GB2198518A - Combustion apparatus for a gas turbine engine - Google Patents

Combustion apparatus for a gas turbine engine Download PDF

Info

Publication number
GB2198518A
GB2198518A GB08629468A GB8629468A GB2198518A GB 2198518 A GB2198518 A GB 2198518A GB 08629468 A GB08629468 A GB 08629468A GB 8629468 A GB8629468 A GB 8629468A GB 2198518 A GB2198518 A GB 2198518A
Authority
GB
United Kingdom
Prior art keywords
fuel
air
combustion
tubular member
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08629468A
Other versions
GB2198518B (en
GB8629468D0 (en
Inventor
Jeffrey Douglas Willis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Priority to GB8629468A priority Critical patent/GB2198518B/en
Publication of GB8629468D0 publication Critical patent/GB8629468D0/en
Priority to DE3741021A priority patent/DE3741021C2/en
Priority to JP62307347A priority patent/JP2617495B2/en
Priority to FR8717211A priority patent/FR2608258B1/en
Publication of GB2198518A publication Critical patent/GB2198518A/en
Priority to US07/380,749 priority patent/US4893475A/en
Application granted granted Critical
Publication of GB2198518B publication Critical patent/GB2198518B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow

Description

1 2198518 1 COMBUSTION APPARATUS FOR A GAS TURBINE ENGINE This invention
relates to combustion apparatus which is suitable for a gas turbine engine.
In UK Patent number 1427146 there is described gas turbine engine combustion apparatus including a fuel injector which comprises a central duct arranged to receive a flow of compressed air and a flow of fuel, a deflecting member located adjacent the downstream end of the duct which, in cooperation with the end of the duct, forms an annular outlet for the outflow of the fuel and air mixture in a generally radial direction, and a shroud surrounding part, of the central duct forming an annular duct which is arranged to receive a flow of air at its upstream end and to discharge the air from its downstream end, which is located upstream of the annular outlet from the central duct. This type of fuel injector, in conjunction with the combustion chamber in which is it located, is intended to produce two adjacent opposite handed toroidal vortices. A majority of the fuel/air mixture is intended to flow into the upstream vortex where it is ignited, and the burning fuel/air mixture flows into the downstream vortex which is partly fed by the flow from the fuel injector and partly by secondary air flowing into the combustion chamber.
It is important that the air/fuel ratio in each vortex is maintained within a certain range for the various engine operating conditions. In particular, the upstream vortex should tend to be fuel rich. However it has been found that the upstream vortex is less fuel rich than is desirable indicating a migration or a disproportionate distri bution of fuel from the injector into the two vortices. The weak fuel/air ratio in the upstream vortex results in the production of high temperature gases which in turn leads to problems of overheating in the upstream sections of the combustion chamber. An additional problem is that at the mean position between the two vortices there is a zone of poor 2 air flow and high residence time. This causes a severe accumulation of carbon deposits on the combustion chamber wall. Eventually these deposits grow to such a size that they become detached from the combustion chamber wall and cause erosion of the turbine downstream of the combustion chamber.
It is an object of the present invention to provide a gas turbine engine combustion system in which such problems are substantially avoided.
According to the present invention, combustion apparatus suitable for a gas turbine engine comprises a combustion chamber having a fuel burner at its upstream end, said fuel burner comprising a generally tubular member having an upstream end and a downstream end, said upstream end being positioned externally of said combustion chamber and said downstream end being positioned within said combustion chamber, said generally tubular member being adapted to be supplied in operation with compressed air and fuel and to direct a mixture of said compressed air and fuel into said combustion chamber, the downstream end of said tubular member being provided with a deflection member which is so configured as to cooperate with said tubular member to define a generally annular radially directed outlet with respect to the axis of said tubular member for said mixture of fuel and air, said radially directed outlet being located immediately downstream of the upstream end of said combustion chamber so that said fuel and air mixture is urged into a single substantially toroidal fuel rich vortex in a first combustion zone situated in the upstream region of said combustion chamber, said combustion chamber being provided with additional air inlets downstream of said burner to direct air into a second combustion zone in said combustion chamber downstream of said toroidal vortex so as to render said second combustion zone fuel weak.
Throughout the specification, the terms "fuel rich" and "fuel weak" are used in respect of air and fuel
3 i mixtures which respectively contain more and less fuel than is necessary to sustain stoichiometric combustion.
The invention will now be described, by way of example, with reference to the accompanying drawings in which:
Figure 1 is a sectioned side view of a gas turbine engine provided with combustion apparatus in accordance with the present invention.
Figure 2 is a sectioned side view of.a portion of the combustion apparatus of the gas turbine engine shown in Figure 1.
With reference to Figure 1, a gas turbine engine generally indicated at 10 is of conventional construction and operation and comprises a low pressure compressor 11, a high pressure compressor 12, combustion equipment 13, and a-high pressure turbine 14.
The combustion equipment 13 comprises an annular array of similar equally spaced apart combustion chambers 18, which are enclosed by an annular casing 19. Each combustion chamber 18, a portion of which are of which can be seen more clearly in Figure 2, comprises a generally tubular body 19 having a cap or head 20 at its upstream end. The wall of the body 19 is formed from a material which facilitates transpiration cooling thereof and which may be of the type described in UK Patent No. 1530594. The wall of the body 19 may alternatively be of more conventional construction with a plurality of suitably positioned small holes to provide cooling thereof.
The head 20 of the combustion chamber 19 carries a tubular member 21 generally centrally thereof which constitutes a portion of a burner 22. The downstream end 23 of the tubular member 21 projects a short distance into the combustion chamber 18 interior whereas its upstream end 24 together with the majority of the remainder thereof is located externally of the combustion chamber 18 and extends in a generally upstream direction (with respect to the gas flow through the engine 10) so as to receive a 4 flow of compressed air from the high pressure compressor 12. Additional compressed air from the high pressure compressor 12 flows around the external surface of the combustion chamber 18 in order to provide cooling thereof and additional air for the combustion process as will be described later in more detail.
At the upstream end 24 of the tubular member 21 there is positioned a fuel spray nozzle 25 which is of the simplex type although it will be appreciated that other types of fuel spray nozzl such as the duple type, could be employed if so desired. The fuel spray nozzle 25 is generally ring shaped and is supported on the radially inner extent of a fuel supply pipe 26. Fuel delivered through the pipe 26 flows into an annular manifold 27 within the fuel spray nozzle 25 from where it is directed through jets 28 on to the radially inner surface of the tubular member 21.
Air passing through and around the fuel spray nozzle provides the atomisation of a large proportion of the fuel issued from the jets 28 by the time the fuel leaves the downstream end 23 of the tubular member 21. At the downstream end 23 there is located a deflecting member 29 which is axially spaced apart from the tubular member 21 by a plurality of support struts 30. An annular, radially directed outlet 31 is thus defined through which the fuel and air mixture from within the tubular member 21 is expelled in a radially outward directi'on with respect to the axis of the tubular member 21. Since the tubular member 21 only projects a short distance into the interior of the combustion chamber 18, the fuel and air mixture is urged by the generally frusto-conical configuration of the combustion chamber head 20 into a substantiallv toroidal vortex 32 in the upstream zone 33 of the chamber 18. The air and fuel mixture within the vortex 32 is arranged to be fuel rich so that not all of the fuel is actually combusted in the upstream zone 33 of the chamber 18 so that overheating of the combustion chamber head 20 is avoided. The actual air to fuel ratio chosen is determined by the constraints which are imposed upon the emissions from the gas turbine engine 10. Thus if low emissions of the oxides of nitrogen are desirable, the air to fuel ratio within the vortex 32 is arranged to be within the range 7/1 to 9/1. However if it is more desirable to reduce smoke emission, then the air to fuel ratio within the vortex 32 is arranged to be within the range 9/1 to 11/1.
The combustion products from the combustion of the fuel and air mixture within the vortex 32 together with -unburnt fuel then flow in a downstream direction into a second combustion zone 34 where they are mixed with air which has flowed into the combustion chamber 18 through a number of additional air inlets 35 as indicated by the arrows 3 6. The air f lowing through the additional air inlets 35 supports the combustion of the partially burnt fuel from the first combustion zone 33. Sufficient air is directed through the additional air inlets 35 to ensure that the fuel and air mixture within the second combustion zone is fuel weak. If the air to fuel ratio within the vortex 32 falls within the range 7/1 to 9/1 to provide low oxides of nitrogen emissions, the air to fuel ratio within the second combustion zone is arranged to be within the range 22/1 to 25/1 although this combination 'has a tendency to increase smoke emissions. However if smoke emission reduction is of paramount importance and the air to fuel ratio within the vortex 32 to within the range 9/1 to 11/1 then the air to fuel ratio within the second combustion zone 34 is arranged to be within the range 20/1 to 22/1. Such a richer fuel mixture in the second combustion zone 34 ensures the consumption of any smoke created in the first combustion zone 33.
Although the present invention has been described with respect to combustion apparatus comprising discreet combustion chambers 18 it will be appreciated that it is also applicable to annular type combustion chambers.
6 Combustion equipment in accordance with the present invention, although it has been described with a by-pass aero gas turbine engine is nevertheless particularly suitable for use in industrial and marine gas turbine applications. In the case of industrial gas turbine engines, the reduction of the emission of the oxides of nitrogen is of paramount importance and the air to fuel ratios are chosen accordingly. However in the case of marine gas turbine engines, the elimination of smoke is of greater importance and si engines for use in marine applications are so designed as to ensure that the appropriate air to fuel ratios for low smoke emission are employed as described above.
7 j 0

Claims (10)

Claims: -
1. Combustion apparatus suitable for a gas turbine engine comprising a combustion chamber having a fuel burner at its upstream end, said fuel burner comprising a generally tubular member having an upstream end and a downstream end, said upstream end being positioned externally of said combustion chamber and said downstream end being positioned within said combustion chamber, said generally tubular member. being adapted to be supplied in operation with compressed air and fuel and to direct a mixture of said compressed air and fuel into said combustion chamber, the downstream end of said tubular member being provided with a deflection member which is so configured as to cooperate with said tubular member to define a generally annular radially directed outlet with respect to the axis of said tubular member for said mixture of fuel and air, said radially directed outlet being located imm ediately downstream of the upstream end of said combustion chamber so that said mixture of fuel and air is urged into a single substantially toroidal fuel rich vortex in a first combustion zone situated in the upstream region of said combustion chamber, said combustion chamber being provided with additional air inlets downstream of said burner to direct air into a second combustion zone in said combustion chamber downstream of said toroidal vortex so as to render said second combustion zone fuel weak.
2.
Combustion apparatus as claimed in claim 1 wherein a major portion of said tubular member is located externally of said combustion chamber.
3. Combustion apparatus as claimed in claim 1 or claim 2 wherein a fuel injector is provided at the upstream end of said tubular member to directfuel on to the inner surface of said tubular member.
4. Combustion apparatus as claimed in claim 3 wherein said fuel injector is of the simplex type.
8
5. Combustion apparatus as claimed in any one preceding claim wherein said deflector member is attached to the downstream edge of said tubular member.
6. Combustion apparatus as claimed in any one preceding claim wherein the air to fuel ratio within said toroidal vortex is with the range 7/1 to 9/1.
7. Combustion apparatus as claimed in claim 6 wherein the air to fuel ratio within the region downstream of said toroidal vortex is within the range 22/1 to 25/1.
8. Combustion apparatus s claimed in any one of claims I to 5 wherein the air to fuel ratio within said toroidal vortex is within the range 9/1 to 11/1.
9. Combustion apparatus as claimed in claim 8 wherein the air to fuel ratio within the region downstream of said toroidal vortex is within the range 20/1 to 22/1.
10. Combustion apparatus substantially as hereinbefore described with reference to and as shown in the accompanying drawings 0 0 Published 1988 P. The Patent Office. State House, 66 71 Righ Holborn. London WC1R 4TP. Further copies Tnay be obtained from The Patent Office, Sa-les Branch. St M&rT Cray Orpington. Kent BR5 3RD Pririted by MiAtIplex techniques ltd, St Mary Cray. Kent Con. 1187
GB8629468A 1986-12-10 1986-12-10 Combustion apparatus for a gas turbine engine Expired - Fee Related GB2198518B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB8629468A GB2198518B (en) 1986-12-10 1986-12-10 Combustion apparatus for a gas turbine engine
DE3741021A DE3741021C2 (en) 1986-12-10 1987-12-03 Combustion chamber for a gas turbine engine
JP62307347A JP2617495B2 (en) 1986-12-10 1987-12-04 Gas turbine engine combustion equipment
FR8717211A FR2608258B1 (en) 1986-12-10 1987-12-10 COMBUSTION DEVICE FOR A GAS TURBINE ENGINE
US07/380,749 US4893475A (en) 1986-12-10 1989-07-17 Combustion apparatus for a gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8629468A GB2198518B (en) 1986-12-10 1986-12-10 Combustion apparatus for a gas turbine engine

Publications (3)

Publication Number Publication Date
GB8629468D0 GB8629468D0 (en) 1987-01-21
GB2198518A true GB2198518A (en) 1988-06-15
GB2198518B GB2198518B (en) 1990-08-01

Family

ID=10608742

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8629468A Expired - Fee Related GB2198518B (en) 1986-12-10 1986-12-10 Combustion apparatus for a gas turbine engine

Country Status (5)

Country Link
US (1) US4893475A (en)
JP (1) JP2617495B2 (en)
DE (1) DE3741021C2 (en)
FR (1) FR2608258B1 (en)
GB (1) GB2198518B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121608A (en) * 1988-02-06 1992-06-16 Rolls-Royce Plc Gas turbine engine fuel burner
US5996351A (en) * 1997-07-07 1999-12-07 General Electric Company Rapid-quench axially staged combustor
GB9811577D0 (en) * 1998-05-30 1998-07-29 Rolls Royce Plc A fuel injector
US6260359B1 (en) * 1999-11-01 2001-07-17 General Electric Company Offset dilution combustor liner
US6928822B2 (en) * 2002-05-28 2005-08-16 Lytesyde, Llc Turbine engine apparatus and method
US7926284B2 (en) * 2006-11-30 2011-04-19 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors
US8127554B2 (en) * 2007-11-29 2012-03-06 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors
US8616004B2 (en) * 2007-11-29 2013-12-31 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors
FR2982010B1 (en) * 2011-10-26 2013-11-08 Snecma ANNULAR COMBUSTION CHAMBER IN A TURBOMACHINE
US9121613B2 (en) * 2012-06-05 2015-09-01 General Electric Company Combustor with brief quench zone with slots
CN106907740B (en) 2013-10-18 2019-07-05 三菱重工业株式会社 Fuel injector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1136543A (en) * 1966-02-21 1968-12-11 Rolls Royce Liquid fuel combustion apparatus for gas turbine engines
US3724207A (en) * 1971-08-05 1973-04-03 Gen Motors Corp Combustion apparatus
GB1427146A (en) * 1972-09-07 1976-03-10 Rolls Royce Combustion apparatus for gas turbine engines
GB2040434A (en) * 1978-03-14 1980-08-28 Rolls Royce Gas Turbine Engine Combustion Equipment
GB2119077A (en) * 1982-04-22 1983-11-09 Rolls Royce Fuel injector for gas turbine engines

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1934700B2 (en) * 1969-07-09 1972-01-05 Mtu Muenchen Gmbh FUEL NOZZLE FOR GAS TURBINE ENGINES
US3703259A (en) * 1971-05-03 1972-11-21 Gen Electric Air blast fuel atomizer
US3961475A (en) * 1972-09-07 1976-06-08 Rolls-Royce (1971) Limited Combustion apparatus for gas turbine engines
US4078377A (en) * 1974-01-28 1978-03-14 Ford Motor Company Internally vaporizing low emission combustor
GB2021204B (en) * 1978-05-20 1982-10-13 Rolls Royce Gas turbinr combustion chamber
GB2055187B (en) * 1979-08-01 1983-12-14 Rolls Royce Gaseous fuel injector for a gas turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1136543A (en) * 1966-02-21 1968-12-11 Rolls Royce Liquid fuel combustion apparatus for gas turbine engines
US3724207A (en) * 1971-08-05 1973-04-03 Gen Motors Corp Combustion apparatus
GB1427146A (en) * 1972-09-07 1976-03-10 Rolls Royce Combustion apparatus for gas turbine engines
GB2040434A (en) * 1978-03-14 1980-08-28 Rolls Royce Gas Turbine Engine Combustion Equipment
GB2119077A (en) * 1982-04-22 1983-11-09 Rolls Royce Fuel injector for gas turbine engines

Also Published As

Publication number Publication date
DE3741021C2 (en) 1998-07-23
FR2608258A1 (en) 1988-06-17
US4893475A (en) 1990-01-16
JP2617495B2 (en) 1997-06-04
FR2608258B1 (en) 1994-02-25
DE3741021A1 (en) 1988-06-23
GB2198518B (en) 1990-08-01
JPS63150515A (en) 1988-06-23
GB8629468D0 (en) 1987-01-21

Similar Documents

Publication Publication Date Title
US4271674A (en) Premix combustor assembly
US4463568A (en) Fuel injector for gas turbine engines
US5640851A (en) Gas turbine engine combustion chamber
US4222243A (en) Fuel burners for gas turbine engines
US4193260A (en) Combustion apparatus
US3931707A (en) Augmentor flameholding apparatus
US4177637A (en) Inlet for annular gas turbine combustor
EP0638768B1 (en) Fuel nozzle with non-axisymmetrical secondary spray
GB1427146A (en) Combustion apparatus for gas turbine engines
US4893475A (en) Combustion apparatus for a gas turbine
IE39341L (en) Gas turbine engine
US4226087A (en) Flameholder for gas turbine engine
GB1451354A (en) Aerodynamic flame holder
US3043101A (en) By-pass gas turbine engine employing reheat combustion
KR100679596B1 (en) Radial inflow dual fuel injector
US2632299A (en) Precombustion chamber
US2929211A (en) Afterburner igniter
US2982099A (en) Fuel injection arrangement in combustion equipment for gas turbine engines
US4187674A (en) Combustion equipment for gas turbine engines
GB1180929A (en) Combustion Apparatus, for example for Gas Turbines.
EP0582590A1 (en) Combustion chamber assembly in a gas turbine engine.
GB2143938A (en) Fuel burner for a gas turbine engine
GB824306A (en) Improvements in or relating to combustion equipment of gas-turbine engines
US4362021A (en) Gas turbine engine fuel injectors
US5685705A (en) Method and appliance for flame stabilization in premixing burners

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee