GB2264812A - Electric power generators - Google Patents

Electric power generators Download PDF

Info

Publication number
GB2264812A
GB2264812A GB9303623A GB9303623A GB2264812A GB 2264812 A GB2264812 A GB 2264812A GB 9303623 A GB9303623 A GB 9303623A GB 9303623 A GB9303623 A GB 9303623A GB 2264812 A GB2264812 A GB 2264812A
Authority
GB
United Kingdom
Prior art keywords
winding
propeller
winding assembly
electrical
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9303623A
Other versions
GB9303623D0 (en
GB2264812B (en
Inventor
James Andrew Timothy Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowty Defence and Air Systems Ltd
Original Assignee
Dowty Defence and Air Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB929204888A external-priority patent/GB9204888D0/en
Application filed by Dowty Defence and Air Systems Ltd filed Critical Dowty Defence and Air Systems Ltd
Priority to GB9303623A priority Critical patent/GB2264812B/en
Priority to PCT/GB1993/000455 priority patent/WO1993018571A1/en
Priority to EP93905512A priority patent/EP0629318B1/en
Priority to ES93905512T priority patent/ES2092290T3/en
Priority to JP05515453A priority patent/JP3108098B2/en
Priority to DE69304517T priority patent/DE69304517T2/en
Publication of GB9303623D0 publication Critical patent/GB9303623D0/en
Publication of GB2264812A publication Critical patent/GB2264812A/en
Publication of GB2264812B publication Critical patent/GB2264812B/en
Application granted granted Critical
Priority to US08/844,025 priority patent/US5793137A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/48Generators with two or more outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Abstract

An electrical generator (1) comprising first and second relatively rotatable winding assemblies (5, 8), the first winding assembly (5) having a first electrical output for connection to a first electrical load (4) and the second winding assembly (8) having a second electrical output for connection to a second electrical load (6 or 19), and a permanent magnet assembly (12) freely rotatably mounted between the winding assemblies (5, 8) such that, in use, rotation of the winding assemblies (5, 8) relative to the permanent magnet (12) assembly induces a current in both winding assemblies. A third winding assembly (19) may rotate with the second winding assembly (8) relative to a fourth winding assembly (20) that rotates into the first winding assembly (5). The third winding assembly (19), may comprise said second electrical load, and the fourth winding assembly (20) may be connected to a fourth electrical load (22, 23). The first and fourth electrical loads (4, 22, 23) may be de-icing elements on a propeller.

Description

ELECTRICAL POWER GENERATORS TECHNICAL FIELD This invention relates to electrical power generators, particularly, but not exclusively, for providing electrical power for aircraft.
It is known to produce an electrical current by causing relative movement of a magnet and coil.
FR 2281273 discloses the use of the generated current to electrically heat propeller blades. A problem with such an arrangement is that a separate generator is required to provide power for other aircraft functions such as airframe deicing.
DISCLOSURE OF THE INVENTION It is an object of the invention to provide an electrical power generator having at least two power outputs.
Accordingly, the invention consists inan electrical generator comprising first and second relatively rotatable winding assemblies, the first winding assembly having a first electrical output for connection to a first electrical load and the second winding assembly having a second electrical output for connection to a second electrical load, and a permanent magnet assembly freely rotatably mounted between the winding assemblies such that, in use, relative motion of the winding assemblies induces a current in both winding assemblies.
By making the magnet assembly freely rotatable it tends to follow one of the winding assemblies say the first, for example, inducing a current in the second assembly. The induced current produces a field which opposes the field producing it, causing a force which tends to rotate the magnet assembly in the opposite direction to that of the first winding assembly. This causes the magnet assembly to lag with respect to the first winding assembly and the relative motion therebetween causes a current to be induced in the first winding assembly.
The use of such a generator is particularly advantageous in an aircraft where the second winding assembly may be fixed to the airframe and the first winding assembly fixed to a propeller hub. The magnet assembly is then freely rotatably mounted about the propeller shaft. With such an arrangement, blade heater elements may be connected to the first winding assembly and airframe de-icing elements to the second winding assembly.
This is particularly advantageous since one generator can drive both de-icing elements.
Whilst it may be possible on multi-engined aircraft for the second winding to be connected via slip-ring arrangements to the de-icing elements on the blades of the other propellers, it will be more convenient for each engine to have an associated generator since slip-rings require careful and time consuming maintenance if they are to function properly.
The electrical output of the second winding assembly may be used to induce a current in a further winding assembly that rotates with the first winding assembly so that the first and further winding assemblies each produce a separate electrical output on the one rotating assembly, which if it is a propeller, then has two electrical outputs to power separate de-icing elements and/or anti-icing elements. Generally an anti-icing element requires continuous power and a de-icing element only requires pulsed power. The blades of the propeller can therefore be de-iced by switching one electrical output between respective de-icing elements associated with the blades.Power switching can be achieved either by using electrical switching means or by providing the further winding assembly as multiple separate winding assemblies, each connected to respective de-icing elements, and each excited in succession by the second winding assembly.
Preferably, the generator includes a controller for varying the first or second load. By varying the load the power through both loads is controlled.
The windings may be formed from wire wound about a former or, preferably, take the form of printed electrically conducting tracks on a top and bottom surface of a planar substrate, ends of the tracks being preferably linked by through hole plating to produce a coil.
Preferably, the windings are mounted on a material which concentrates magnetic flux. Such materials include soft iron and nodynium and alloys of such material.
DESCRIPTION OF THE DRAWINGS A specific embodiment of the invention will now be described, by way of example only, with reference to the drawing in which: Figure 1 shows a schematic longitudinal cross-section of a generator in accordance with the invention; Ficrure 2 shows a plan view of a magnet assembly from the generator shown in Figure 1; Figure 3 shows a plan view of a winding assembly from the generator shown in Figure 1; Figure 4 shows a circuit diagram of an alternative embodiment of the invention; Figure 5 shows the mechanical layout of the generator of Figure 4; Fiqure 6 shows a circuit diagram of another alternative embodiment of the invention; Ficrure 7 shows an alternative mechanical layout of the generator of Figure 4; and Figure 8 shows a section through the generator in Figure 7.
MODE OF CARRYING OUT THE INVENTION With reference to Figure 1, a generator 1 is located in an engine nacelle 2 and spinner 3, and is split into two major parts, a stationary part and a relatively moveable part. The moveable part comprises a set of propeller blade heating elements 4 electrically connected to an annular movingwindingassembly 5 fixed to the spinner 3 and rotatable therewith relative to the engine nacelle 2.
The stationary part of the generator 1, comprises airframe de-icing heating elements 6 connected via a de-icing control unit 7 to an annular stationary winding assembly 8 fixed to a front face plate 9 of the nacelle 2. A data-link 10 connects the deicing control unit 7 to an airframe computer (not shown). The airframe heating elements 6 are arranged along the leading edge of the aircraft wing (not shown).
An annular magnet assembly 12 is rotatably mounted about a shaft 11 linking the propeller to an engine (not shown) located in the nacelle 2. The magnet assembly 12 is free to rotate about the shaft at a fixed longitudinal position midway between the moving winding assembly 5 and the fixed winding assembly 8.
The magnet assembly 12, as clearly shown in Figure 2, has a plurality of north (N) and south (S) magnetic poles 13 arranged circumferentially about a pole carrier 14. The magnetic material used to form the poles 13 is of the rare earth type which produces a strong magnetic field. About the inner circumference of the magnet assembly 12 is located a ball race 15 to ensure the free rotational movement about the shaft 11.
The moving winding assembly 5 is shown in greater detail in Figure 3 and comprises a set of ten printed windings 16 connected in series and fixed to a planar nodynium disc 17. The stationary winding assembly 8 is of a nominally identical construction to that of the moving winding assembly 5.
The windings 16 comprise a plurality of electrically conductive copper tracks fixed to a planar glass reinforced plastics material substrate.
The generator 1 operates in the following manner.
In conditions where no ice is forming on the propeller blades or the airframe, the airframe computer instructs the de-icing control unit 7 via the data-link 10 to isolate the airframe heating elements 6 by breaking the electrical connection to the stationary winding 8. The stationary winding 8 is then open circuit and no current is induced. Under these conditions the moving magnet 12 moves in fixed relationship with the spinner 3 because any relative motion between the two results in an induced current in the moving winding assembly producing a field which opposes the relative motion of the moving magnet assembly 12.
If ice starts to form, the airframe computer instructs the de-icing control unit 7 to increase the electrical load on the stationary winding assembly 8 by electrically connecting the assembly to the airframe heater elements 6 so completing the circuit. A current is then induced in the stationary winding assembly 8 by the relative movement of the magnet assembly 12, and the current flows through the airframe heater elements 6 thereby de-icing the airframe.
The current induced in the stationary winding assembly 8 produces an induced magnetic field which opposes the changing field inducing the current. Hence, the induced magnetic field opposes the relative motion of the moving magnet assembly 12 which thus slows down relative to the moving winding assembly 5. The relative motion thus produced, between the moving winding assembly 5 and the moving magnet assembly 12, induces a current in the moving winding assembly 5. This induced current passes through the blade heater elements 4, thereby de-icing the propeller blades.
The de-icing control unit 7 can control the currents flowing through both the airframe heating elements to and the blade heating elements by varying the load on the stationary winding assembly 8.
With a high load, that is, a load equal to the circuit resistance of the airframe heating elements 6, the stationary winding assembly 8 and the de-icing control unit, the induced current is low. The induced field due to the stationary winding assembly 8 is correspondingly low and since this provides the retarding force to the moving magnet 12, the relative motion between this magnet and the moving winding assembly 5 is also low. The current induced in the moving winding assembly 5 is proportional to the rate of change of flux inducing it, which is, of course, dependent upon the relative motion between the moving winding assembly 5 and the moving magnet 12. Hence, under these conditions, the current induced in the moving winding assembly 5 is also low.
To increase the current through the heater elements 4 and 6, the control unit 7 reduces its contribution to the circuit resistance, thereby reducing the load applied to the stationary winding 8. A larger current is induced giving rise to a large induced magnetic field and a greater retardation of the moving magnet 12. This increases the relative motion between the moving magnet 12 and the moving winding assembly 5 increasing the induced current. Hence the currents flowing through both heater elements 4 and 6 are increased.
It is believed that for larger currents to be generated thewindingsshould be wound from wire in preference to forming them by printed tracks.
An alternative embodiment of the invention is illustrated in Figures 4 and 5 which is similar to that of Figure 1 in comprising an annular moving winding assembly 5 fixed to the spinner 3 of a propeller so as to rotate therewith, an annular magnet assembly 12 rotatably mounted about the drive shaft 11 of the propeller, and a fixed winding assembly 8 connected to the front face plate 9 of the nacelle of the engine driving the propeller. The output of the moving winding assembly 5 is connected to a heating element or elements 4 mounted on the conical leading end of the spinner 3 so as to inhibit or prevent the formation of ice in this region where centrifugal force is of minimum effect in producing a mechanical de-icing action.The output of the fixed winding assembly 8 is connected via an electrical rectifier unit 18 to a further annular winding assembly 19 mounted on the front face plate of the engine nacelle with the fixed winding assembly 8.
A further annular moving winding assembly 20 is mounted on the spinner 3 of the propeller opposite the fixed winding assembly 19 so that the two winding assemblies are inductively coupled and the current flowing in the fixed winding assembly 18 induces a current in the moving winding assembly 20 when the two rotate relative to one another with rotation of the propeller. The output of the further moving winding assembly 20 is connected via a distributor switch 21 to each in succession of heating elements 22,23 mounted on respective blades of the propeller, thereby serving to de-ice the blades.
A switch 7 serves to control operation of the generator by controlling connection of the fixed winding assembly 8 to the further fixed winding assembly 18, and only when the two are connected will the electrical load of the further winding assembly 19 cause the fixed and moving winding assemblies 8 and 5 to suffer a rotary movement or slipping action relative to the permanent magnet assembly 12, so that they each generate an electrical output. The heating elements 4 will then be constantly energised to effect their anti-icing function, and the heating elements 22,23 will be periodically and alternately energised to effect their de-icing function.
The distributor switch 21 serves to connect the output of the moving coil assembly 20 to the respective heating elements 22,23 on the propeller blades under the control of a timer unit 24 with an input control line 25 from the airframe via a rotary connection 26. Typically, a propeller with four blades is fitted with heating elements on the blades connected as two pairs, the heating elements of each pair being mounted on an opposite pair of blades.
Yet another embodiment of the invention is illustrated in Figure 6 which is similar to the embodiment of Figure 4 in that a further fixed winding assembly 19 is connected to the output of the fixed winding assembly 8 on the front face plate 9 of the engine nacelle and is inductively coupled to a further moving winding assembly 20 on the spinner 3 which has its output connected to propeller blade de-icing elements 22,23.
However, instead of providing a distributor switch 21 to switch the output of the moving winding assembly 20 between the heating elements 22,23, the moving winding assembly 20 is formed as two separate moving winding assemblies 20' and 20" each inductively coupled to the fixed winding assembly 19 and each with its output connected to a respective one or a pair of the heating elements 22,23. Each of the heating elements 22,23 is therefore energised separately, and the distribution of power between them is controlled by a power conditioning and synchrophasing control unit 27 connected between the two fixed winding assemblies 8 and 19, which controls the phase of the alternating current flowing in the fixed winding assembly 19 relative to the angular position of the moving winding assemblies 20', 20". The control unit 27 and switch 7 are controlled in turn via a control line 25 from the airframe.
As shown in Figure 5, the moving winding assemblies 5,20 are fixed concentrically to the propeller drive shaft 11, and the fixed winding assemblies 8,19 are arranged concentrically about the drive shaft 11 and fixed to the front face plate 9 of the engine nacelle 2. The two outer winding assemblies 19,20 are located axially closely together for reasons of efficient inductive coupling, and the permanent magnet assembly 12 is rotatably mounted on the drive shaft 11 between the inner winding assemblies 5, 8 in a space formed by recessing the inner winding assemblies 5,8 relative to the outer winding assemblies 20,19.
Figure 7 and 8 show an alternative mechanical layout of the moving winding assemblies 5,20, fixed winding assemblies 8,19, and the permanent magnet assembly 12. The two moving winding assemblies 5,11 are fixed to the propeller drive shaft 11 axially alongside one another within an outer fixed housing 28 connected to the front face plate 9 of the engine nacelle which supports the two fixed winding assemblies 8,19 around the outer periphery of the moving winding assemblies 5,20, respectively.
The winding assemblies 19,20 are closely spaced radially for efficient inductive coupling. The winding assemblies 5,8 are spaced apart radially and the permanent magnets 29 of the permanent magnet assembly 12 are mounted in the space therebetween. The permanent magnets 29 are attached to the outer periphery of a support disc 30 which is rotatably supported on the shaft 11 by a bearing 31. The circumferential arrangement of the magnets 29 is shown in Figure 8.
Figure 8 also shows the profiles of the laminated cores of the winding assemblies 5 and 8. The moving winding assembly 5 has a core formed with teeth 32 at its outer periphery around which copper wire 33 is wound to form the windings. The moving winding assembly 20 is similar but of larger diameter. Also, the windings of assembly 20 may be all connected in series to give the embodiment of Figure 4, or connected as two sets of windings 20',20" to give the embodiment of Figure 6.
The fixed winding assembly 8 has an annular core formed with teeth 34 at its inner periphery around which copper wire 35 is wound to form the windings. The fixed winding assembly 19 is similar to the fixed winding assembly 8.

Claims (13)

1. An electrical generator comprising first and second relatively rotatable winding assemblies, the first winding assembly having a first electrical output for connection to a first electrical load and the second winding assembly having a second electrical output for connection to a second electrical load, and a permanent magnet assembly freely rotatably mounted between the winding assemblies such that, in use, rotation of the winding assemblies relative to the permanent magnet assembly induces a current in both winding assemblies.
2. An electrical generator as claimed in claim 1 comprising first and second relatively rotatable members with the first winding assembly and first electrical load mounted on the first member, and the second winding assembly and second electrical load mounted on the second member, and the permanent magnet assembly mounted to be freely rotatable relative to the first and second members.
3. A vehicle including an electrical generator as claimed in claim 2 in which the first member is a propeller and the second member is a vehicle body driven by rotation of the propeller in air, the first electrical load comprising one or more elements associated with the propeller to remove or inhibit the formation of ice on the propeller.
4. A vehicle as claimed in claim 3 in which the elements are connected to each of two or more blades of the propeller, and the first electrical output is applied to the element of respective blades in succession.
5. A vehicle as claimed in claim 3 or 4 in which the second electrical load comprises one or more elements associated with the vehicle body to remove or inhibit the formation of ice on the body.
6. An electrical generator as claimed in claim 2 which includes a third winding assembly mounted on the second member and connected to the second electrical output, and a fourth winding assembly mounted on the first member to rotate with the first winding assembly and which is located adjacent to the third winding assembly so that the latter induces a current in the fourth winding assembly, which current is delivered to a fourth electrical load on the first member.
7. A vehicle including an electrical generator as claimed in claim 6 in which the fourth member is a propeller and the second member is a vehicle body driven by rotation of the propeller in air, the first electrical load comprising one or more elements associated with the propeller to remove or inhibit the formation of ice on the propeller.
8. A vehicle as claimed in claim 7 in which the fourth electrical load comprises elements associated with the propeller to remove or inhibit the formation of ice on the propeller.
9. A vehicle as claimed in claim 8 in which the elements comprising the fourth electrical load are connected to each of two or more blades of the propeller, and the electrical output of the fourth winding assembly is applied to the elements of respective blades in succession.
10. A vehicle as claimed in claim 9 in which electrical switching means is provided to connect the electrical output of the fourth winding assembly to the elements.
11. A vehicle as claimed in claim 9 in which the fourth winding assembly comprises multiple separate winding assemblies each connected to a respective element and each excited in succession by the third winding assembly.
12. An electrical generator substantially as herein described with reference to Figures 1 to 3, Figure 4, Figure 4 and 5 or 6, or Figure 7.
13. A vehicle driven by a propeller rotating in the air and including an electrical generator driven by the propeller and which energises one or more elements that remove or inhibit the formation of ice on the vehicle substantially as herein described with reference to Figures 1 to 3, Figure 4, Figure 4 and 5 or 6, or Figure 7.
GB9303623A 1992-03-04 1993-02-26 Electrical power generators Expired - Fee Related GB2264812B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB9303623A GB2264812B (en) 1992-03-04 1993-02-26 Electrical power generators
JP05515453A JP3108098B2 (en) 1992-03-04 1993-03-04 Power generator
EP93905512A EP0629318B1 (en) 1992-03-04 1993-03-04 Electrical power generators
ES93905512T ES2092290T3 (en) 1992-03-04 1993-03-04 ELECTRIC GENERATORS.
PCT/GB1993/000455 WO1993018571A1 (en) 1992-03-04 1993-03-04 Electrical power generators
DE69304517T DE69304517T2 (en) 1992-03-04 1993-03-04 ELECTRIC POWER GENERATORS
US08/844,025 US5793137A (en) 1992-03-04 1997-04-18 Electrical power generators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB929204888A GB9204888D0 (en) 1992-03-04 1992-03-04 Electrical power generators
GB9303623A GB2264812B (en) 1992-03-04 1993-02-26 Electrical power generators

Publications (3)

Publication Number Publication Date
GB9303623D0 GB9303623D0 (en) 1993-04-07
GB2264812A true GB2264812A (en) 1993-09-08
GB2264812B GB2264812B (en) 1995-07-19

Family

ID=26300439

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9303623A Expired - Fee Related GB2264812B (en) 1992-03-04 1993-02-26 Electrical power generators

Country Status (7)

Country Link
US (1) US5793137A (en)
EP (1) EP0629318B1 (en)
JP (1) JP3108098B2 (en)
DE (1) DE69304517T2 (en)
ES (1) ES2092290T3 (en)
GB (1) GB2264812B (en)
WO (1) WO1993018571A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007588A1 (en) * 1994-09-02 1996-03-14 Ultra Electronics Limited Rotary apparatus
DE4434834A1 (en) * 1994-09-29 1996-04-11 Hagedorn Wolfgang Biaxial magnetic motor-generator for 50 or 60Hz switching
WO1997023940A1 (en) * 1995-12-22 1997-07-03 Elvelund A/S Electric motor
EP1501174A1 (en) * 2002-05-01 2005-01-26 Makoto Ogoshi Power generator and torque amplifier
GB2479926A (en) * 2010-04-30 2011-11-02 Nigel Atherton Energy harvesting generator
KR101307542B1 (en) * 2010-05-28 2013-09-12 유로꼽떼르 An electrical power supply and control device for equipment of a rotor, and an aircraft fitted with such a device
EP2664545A1 (en) 2012-05-16 2013-11-20 Eurocopter Device for supplying electric power to at least one device of an aircraft rotor and aircraft
WO2018065709A1 (en) * 2016-10-03 2018-04-12 Safran Helicopter Engines Aircraft turboprop equipped with an electrical machine
EP3667874A1 (en) * 2018-12-14 2020-06-17 Hamilton Sundstrand Corporation Electric propulsion system

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29816561U1 (en) * 1998-09-15 1998-12-17 Wang Yu Yan Double-sided brushless DC motor with non-ferrous core and axial magnetic field of the permanent magnet type
US6703724B1 (en) * 1998-11-13 2004-03-09 Merlex Corporation Pty Limited Electric machine
KR20000012296A (en) * 1998-11-23 2000-03-06 이정훈 Small portable flat generator
CN1078765C (en) * 1999-05-04 2002-01-30 李宜和 Auxiliary power motor with improved structure
US6503056B2 (en) * 2001-04-24 2003-01-07 Honeywell International Inc. Heating device and method for deployable ram air turbine
KR20020086363A (en) * 2002-09-27 2002-11-18 이정훈 Protable generator doubled electromotive force
US7233088B2 (en) 2003-01-17 2007-06-19 Magnetic Torque International, Ltd. Torque converter and system using the same
US7268454B2 (en) 2003-01-17 2007-09-11 Magnetic Torque International, Ltd. Power generating systems
US7119467B2 (en) * 2003-03-21 2006-10-10 Pratt & Whitney Canada Corp. Current limiting means for a generator
US6920023B2 (en) * 2003-03-21 2005-07-19 Pratt & Whitney Canada Corp. Current limiting means for a generator
US7262539B2 (en) * 2004-11-26 2007-08-28 Pratt & Whitney Canada Corp. Saturation control of electric machine
US6965183B2 (en) * 2003-05-27 2005-11-15 Pratt & Whitney Canada Corp. Architecture for electric machine
US7583063B2 (en) * 2003-05-27 2009-09-01 Pratt & Whitney Canada Corp. Architecture for electric machine
US7545056B2 (en) * 2003-05-27 2009-06-09 Pratt & Whitney Canada Corp. Saturation control of electric machine
US7253548B2 (en) 2003-06-16 2007-08-07 Pratt & Whitney Canada Corp. Method and apparatus for controlling an electric machine
CA2436369A1 (en) * 2003-08-05 2005-02-05 Tecobim Inc. Alternator using permanent magnets
US7081696B2 (en) * 2004-08-12 2006-07-25 Exro Technologies Inc. Polyphasic multi-coil generator
US7808142B2 (en) * 2004-10-27 2010-10-05 E3 Solutions, Llc Multivariable generator and method of using the same
US7258526B2 (en) * 2005-03-18 2007-08-21 Pratt & Whitney Canada Corp. Eddy current heating for reducing transient thermal stresses in a rotor of a gas turbine engine
US7323667B2 (en) * 2005-03-18 2008-01-29 Pratt & Whitney Canada Corp. Curie temperature thermostat for a eddy current heating device and method
US7288923B1 (en) 2006-04-21 2007-10-30 Pratt & Whitney Canada Corp. Voltage-limited electric machine
AU2007257187A1 (en) 2006-06-08 2007-12-13 Exro Technologies Inc. Poly-phasic multi-coil generator
US7714479B2 (en) * 2007-09-19 2010-05-11 Light Engineering, Inc. Segmented composite rotor
US9257876B2 (en) * 2008-11-14 2016-02-09 Metal Industries Research & Development Centre Motor integrated to electronic device
US8476798B2 (en) 2008-11-28 2013-07-02 Pratt & Whitney Canada Corp. Tandem electric machine arrangement
US8294316B2 (en) * 2009-07-28 2012-10-23 Rolls-Royce North American Technologies, Inc. Electrical power generation apparatus for contra-rotating open-rotor aircraft propulsion system
US20110025157A1 (en) * 2009-07-28 2011-02-03 Rolls-Royce Corporation System of electrical generation for counter-rotating open-rotor blade device
US8373319B1 (en) * 2009-09-25 2013-02-12 Jerry Barnes Method and apparatus for a pancake-type motor/generator
US8522522B2 (en) * 2010-07-30 2013-09-03 Hamilton Sundstrand Corporation Fan embedded power generator
FR2975842B1 (en) 2011-05-24 2013-05-17 Eurocopter France DEVICE FOR ELECTRICALLY SUPPLYING AT LEAST ONE EQUIPMENT OF A ROTOR ROTOR OF AN AIRCRAFT AND AN AIRCRAFT
EP2629407B1 (en) * 2012-02-17 2014-12-24 Bell Helicopter Textron Inc. Electrical generator for rotating structure
EP2644826A1 (en) * 2012-03-27 2013-10-02 Siemens Aktiengesellschaft A system for inductive heating of turbine rotor disks
US9140187B2 (en) * 2012-10-05 2015-09-22 United Technologies Corporation Magnetic de-icing
US10100732B2 (en) * 2013-03-15 2018-10-16 United Technologies Corporation De-icing by integral electric heat generation
US10087840B2 (en) * 2013-04-03 2018-10-02 United Technologies Corporation Gas turbine engine de-icing system
US10308366B2 (en) * 2016-08-22 2019-06-04 General Electric Company Embedded electric machine
US10071811B2 (en) * 2016-08-22 2018-09-11 General Electric Company Embedded electric machine
US11081996B2 (en) 2017-05-23 2021-08-03 Dpm Technologies Inc. Variable coil configuration system control, apparatus and method
US11156128B2 (en) 2018-08-22 2021-10-26 General Electric Company Embedded electric machine
US11722026B2 (en) 2019-04-23 2023-08-08 Dpm Technologies Inc. Fault tolerant rotating electric machine
EP4315556A1 (en) 2021-05-04 2024-02-07 Exro Technologies Inc. Battery control systems and methods
WO2022236424A1 (en) 2021-05-13 2022-11-17 Exro Technologies Inc. Method and appartus to drive coils of a multiphase electric machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1491441A (en) * 1921-12-05 1924-04-22 Gen Electric High-speed alternating-current dynamo-electric machine
US2444557A (en) * 1943-02-04 1948-07-06 United Aircraft Corp Propeller anti-icer
US2446663A (en) * 1944-01-11 1948-08-10 Curtiss Wright Corp Fan deicing or anti-icing means
US2903641A (en) * 1957-03-22 1959-09-08 Letourneau Westinghouse Compan Alternator
FR1249849A (en) * 1959-10-02 1961-01-06 Electronique & Automatisme Sa Improvements to rotating electrical machines
US3109114A (en) * 1959-10-02 1963-10-29 Printed Motors Inc Multiple-winding electrical rotating machines
FR2107883B3 (en) * 1970-09-23 1973-12-28 Goodrich Co B F
DE3164856D1 (en) * 1980-05-08 1984-08-23 Lucas Ind Plc Switching system for sequential connection of loads to an electrical supply
US4447737A (en) * 1980-12-29 1984-05-08 Lockheed Corporation Variable frequency induction generator
US4550267A (en) * 1983-02-18 1985-10-29 Sundstrand Corporation Redundant multiple channel electric motors and generators
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
US5229677A (en) * 1991-09-18 1993-07-20 Newport News Shipbuilding And Dry Dock Company Electric propulsion motor for marine vehicles

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007588A1 (en) * 1994-09-02 1996-03-14 Ultra Electronics Limited Rotary apparatus
GB2293522B (en) * 1994-09-02 1999-01-20 Ultra Electronics Ltd Rotary apparatus
US6181235B1 (en) 1994-09-02 2001-01-30 Ultra Electronics Limited Rotary apparatus
DE4434834A1 (en) * 1994-09-29 1996-04-11 Hagedorn Wolfgang Biaxial magnetic motor-generator for 50 or 60Hz switching
WO1997023940A1 (en) * 1995-12-22 1997-07-03 Elvelund A/S Electric motor
AU704303B2 (en) * 1995-12-22 1999-04-22 Electret As Electric motor
US5994811A (en) * 1995-12-22 1999-11-30 Electret As Electric motor
EP1501174A1 (en) * 2002-05-01 2005-01-26 Makoto Ogoshi Power generator and torque amplifier
EP1501174A4 (en) * 2002-05-01 2005-10-05 Makoto Ogoshi Power generator and torque amplifier
US9502927B2 (en) 2010-04-30 2016-11-22 Nigel Andrew Atherton Linear generator with tangential induction
GB2479926A (en) * 2010-04-30 2011-11-02 Nigel Atherton Energy harvesting generator
GB2479926B (en) * 2010-04-30 2016-05-11 Atherton Nigel Electricity generator
US8628042B2 (en) 2010-05-28 2014-01-14 Eurocopter Electrical power supply and control device for equipment of a rotor, and an aircraft fitted with such a device
KR101307542B1 (en) * 2010-05-28 2013-09-12 유로꼽떼르 An electrical power supply and control device for equipment of a rotor, and an aircraft fitted with such a device
CN103419938B (en) * 2012-05-16 2015-08-12 空客直升机 The electric supply installation of powering at least one equipment of aircraft rotor and aircraft
US9067684B2 (en) 2012-05-16 2015-06-30 Airbus Helicopters Electrical power supply device for powering at least one piece of equipment of an aircraft rotor, and an aircraft
CN103419938A (en) * 2012-05-16 2013-12-04 尤洛考普特公司 Electrical power supply device for powering at least one piece of equipment of an aircraft rotor, and an aircraft
FR2990812A1 (en) * 2012-05-16 2013-11-22 Eurocopter France DEVICE FOR ELECTRICALLY SUPPLYING AT LEAST ONE EQUIPMENT OF A ROTOR OF AN AIRCRAFT AND AN AIRCRAFT
EP2664545A1 (en) 2012-05-16 2013-11-20 Eurocopter Device for supplying electric power to at least one device of an aircraft rotor and aircraft
WO2018065709A1 (en) * 2016-10-03 2018-04-12 Safran Helicopter Engines Aircraft turboprop equipped with an electrical machine
RU2732853C1 (en) * 2016-10-03 2020-09-23 Сафран Хеликоптер Энджинз Aircraft turboprop engine equipped with electric machine
US10807724B2 (en) * 2016-10-03 2020-10-20 Safran Helicopter Engines Aircraft turboprop engine provided with an electric machine
EP3667874A1 (en) * 2018-12-14 2020-06-17 Hamilton Sundstrand Corporation Electric propulsion system
US11581782B2 (en) 2018-12-14 2023-02-14 Hamilton Sundstrand Corporation Electric propulsion system

Also Published As

Publication number Publication date
JP3108098B2 (en) 2000-11-13
ES2092290T3 (en) 1996-11-16
GB9303623D0 (en) 1993-04-07
US5793137A (en) 1998-08-11
DE69304517D1 (en) 1996-10-10
EP0629318B1 (en) 1996-09-04
JPH07507677A (en) 1995-08-24
EP0629318A1 (en) 1994-12-21
DE69304517T2 (en) 1997-02-20
GB2264812B (en) 1995-07-19
WO1993018571A1 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
EP0629318B1 (en) Electrical power generators
JP5563642B2 (en) Helicopter electric tail rotor
CA3038303C (en) Aircraft turboprop engine provided with an electric machine
US11174012B2 (en) Rotor for an aircraft capable of hovering and relative method
US8074922B2 (en) Discoidal flying craft
US6181235B1 (en) Rotary apparatus
US5281094A (en) Electromechanical apparatus for varying blade of variable-pitch fan blades
US11233444B2 (en) Electric motor for a propeller engine
US6032546A (en) System for transferring electrical power between non-contacting elements in relative motion
US3548965A (en) Vehicle wheel drive with outside claw tooth rotor synchronous rotor
KR20080037097A (en) Discoidal flying craft
US20100127579A1 (en) Magnetically levitated transport system
US2824272A (en) Rotary electric machine
US3215878A (en) Brushless alternator
CA2794077C (en) Electrical powered tail rotor of a helicopter
US2838123A (en) Coaxial rotor helicopter
CN113785472A (en) Motor/generator and motor drive circuit

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20070226