array 200 at a given instant in time.
The photodiode array 200 located at the focus of the second lens 108 receives light corresponding to the small spatial distribution 119 generated by the second lens 108, and each photodiode converts the photonic energy into electrical energy in the form of a voltage impulse or charge. The voltage impulse generated by each photodiode corresponds to the amount of light incident upon each photodiode. Each photodiode of the photodiode array 200 therefore generates an output signal which is transmitted to each of the input terminals of the input-stage buffer unit 306, in this example, the first, second and Input terminals 300,302, 304 (step 500).
The voltage impulse present at the first input terminal 300 of the first input buffer 308 is amplified by the first buffer 308 to produce a pre-amplified signal at the first output terminal 314. The pre-amplified signal is then sampled by the analogue multiplexer 208 at the first input terminal 202 and the first input terminal 320 of the comparator unit 326. The pre-amplified signal, present at the first inverting input terminal 320, is compared (step 502) with the first threshold signal Vtl of a predetermined threshold value of interest. If the pre-amplified signal, at the inverting input terminal 320 of the comparator 328, is greater than the threshold value Vtl, the first comparator 328 generates a logical HIGH output signal (step 504), whereas if the pre-amplified signal (at the inverting input terminal 320 of the comparator 328) is lower than the threshold value Vn, the first comparator 328 generates a logical LOW output signal (step 506). Vt"Vt2, VtN are set at a low level, for example 4 nV, compare to the pre-amplified signals of interest and sufficiently above any system noise to ensure that noise does not affect processing of the pre-amplified signals. The comparator unit 326 serves to identify the small spatial distribution 119. The logical HIGH or logical LOW output signal is present at the output terminal 334 of the first comparator 328 and is present at the first input terminal 340 of the digital logic unit 346.
The above description relating to the pre-amplification of the voltage impulse present at the first input terminal 308 and the processing of the preamplified voltage impulse by the comparator unit 326 is equally applicable to the voltage impulses generated by other photodiodes in the photodiode array 200.
However, it should be appreciated that respective dedicated buffers and comparators will process respective voltage impulses in accordance with the construction of the AO processor 100 already described above.
The digital logic unit 346 then executes the combinatorial and logical process on the electrical signals received at the first, second and N"input terminals 340,342,344 in conjunction with any data received on the external control bus 348 corresponding to a user's preferences relating to analysis of the RF input signal 116. Thus, in this example, the user wants to select a photodiode corresponding to the centre of the small spatial distribution 119 and ignore other pre-amplified signals known to be of no interest when analysing the RF input signal 116.
It can be seen that, the Fourier transform of a single frequency of the RF input signal 116 will result in a number of adjacent photodetectors of the photodetector array 200 generating voltage impulses in response to light incident thereon. The digital logic unit 346 is arranged to identify the central and therefore the largest of these voltage impulses.
The central voltage impulse corresponding to the peak intensity 118 is identified by detecting edges of the small spatial distribution 119, and performing an"edge erosion"function whereby the edge of the array of signals at the input terminals of the digital logic unit 346 are eroded, or changed to logic LOW signals until a central signal remains. An example of"edge erosion"is shown below, where each row of bits, other than the first row of bits, correspond to the eroding of a pair of edges by the digital logic unit 346 during an iteration of the"edge erosion"function, each bit corresponding to a photodetector element: 001111100 000111000 000010000 However, in other applications the digital logic unit 346 can also be arranged to select pre-amplified signals corresponding to voltage impulses generated by a predetermined number of, for example two, photodiodes located in addition to and adjacent the photodiode responsible for generating the largest of the voltage impulses in order to obtain additional information relating to the temporal behaviour of the RF input signal 116.
The voltage impulses or charges generated by each photodiode element are proportional to the intensity of light incident upon the respective photodiode elements. Therefore, photodiode elements upon which the centre of the small spatial distribution 119 is incident generate a larger voltage impulse or charge than the photodiode elements upon which other parts of the small spatial distribution 119 are incident.
The voltage impulses or charges are processed in the manner already described above in order to provide respective input signals at the first, second, third, fourth, fifth and sixth input terminals, 340,341,342,343,344,345.
The small spatial distribution 119 is incident upon the photodiode array 200 such that the respective input signals present at the first, second, third, fourth, fifth and sixth input terminals, 340,341,342,343,344,345 are centred about the fourth input terminal 343. Due to the values of V, l, Vt2, V N, the three photodiodes receiving light of greatest intensity corresponding to the small spatial distribution 119 have been selected by the comparator unit 326, thereby causing the third, fourth and fifth input terminals 342,343,344 to receive a logic HIGH input signal. The first, second and sixth input terminals 340,341,345 receive logic LOW signals generated by the comparator unit 326, corresponding to photodiodes receiving light in respect of the periphery of the centre of the small spatial distribution 119.
The signal at the third input terminal 342 is eliminated or"eroded"by applying the signals present at the second, fourth and fifth input terminals 341, 343, 344 to the first AND gate 407. The signal at the second input terminal 341 is inverted at the input to the first AND gate 407, the first AND gate 407 producing a logic HIGH signal at the output terminal 421 when the signal at the second input terminal 341 is logic LOW and signals at the fourth and fifth input terminals 343, 344 are logic HIGH. A similar operation is performed by the second AND gate 409 by applying the signals present at the first, second and fourth input terminals 340,341,343 to yield a signal at output terminal 429. The signals at the output terminals 421, 429 of the first and second AND gates 407,409 of the second gate circuit 402 are applied to the exclusive-OR gate 413, the exclusive-OR gate 413 generating a logic HIGH signal when only one of the signals at the first and second input terminals 431,433 is logic HIGH, thereby indicating that the signal at the second input terminal 341 is at the edge of the signals present at the third, fourth and fifth input terminals 342,343,344. The signal present at the output terminal 435 of the exclusive-OR gate 413 is inverted at the input terminal 437 of the third AND gate 411, the third AND gate 411 performing a logical AND operation on the signal present at the third input terminal 342 and the input terminal 437, generating a logic LOW output signal at the output terminal 441, thus"eroding"the edge of signals present at the third, fourth and fifth input terminals 342,343,344. The fourth logic circuit 406 operates in a similar manner in order to"erode"the edge represented by the signals present at the fifth and sixth input terminals 344,345. In the case of signals not at the edge of the signals present at the third, fourth and fifth input terminals 342,343,344, the third AND gate 446 of the third logic circuit 404 generates a logic HIGH output signal at the output terminal 480, thus leaving the central signal of the signals present at the third, fourth and fifth input terminals 342,343,344. In the present example, the third logic circuit 404 has identified (see Table 1 above, the entry for 01110) the signal present at the fourth input terminal 343 as being the central signal, i. e. corresponding to the centre of the small spatial distribution 119.
AND gates having four input terminals can be used in place of the first and second AND gates 408,410,407,409,442,444,443,445; the four-input AND gates can be connected to input terminals corresponding to signals adjacent the signals present at the first and fifth input terminals 340,344 in order to arrange for three signals rather than one to be selected, for example, for applications where three or more central signals need to be selected.
If the number of logic HIGH input signals representing the small spatial distribution 119 is greater, such as in the case of the spatial distribution 109, further layers of identical logic can be attache to the outputs of the first, second, third and fourth logic circuits 400,402,404,406 in order to further"erode"the edges of input signals of the digital logic unit 346 corresponding to the, larger, spatial distribution 109.
The process executed by the digital logic unit 346 results in the identification of the pre-amplified signals of interest to the user in the form of output data transferred (step 508) to the analogue multiplexer 208 via the output data bus 244. The analogue multiplexer 208, based on the output data received from the digital logic unit 346, then samples and multiplexes the pre-amplified signals corresponding to the photodiodes of interest at the full bandwidth of the pre-amplified signals. The multiplexed pre-amplified signals of interest are then switched through to the output buffer unit 222 which is coupled to output pins (not shown) of the integrated circuit. Once the multiplexed pre-amplified signals of interest have been switched through to the output buffer unit 222, the digital logic unit 346 decides whether or not to repeat the above described steps (step 510).
It should be appreciated that operation of the digital logic unit 346 can be facilitated by providing an analogue pre-processing stage prior to the digital logic unit 346 to, for example, subtract adjacent signals.
It should be appreciated that the present invention is not limited to the above-described example, and that modifications and/or variations within the scope of the appended claims are conceivable.

Claims (11)

  1. Claims 1. A data filtering apparatus for a multiplexing unit arranged to receive a plurality of data signals, the apparatus comprising input means for receiving the plurality of data signals, processing means arranged to identify at least one data signal from the plurality of data signals conforming to a predetermined criteria and transmit an identifying signal corresponding to the identified at least one data signal to the multiplexing unit for selective processing of the at least one data signal from the plurality of data signals.
  2. 2. An apparatus as claimed in Claim 1, wherein the processing means comprises level detection means arranged to determine whether each of the plurality of data signals is above a predetermined threshold.
  3. 3. An apparatus as claimed in Claim 2, wherein the level detection means is an array of comparator means.
  4. 4. An apparatus as claimed in any one of Claims 1 to 4, wherein the processing means includes means for receiving an external control signal.
  5. 5. An apparatus as claimed in Claim 4, wherein the external control signal is an instruction relating to the selective processing of the plurality of data signals.
  6. 6. A photodiode array processing unit comprising the data filtering apparatus as claimed in any one of the preceding claims.
  7. 7. A method of filtering a plurality of data signals for a multiplexing unit, the method comprising the steps of : receiving the plurality of data signals, identifying at least one data signal from the plurality of data signals conforming to a predetermined criteria, and transmitting an identifying signal corresponding to the identified at least one data signal to the multiplexing unit for selective processing of the at least one data signal from the plurality of data signals.
  8. 8. A method as claimed in Claim 7, further comprising identifying the at least one data signal from the plurality of data signals conforming to the predetermined criteria by determining whether each of the plurality of data signals is above a predetermined threshold.
  9. 9. A channel selection logic unit for a multiplexing unit, the logic unit comprising : an input port for receiving receive a plurality of data signals, a processing unit including a plurality of level detectors coupled to the input port and arranged to determine whether each of the plurality of data signals is above a predetermined threshold, and generate an identifying signal indicative of each of the plurality of data signals being above the predetermined threshold, and an output port for coupling to the multiplexing unit in order to transmit the identified at least one data signal to the multiplexing unit for selective processing of the at least one data signal from the plurality of data signals.
  10. 10. A data filtering apparatus for a multiplexing unit substantially as hereinbefore described with reference to accompanying Figures 2 or 3.
  11. 11. A method of filtering a plurality of data signals for a multiplexing unit substantially as hereinbefore described with reference to Figure 4.
GB9901900A 1999-01-28 1999-01-28 Data filtering apparatus and method of filtering a plurality of data signals Expired - Fee Related GB2346300B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB9901900A GB2346300B (en) 1999-01-28 1999-01-28 Data filtering apparatus and method of filtering a plurality of data signals
US09/494,053 US6842497B1 (en) 1999-01-28 2000-01-28 Data filtering apparatus and method of filtering a plurality of data signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9901900A GB2346300B (en) 1999-01-28 1999-01-28 Data filtering apparatus and method of filtering a plurality of data signals

Publications (3)

Publication Number Publication Date
GB9901900D0 GB9901900D0 (en) 1999-03-17
GB2346300A true GB2346300A (en) 2000-08-02
GB2346300B GB2346300B (en) 2003-12-03

Family

ID=10846672

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9901900A Expired - Fee Related GB2346300B (en) 1999-01-28 1999-01-28 Data filtering apparatus and method of filtering a plurality of data signals

Country Status (2)

Country Link
US (1) US6842497B1 (en)
GB (1) GB2346300B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937592B1 (en) * 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455649A (en) * 1982-01-15 1984-06-19 International Business Machines Corporation Method and apparatus for efficient statistical multiplexing of voice and data signals
US4825451A (en) * 1982-10-11 1989-04-25 Niravoice, Inc. Technique for transmission of voice communications and apparatus useful therein
US5682387A (en) * 1994-09-21 1997-10-28 Nec Corporation Demand assign multiplexer providiing efficient demand assign function in multimedia systems having statistical multiplexing transmission

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063226A (en) * 1974-03-18 1977-12-13 Harris Corporation Optical information storage system
US4118701A (en) * 1976-10-08 1978-10-03 Nasa FM/CW radar system
US4409652A (en) * 1980-09-12 1983-10-11 Siemens Ag Apparatus for processing digital signals
FR2511566A1 (en) * 1981-08-12 1983-02-18 Thomson Csf THRESHOLD OPTICAL RECEIVER FOR DIGITAL RATE DIGITAL TRANSMISSION SYSTEM
US4636718A (en) * 1984-07-20 1987-01-13 Sperry Corporation Acousto-optical spectrum analyzer with expanded frequency resolution
NL8801342A (en) * 1988-05-25 1989-12-18 Imec Inter Uni Micro Electr RADIATION RECORDER.
US5138475A (en) * 1990-03-26 1992-08-11 At&T Bell Laboratories Dc-coupled optical data link utilizing differential transmission
US5214527A (en) * 1990-09-26 1993-05-25 Bell Communications Research, Inc. Electronically switched multiple-channel optical receiver
KR0159663B1 (en) * 1995-10-28 1998-12-01 김광호 Optical data transmission device realizing duplexing of optical data transmissions
JPH09128904A (en) * 1995-11-01 1997-05-16 Canon Inc Information reproducing device
KR100294106B1 (en) * 1998-08-25 2001-07-12 구자홍 Servo device and method for optical disc using multiple beams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455649A (en) * 1982-01-15 1984-06-19 International Business Machines Corporation Method and apparatus for efficient statistical multiplexing of voice and data signals
US4825451A (en) * 1982-10-11 1989-04-25 Niravoice, Inc. Technique for transmission of voice communications and apparatus useful therein
US5682387A (en) * 1994-09-21 1997-10-28 Nec Corporation Demand assign multiplexer providiing efficient demand assign function in multimedia systems having statistical multiplexing transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE003014906 *

Also Published As

Publication number Publication date
US6842497B1 (en) 2005-01-11
GB2346300B (en) 2003-12-03
GB9901900D0 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
CN101652764A (en) Multi-gain adaptive linear processing and gated digital system for use in flow cytometry
JP3796357B2 (en) Optical signal quality monitor
US20100217789A1 (en) Physical random number generation method and physical random number generator
US6816102B2 (en) System for digitizing transient signals
JP2009092670A (en) Digitizing positron emission tomography (pet) radiation event apparatus and use method
CN104734774A (en) Methods and apparatus for monitoring and controlling the performance of optical communication systems
Bartko et al. Tests of a prototype multiplexed fiber-optic ultra-fast FADC data acquisition system for the MAGIC telescope
KR900014877A (en) Pressure-Modulated Infrared Gas Analyzers and Methods
CA2249800C (en) Eye quality monitor for a 2r regenerator
HU210832B (en) Method for processing signals and adaptive implementation of said method for nuclear spectrometers
US6842497B1 (en) Data filtering apparatus and method of filtering a plurality of data signals
US6091522A (en) Acousto-optic channelizer-based ultra-wideband signal processor
EP1800422A1 (en) Method and apparatus for recognizing a disturbing effect in an information channel
KR950010340B1 (en) Audio signal distortion calculating system using time masking effect
JPH04230826A (en) Automatic masking apparatus of photodetector and compensation of transient response distortion of photodetector
CA1303149C (en) Optical fiber device for generating light pulses
JP3097034B1 (en) Signal analyzer
CN113737867A (en) Foundation pile detector with self-adaptive measuring range and data processing method thereof
KR0138741B1 (en) Method and apparatus for gathering signals of a inspecting system with the ultrasonic waves
KR100216225B1 (en) Array module power supply examination device of line array ultrasonic detector
JP3849935B2 (en) Particle size distribution measuring device
CN102539346A (en) Optical system of full-automatic biochemical analyzer
SU672509A1 (en) Light signal register
JP2971164B2 (en) Distributed optical fiber sensor
KR980011130A (en) Disc Tracking Condition Determining Device of Optical Pickup

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20110128