GB2333040A - Fire extinguisher - Google Patents

Fire extinguisher Download PDF

Info

Publication number
GB2333040A
GB2333040A GB9900121A GB9900121A GB2333040A GB 2333040 A GB2333040 A GB 2333040A GB 9900121 A GB9900121 A GB 9900121A GB 9900121 A GB9900121 A GB 9900121A GB 2333040 A GB2333040 A GB 2333040A
Authority
GB
United Kingdom
Prior art keywords
bladder
fire extinguisher
fire
extinguisher
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9900121A
Other versions
GB9900121D0 (en
Inventor
Derek Gordon Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIRE EXTINGUISHER VALVE LIMITE
SAFETY DEVICES Ltd
Original Assignee
FIRE EXTINGUISHER VALVE LIMITE
SAFETY DEVICES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIRE EXTINGUISHER VALVE LIMITE, SAFETY DEVICES Ltd filed Critical FIRE EXTINGUISHER VALVE LIMITE
Publication of GB9900121D0 publication Critical patent/GB9900121D0/en
Publication of GB2333040A publication Critical patent/GB2333040A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C13/00Portable extinguishers which are permanently pressurised or pressurised immediately before use
    • A62C13/66Portable extinguishers which are permanently pressurised or pressurised immediately before use with extinguishing material and pressure gas being stored in separate containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/48Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling
    • B29C33/50Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible

Abstract

Extinguisher has a rigid outer container 1 enclosing a flexible bladder 2 containing fire extinguishant in communication with a release valve 3. The free space 6 between the casing and the bladder is charged with a compressed gas via a pressurisation valve 5 and when in use the release valve is operated to apply extinguishant, the compressed gas collapses the bladder and the extinguishant is expelled from the extinguisher. In an alternative, the bladder communicates with a remote charge of compressed gas through a release valve which is operable by detection of a fire. The extinguisher may be attached to individual outlet tubes to direct the extinguishant to areas to be sprayed. Also claimed, is a method of forming a container with a rigid housing containing a bladder using a molding process.

Description

Improvements relating to Containers This invention relates to a method of forming containers and, more particularly, to a container in the form of a fire extinguisher. One objective of the invention is to provide a fire extinguisher which will operate to discharge the contents thereof when the extinguisher is in any attitude.
According to a first aspect of this invention there is provided a fire extinguisher comprising a rigid outer casing having an outlet incorporating a release valve, together with an expandable internal bladder communicating with said release valve, the bladder containing a fire extinguishant material, whilst the cavity between the outer casing and the bladder is charged with a compressed gas which will cause the fire extinguishant material to be discharged from the extinguisher when said release valve is opened.
In an alternative aspect the invention provides a fire extinguisher comprising a rigid outer casing having an outlet, together with an expandable internal bladder communicating with said outlet, the bladder containing a fire extinguishant material, whilst the cavity between the outer casing and the bladder communicates with charge of a compressed gas through a release valve such that opening of the release valve will cause the fire extinguishant material to be discharged from the outlet of the extinguisher under pressure of the compressed gas.
Because the driving force to discharge the extinguishant material is the pressurised gas within the outer casing acting on the internal bladder, the attitude of the fire extinguisher during operation is not important.
Also there is effectively no real pressure loss, so that there is no change in performance as the contents are expelled.
The fire extinguisher could have a flow tube extending through a majority of the length of the extinguisher to provide the communication of the contents of the bladder to the outlet. The flow tube prevents collapse of the bladder onto the outlet from the outer casing, thus allowing the contents of the bladder to escape. Preferably such a flow tube would be formed with perforations down its length to provide substantial communication with the interior of the bladder. However the provision of a flow tube acts as a constriction which, in particular, reduces the rate at which the extinguisher can be filled with fire extinguishant material during manufacture. Also such a flow tube limits to an extent the ability of the extinguisher to operate upside down. As a preferred alternative, therefore, spacer members (for example in the form of bent copper wire structures) can be fitted within the bladder down from the outlet region of the extinguisher.
A separate pressurisation valve can be provided into the outer casing to enable the compressed gas to be injected into the cavity between the outer casing and the bladder.
Whilst the fire extinguisher could be "stand alone" (for example a hand held unit) it is ideally suited for incorporation into a fire extinguisher system, for example within a vehicle so that the extinguishant from the extinguisher can be directed to various areas. In this case the fire extinguisher can be linked by a connecting tube to a control box with internal valves which can be opened to allow communication of the contents of the fire extinguisher through an escape valve in the form of a non-return valve to individual outlet tubes which feed the extinguishant material to areas to be sprayed.
The bladder can be formed from a flexible neoprene rubber composite, but is ideally formed from latex rubber and will preferably have a reinforced neck portion.
It is desirable that the rigid outer casing for the fire extinguisher should be moulded as a single piece so that it will have adequate operating strength. It could also be formed from ferrous or non-ferrous material. The casing (and the internal bladder) could be formed to any desired shape so as, for example, to fit into confined spaces.
According to a further aspect of the invention there is provided a method of forming a container in which the container is shaped by laying up fibre material coated in synthetic resin around an expanded and partially pressurised bladder which acts as an internal mould and onto the inner faces of a rigid external mould for forming the outside of the container, further pressurising the bladder to bring the layers of fibre material into intimate contact with one another, curing or setting the synthetic resin to form a rigid container and deflating and removing the bladder and removing the external mould.
By this means a one piece container can be created.
Whilst the container is ideally suited for use as the outer casing of the fire extinguisher of this invention as defined above, one piece containers for other purposes can also be formed by this method.
Ideally the external mould is of generally curved form on the inner face. The fibre material may comprise fibreglass or carbon fibre.
The invention may be performed in various ways and preferred embodiments thereof will now be described, by way of example, with reference to the accompanying drawings, in which:- Figure 1 is a sectional view through a fire extinguisher constructed in accordance with a first aspect of this invention; Figure 2 is a section through the neck of an alternative construction of the fire extinguisher of Figure 1; Figure 3 is a plan view of the bladder of the extinguisher of Figure 1 or Figure 2 in a collapsed state; Figure 4 is a view similar to that of Figure 1 showing a modification to the extinguisher; Figure 5 illustrates a fire extinguisher system of the invention; and Figure 6 is a cross-section through a device for forming containers in accordance with another aspect of the invention.
The fire extinguisher illustrated in Figure 1 is defined by a rigid outer casing 1 together with a flexible internal bladder 2. A valve 3 mounted in the body of the outer casing 1 provides an interconnection to a flow tube 4 which projects into the bladder 2 and terminates towards the bottom end of the extinguisher. The tube 4 is formed with holes down its length. The body of the casing 1 also includes a pressurisation valve 5.
In use a fire extinguishant material is charged into the bladder 2 (through the holes in the tube 4), thus expanding the bladder so that it moves into contact with the internal walls of the casing 1. The valve 3 is then attached (or an existing valve 3 can be closed) to seal the contents within the bladder 2. A compressed gas is then injected through the pressurisation valve 5 to pressurise the cavity 6 between the casing 1 of the bladder 2.
In use the release valve 3 is operated to allow the contents of the bladder to escape via the flow tube 4. The compressed gas in the cavity 6 causes the bladder 2 to collapse and acts to force the contents of the bladder out of the fire extinguisher. The particular advantage of this arrangement is that operation of the fire extinguisher is generally independent of the attitude of the extinguisher and the operating characteristics remain generally constant during full discharge. Thus, for example, if the extinguisher was fixed into a vehicle which had overturned, the fact that the extinguisher is upside down would not prevent it from operating adequately to discharge the contents.
This is because the discharge is caused by the collapse of the bladder 2 under the pressure of the compressed gas within the space 6.
In the modified arrangement shown in Figure 2 an insert 7 is provided for insertion into the mouth of the container 1 of Figure 1. This insert 7 is formed with external ribs 8 about which the neck portion 9 of the bladder 2 is pushed.
When the insert is pressed into the neck of the container 1 the neck 9 of the bladder will be firmly held in place.
Extending from the insert 7 are a series of spacer members 10 formed from bent copper wire. These act to prevent collapse of the bladder over the opening to the insert 7 during ejection of the contents of the bladder in use. As can be seen from Figure 3 the bladder 2, in its collapsed state, is folded up so that it can be inserted readily into the outer casing 1. If necessary the opening in the neck of the container 1 can be shaped to accommodate a particular shape of insert which has to be introduced through the neck.
In the arrangement shown in Figure 4 pressurisation valve 5 is remote from the connection into the cavity 6 and associated with a high pressure capsule 5A. The valve 5 can be operated or pierced upon receipt of an electronic signal created by the onset of a fire so that the pressurised gas in the capsule 5A is released and injected into the cavity 6 so that the contents of the bladder 2 are ejected through an outlet tube 12 leading to a point where the extinguishant material is required.
A fire extinguisher system is illustrated in Figure 5 and comprises a fire extinguisher 1 linked to a control box 11 by a connecting tube 12. The control box 11 incorporates a number of valves which will be triggered when a fire is detected to link the tube 12 to a number of outlet tubes 13 which are fed to a number of different areas where it is desired that the extinguishant material should be ejected.
Upon release of at least one of the valves within the control box 11 the extinguishant material within the fire extinguisher 1 will flow out automatically through the nonreturn valve 3.
Figure 6 illustrates how a container (such as the rigid outer container 1 of the fire extinguisher shown in Figure 1) may be constructed. A rigid external two-part mould 14 is provided together with an internal pressurised bag 15.
The space between the external mould 14 and the bag 15 is filled with a carbon fibre composite material 16, together with a synthetic resin. Firstly the carbon fibre and resin material is laid up over the internal surfaces of the mould 14. Further portions of carbon fibre and resin material are then formed around the partially inflated bag 15. The two halves of the external mould 14 are then placed about the bag 15 and are bolted together. After this the bag 15 is pressurised further to cause the layers of carbon fibre and resin material to be pressed into intimate contact with one another. The moulded material 16 is held in place across the internal surface of the mould 14 by the inflated and pressurised bag 15 as the material within the mould is cured in an autoclave under vacuum. After curing the bag 15 is deflated (through the inflation opening 17) so that it can be withdrawn from the moulded article. The outer mould 14 is also removed.
As well as forming an outer casing for the fire extinguisher of Figure 1 this process can be used to form containers, bottles etc. of any desired shape and for any preferred purpose. Ideally the moulding will be formed with curves between the walls of the container as the bag 15 can more readily inflate into curved rather than angled corners.

Claims (14)

1. A fire extinguisher comprising a rigid outer casing having an outlet incorporating a release valve, together with an expandable internal bladder communicating with said release valve, the bladder containing a fire extinguishant material, whilst the cavity between the outer casing and the bladder is charged with a compressed gas which will cause the fire extinguishant material to be discharged from the extinguisher when said release valve is opened.
2. A fire extinguisher comprising a rigid outer casing having an outlet, together with an expandable internal bladder communicating with said outlet, the bladder containing a fire extinguishant material, whilst the cavity between the outer casing and the bladder communicates with charge of a compressed gas through a release valve such that opening of the release valve will cause the fire extinguishant material to be discharged from the outlet of the extinguisher under pressure of the compressed gas.
3. A fire extinguisher according to Claim 1 or Claim 2, wherein spacer members are fitted within the bladder down from the outlet region of the extinguisher.
4. A fire extinguisher according to Claim 3, wherein the spacer members are formed from bent copper wire in a cage structure.
5. A fire extinguisher according to Claim 1 or Claim 2, wherein a flow tube extending through a majority of the length of the extinguisher provides the communication of the contents of the bladder to the outlet.
6. A fire extinguisher according to Claim 5, wherein perforations are formed down the length of the flow tube.
7. A fire extinguisher according to any one of Claims 1 to 6, wherein the bladder is formed from a flexible neoprene rubber composite or latex rubber.
8. A fire extinguisher according to any one of Claims 1 to 7, wherein a separate pressurisation valve is provided into the outer casing to enable the compressed gas to be injected into the cavity between the outer casing of the bladder.
9. A fire extinguisher according to any one of Claims 1 to 8, wherein the outlet is linked by a connecting tube to a control box with internal valves which can be opened to allow communication of the contents of the fire extinguisher through an escape valve in the form of a non-return valve to individual outlet tubes which feed the extinguishant material to areas to be sprayed.
10. A method of forming a container in which the container is shaped by laying up fibre material coated in synthetic resin around an expanded and partially pressurised bladder which acts as an internal mould and onto the inner faces of a rigid external mould for forming the outside of the container, further pressurising the bladder to bring the layers of fibre material into intimate contact with one another, curing or setting the synthetic resin to form a rigid container and deflating and removing the bladder and removing the external mould.
11. A method according to Claim 10, wherein the external mould is of generally curved formed on the inner face.
12. A method according to Claim 10 or Claim 11, wherein the fibre material comprises fibreglass or carbon fibre.
13. A fire extinguisher according to claim 1 or a method of forming a container according to claim 10 and substantially as herein described with reference to the accompanying drawings.
14. Any novel combination of features of a fire extinguisher or of a method of forming a container and substantially as herein described with reference to the accompanying drawings.
GB9900121A 1998-01-07 1999-01-06 Fire extinguisher Withdrawn GB2333040A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB9800150.6A GB9800150D0 (en) 1998-01-07 1998-01-07 Improvements relating to containers

Publications (2)

Publication Number Publication Date
GB9900121D0 GB9900121D0 (en) 1999-02-24
GB2333040A true GB2333040A (en) 1999-07-14

Family

ID=10824844

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB9800150.6A Pending GB9800150D0 (en) 1998-01-07 1998-01-07 Improvements relating to containers
GB9900121A Withdrawn GB2333040A (en) 1998-01-07 1999-01-06 Fire extinguisher

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GBGB9800150.6A Pending GB9800150D0 (en) 1998-01-07 1998-01-07 Improvements relating to containers

Country Status (2)

Country Link
GB (2) GB9800150D0 (en)
WO (1) WO1999034871A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398494A (en) * 2003-02-20 2004-08-25 Roger Carr Fire extinguisher
DE10336749A1 (en) * 2003-08-06 2005-05-12 Bavaria Brandschutz Ind Beteil Fire extinguisher used as a wet fire extinguisher or a continuous pressure or pressure-chargeable fire extinguisher comprises an extinguishing agent chamber defined by a rubber elastic membrane surrounding a riser pipe
WO2008053238A2 (en) * 2006-11-02 2008-05-08 Snc-Lavalin Uk Limited System for charging and discharging containers for storage & transportation of high pressure compressed gas
CN101791460A (en) * 2010-04-02 2010-08-04 中国科学技术大学 Bladder-type portable water mist fire extinguisher
DE102009012295A1 (en) * 2009-03-11 2010-09-16 Kgv Vertrieb Industrieller Produkte Gmbh Portable fire extinguisher for use in e.g. explosion-hazardous area, has container designed as pressure tank, nozzle arrangement made of electrically conductive materials, and blowing gas bottle with electrically conductive sheathing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032272A1 (en) * 2006-01-30 2009-02-05 William James Duncan Fluid Vessel and Method for Charging a Fluid Vessel
CN103845833B (en) * 2014-03-11 2017-02-01 中国科学技术大学 Double-fluid jet water mist fire gun
CN111934214A (en) * 2020-08-05 2020-11-13 张宏涛 Low-voltage power distribution cabinet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB395994A (en) * 1932-04-16 1933-07-27 Job Arthur Neville A device for emitting fluids under pressure
WO1989009082A1 (en) * 1988-03-22 1989-10-05 Kidde Graviner Limited Fire extinguisher
US5251344A (en) * 1990-11-09 1993-10-12 Prevor International Tank for sterile, portable, self-contained shower and shower equipped therewith
WO1994023799A1 (en) * 1993-04-20 1994-10-27 Pistek Vaclav Pressure container, especially for a fire-extinguishing agent
GB2300564A (en) * 1995-04-13 1996-11-13 Uk Fire International Limited Portable fire extinguisher

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB395826A (en) * 1932-04-16 1933-07-27 Job Arthur Neville Improvements in or relating to fire extinguishing apparatus for motor and other vehicles
DE723081C (en) * 1938-03-01 1942-07-29 Werner Kurda Dipl Ing Fire extinguisher with extinguishing fluid under pressure
US3726304A (en) * 1971-11-08 1973-04-10 C Cook Fertilizer dispenser
US4448217A (en) * 1982-09-27 1984-05-15 The Normand Trust Accumulator having bladder in expansion limiting contact with casing
US4784354A (en) * 1987-09-28 1988-11-15 Tavano John B Emergency aircraft fuel system
DE4440155C2 (en) * 1994-11-10 1997-05-15 Total Feuerschutz Gmbh Extinguishing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB395994A (en) * 1932-04-16 1933-07-27 Job Arthur Neville A device for emitting fluids under pressure
WO1989009082A1 (en) * 1988-03-22 1989-10-05 Kidde Graviner Limited Fire extinguisher
US5251344A (en) * 1990-11-09 1993-10-12 Prevor International Tank for sterile, portable, self-contained shower and shower equipped therewith
WO1994023799A1 (en) * 1993-04-20 1994-10-27 Pistek Vaclav Pressure container, especially for a fire-extinguishing agent
GB2300564A (en) * 1995-04-13 1996-11-13 Uk Fire International Limited Portable fire extinguisher

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398494A (en) * 2003-02-20 2004-08-25 Roger Carr Fire extinguisher
GB2398494B (en) * 2003-02-20 2005-02-09 Roger Carr Improved fire extinguisher
DE10336749A1 (en) * 2003-08-06 2005-05-12 Bavaria Brandschutz Ind Beteil Fire extinguisher used as a wet fire extinguisher or a continuous pressure or pressure-chargeable fire extinguisher comprises an extinguishing agent chamber defined by a rubber elastic membrane surrounding a riser pipe
WO2008053238A2 (en) * 2006-11-02 2008-05-08 Snc-Lavalin Uk Limited System for charging and discharging containers for storage & transportation of high pressure compressed gas
WO2008053238A3 (en) * 2006-11-02 2008-08-14 Snc Lavalin Uk Ltd System for charging and discharging containers for storage & transportation of high pressure compressed gas
DE102009012295A1 (en) * 2009-03-11 2010-09-16 Kgv Vertrieb Industrieller Produkte Gmbh Portable fire extinguisher for use in e.g. explosion-hazardous area, has container designed as pressure tank, nozzle arrangement made of electrically conductive materials, and blowing gas bottle with electrically conductive sheathing
CN101791460A (en) * 2010-04-02 2010-08-04 中国科学技术大学 Bladder-type portable water mist fire extinguisher

Also Published As

Publication number Publication date
WO1999034871A2 (en) 1999-07-15
GB9800150D0 (en) 1998-03-04
WO1999034871A3 (en) 1999-12-09
GB9900121D0 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US5106137A (en) Vehicle bumper with combination foam and air bag energy absorber
EP0987194B1 (en) Apparatus and method for inflating and deflating a dunnage bag
US10018452B1 (en) Toy dart
US20060113035A1 (en) Welded item
GB2333040A (en) Fire extinguisher
WO1998054046A3 (en) Composite bicycle frame and method of construction thereof
CA2078086C (en) Pneumatic sealing device for waste disposal systems
JPH0260586B2 (en)
EP0352045A2 (en) Improvements in or relating to polymer filled tyres
AU2015237772B2 (en) Tire inflation and sealing system
EP0818302A4 (en) Method of manufacturing tire tube containing sealant
US4751951A (en) Safety support system for a tubeless tire
EP0248755A2 (en) Pressurized container
US5406662A (en) Apparatus for launching inflatable fascines
AU2003274258A1 (en) Airbag type safety device
EP0361091A1 (en) Aerosol power system
US6712103B2 (en) Gas container
US20010021424A1 (en) Packaging and process for its production
US3229417A (en) Pressure fluid jet propelled model vehicle
JP4559835B2 (en) Tire sealing and pump-up equipment
US20090151810A1 (en) Balloon Inflation System
CN219858598U (en) Polyurethane filling device with anti-overflow subassembly
KR20070034548A (en) Puncture-proof car tires with bubble bags
JPH09301101A (en) Manufacture of cabin side member having air bag door part integrated therewith
CN2294861Y (en) Filled type explosion-proof tyre

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)