GB2172761A - Sense amplifier for semiconductor ram - Google Patents

Sense amplifier for semiconductor ram Download PDF

Info

Publication number
GB2172761A
GB2172761A GB08506949A GB8506949A GB2172761A GB 2172761 A GB2172761 A GB 2172761A GB 08506949 A GB08506949 A GB 08506949A GB 8506949 A GB8506949 A GB 8506949A GB 2172761 A GB2172761 A GB 2172761A
Authority
GB
United Kingdom
Prior art keywords
pair
transistors
output
conductors
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08506949A
Other versions
GB2172761B (en
GB8506949D0 (en
Inventor
Richard David Simpson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Ltd
Original Assignee
Texas Instruments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Ltd filed Critical Texas Instruments Ltd
Priority to GB08506949A priority Critical patent/GB2172761B/en
Publication of GB8506949D0 publication Critical patent/GB8506949D0/en
Priority to US06/838,495 priority patent/US4739499A/en
Priority to JP61059068A priority patent/JPS61267992A/en
Publication of GB2172761A publication Critical patent/GB2172761A/en
Application granted granted Critical
Publication of GB2172761B publication Critical patent/GB2172761B/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors

Description

1 GB2172761A 1
SPECIFICATION
Random access memory using semiconductor data storage elements This invention relates to a random access memory using semiconductor data storage ele ments using CIVIOS circuits.
In a typical CIVIOS random access memory formed in an integrated circuit the normal and 75 complementary outputs of an addressed data storage element to be read are connected to normal and complementary output conductors of which one is discharged from a voltage level to which both were previously charged, 80 which conductor is discharged depending on whether the bit stored in the addressed ele ment is a " 1 " or a "0". The rate of dis charge is relatively slow and therefore to speed up the establishment of voltages repre- 85 senting the stored bit on the conductors a pair of transistors is provided, each discharg ing one conductor at a rate depending on the voltage on the other conductor, thereby caus ing the conductor having the lower voltage to 90 be discharged more quickly than that having the higher voltage. Thus the output conduc tors rapidly assume distinct voltages corre sponding to the bit stored in the addressed element. It is, however, important that the cross-connected pair of transistors is not switched into circuit before a certain minimum difference between the voltages on the con ductors has been set up by the addressed storage element, otherwise there would be a 100 risk that the final voltages on the conductors did not clearly and accurately represent the bit from the addressed storage element. To this end, the current paths through the pair of transistors are commoned and passed through 105 a further transistor the conductivity of which is controlled by a sense clock signal, the tim ing of which is controlled to permit at least the required minimum difference between the conductor voltages to be set up before the cross-connected pair of transistors become ef fective. The invention is concerned with the timing of the sense clock signal which must not be too early to avoid corruption of the data and if it is unnecessarily late it will unde- 115 sirably increase the access time of the mem ory.
It is an object of the present invention to overcome the above difficulty.
According to the present invention there is provided a random access memory having a plurality of data storage elements each able to store one bit of data and to produce comple mentary output current signals representing the stored bit when addressed, a pair of output conductors respectively for receiving the complementary output signals, means for charging the output conductors to a predetermined voltage and a pair of MOS transistors each connected to discharge a respective out- put conductor in response to the voltage on the other output conductor after the output signals from an addressed storage element have been applied to the output conductors thereby to discharge fully the voltage on that one of the output conductors having the lower voltage due to the output signals from the addressed storage element, wherein there are provided means responsive to the voltages on the output conductors due to the output signals from an addressed storage element to enable the pair of transistors to pass current when the voltages on the output conductors have reached values capable of causing reliable switching of the pair of transistors.
The means responsive to the voltages on the output conductors may include a second pair of MOS transistors having their gates respectively connected to the output conductors and, their sources connected to a reference voltage substantially equal to the predetermined voltage, so that one or other of the second pair of transistors becomes conducting when the voltage on the corresponding output conductor has reached a value ensuring reliable switching of the first mentioned pair of transistors. The drains of the second pair of transistors may be precharged and connected to the gate of a further transistor controlling the current paths through the first-mentioned pair of transistors, the precharge preventing the further transistor conducting until it is discharged by one or other of the second pair of transistors.
Each data storage element includes MOS transistors and is constructed as a CIVIOS circuit.
In order that the invention may be fully understood and readily carried into effect it will now be described with reference to an example shown in the single figure of the accompanying drawing.
The figure shows at 1, 2 and 3 data storage elements in rows n-1, n and n+ 1 in one column of a random access memory suitable for construction at an integrated circuit. Each of the storage elements shown has two connections to an associated one of the three row select conductors 4, 5 and 6, and a connection to each of two column conductors 7 and 8, respectively Lor upright and inverted data signals Q and Q. The storage elements are of the same construction and only that of the element 2 is shown, consisting of two CIVIOS inverter circuits 10 and 11 in regenerative connection joined by single MOS transistors 12 and 13 respectively to the column conductors 7 and 8. The gates of the transistors 12 and 13 are connected to the assock ated row select conductor 5.
The conductors 7 and 8 are connected to a reference voltage V., through respective PMOS transistors 20 and 21 which are rendered conducting by a signal PRECHARGE CLOCK applied to their gates. NIVIOS transistors 22 2 GB2172761A 2 and 23 are connected from the conductors 7 and 8 respectively to a further NMOS transistor 24 through which they are connected via a further NMOS transistor 29 controlled by a WRIT signal to ground. The gates of the transistors 22 and 23 are respectively connected to the conductors 8 and 7. Two other PMOS transistors 26 and 27 are connected from the voltage V,. to the gate of the tran- sistor 24, which is connected to ground through an NMOS transistor 28, arranged to be rendered conducting by a signal PRECHARGE CLOCK applied to its gate.
In the operation of the circuit shown in the figure, the storage elements 1, 2 and 3 receive from means not shown signals representing respective bits to be stored via the conductors 7 and 8 when row select signals are applied one at a time to the row select conductors 4, 5 and 6. At this time the WRITE signal is low making transistor 29 nonconducting and the signal PRECHARGE CLOCK is low and the signal PRECHARGE CLOCK is high, so that transistor 28 and transistors 20 and 21 are not conducting isolating the conductors 7 and 8 from the voltage V... Because the transistor 28 is non-conducting the gate of transistor 24 is high so that it does conduct but no current can flow through it be- cause transistor 29 is non-conducting. This means that the conductors 7 and 8 are free to assume the voltages applied to them by the external means to enable the required binary data to be written into the storage ele- ments.
When data is to be read from a storage element, the signal PRECHARGE CLOCK goes low, causing the conductors 7 and 8 to be charged substantially to the voltage V.., and the signal PRECHARGE CLOCK goes high, switching on the transistor 28, and bringing the gate of the transistor 24 to ground potential, because with the conductors 7 and 8 at Vc the transistors 26 and 27 are non-con- ducting. The PRECHARGE CLOCK and PRECHARGE-ULDO'CK signals now become low and high respectively leaving the transistors 20, 21 and 28 nonconducting. The signal WRITE goes high rendering the transistor 29 conduct- ing. Suppose the bit is to be read from the storage element 2, then a row select signal is applied to the conductor 5 causing the transistors 12 and 13 to become conducting. Depending on the bit stored in the element 2 a current will be drawn from one of the conductors 7 and 8 and substantially no current from the other. The current drawn is small, because the devices constituting the element 2 are small, and it would need to be allowed to flow for a relatively long time (more than a microsecond) to produce voltages on the conductors 7 and 8 which could be used as output signals representing the stored bit in a standard digital signal convention (e.g. 0-2.5 volts for "0" and 3.5-5.0 volts for "'I"). As this time would contribute directly to the access time of the memory it is desirable that it be reduced as far as possible and to this end the cross-connected transistors 22 and 23 are provided connected in paths respectively from the conductors 7 and 8 to ground and having their gate respectively connected to the conductors 8 and 7. The transistors 22 and 23 respond to the voltages on the conductors 7 and 8 to conduct a greater current from the lower voltage conductor and a much smaller current from the higher voltage conductor, when the transistor 24 (and transistor 29) is conducting. It is important that a voltage dif- ferential sufficient to control the transistors 22 and 23 correctly is established between the conductors 7 and 8 by the storage element 2 before the transistors 22 and 23 are permitted to pass current, that is when the transis- tor 24 is switched on. In order to achieve the switching on of the transistor 24 at the earliest time that an adequate voltage differential exists between the conductors 7 and 8, the transistors 26 and 27, which are connected in parallel from the voltage Vcc to the gate of the transistor 24, monitor the voltages on the conductors 7 and 8 so that one or other of the transistors 26 and 27 becomes conducting when the voltage on the corresponding one of the conductors 7 and 8 has been reduced sufficiently by the storage element 2 for reliable and correct operation of the transistors 22 and 23. Up till the time of conduction of one of the transistors 26 and 27 the gate of transistor 24 is at ground potential and the transistor non-conducting because it was discharged to ground by the transistor 28 when that was switched on by the PRE CHARGE CLOCK.
As there is only one pair of transistors 22 and 23 for each column of storage element they can be made larger and therefore able to pass much higher currents than the storage elements from the conductors 7 and 8 so that output voltages in the correct ranges can be established on them more quickly. The transistors 26 and 27 monitoring the voltages on the conductors 7 and 8 can be provided with the same or slightly higher conduction thresh- old voltages as the transistors 22 and 23 so that when the transistor 24 is switched on the difference between the conductivities of the transistors 22 and 23 due to the voltages on the conductors 7 and 8 is clearly deter- mined.
It will be apparent that the circuit described above can provide the optimum timing of the switching on of the transistor 24 and therefore the earliest operation of the cross-con- nected transistors 22 and 23 giving reliable operation of those transistors. The circuit can therefore produce the minimum possible access time for reading from a random access memory.
The figure shows only part of one column 3 GB 2 172 761 A 3 of storage elements of a memory which might have many such columns. The memory might have, for example, 1024 storage elements in each column and the row select conductors may be energised by a suitable decoder matrix, so that only 10 bits of input data are needed to identify a particular row.
Although the invention has been described with reference to only a single embodiment it will be understood that many changes could be made to the embodiment without departing from the invention.

Claims (9)

1. A random access memory having a plu- rality of data storage elements each able to store one bit of data and to produce complementary output current signals representing the stored bit when addressed, a pair of output conductors respectively for receiving the complementary output signals, means for charging the output conductors to a predetermined voltage and a pair of MOS transistors each connected to discharge a respective out- put conductor in response to the voltage on the other output conductor after the output signals from an addressed storage element have been applied to the output conductors thereby to discharge fully the voltage on that one of the output conductors having the lower voltage due to the output signals from the addressed storage element, wherein there are provided means responsive to the voltages on the output conductors due to the output sig- nals from an addressed storage element to enable the pair of transistors to pass current when the voltages on the output conductors have reached values capable of causing reliable switching of the pair of transistors.
2. A memory according to claim 1 wherein the means responsive to the voltages on the output conductor include a second pair of MOS transistors having their gates respectively connected to the output conductors and their sources connected to a reference voltage substantially equal to the predetermined voltage, so that one or other of the second pair of MOS transistors becomes conducting when the voltage on the output conductor to which its base is connected has reached a value ensuring reliable switching of the first pair of MOS transistors, and means responsive to either of the second pair of MOS transitors becoming conductive to enable the first pair of MOS transistors to enable the first pair of MOS transistors to pass current.
3. A memory according to claim 2 wherein the means responsive to either of the second pair of MOS transistors becoming conductive includes a further MOS transistor the sourcedrain path of which is connected in series with the source-drain paths of the first pair of MOS transistor so that when the futher transistor becomes conducting the first pair of transistors can pass current, and means for pre-charging the gate of the further transistor so that it is non- conducting, the drains of the second pair of transistors being connected to the base of the further transistor so as to discharge it when the second pair of transistors becomes conducting.
4. A memory according to claim 1, 2 or 3 wherein each storage element includes two CMOS amplifiers arranged in a bistable circuit with complementary output signals respectively connected to the pair of output conductors.
5. A memory according to claim 4 wherein each storage element includes two transistors responsive to the voltage on a row conductor to connect the output signals to the pair of output conductors when the particular row is selected and the row conductor is energised.
6. A memory according to claim 5 includ- ing input means for applying complementary voltages representing an input binary digit to the output conductors and for disbaling the first pair of MOS transistors thereby to enable the input digit to be stored in a data storage element selected by energisation of a row conductor.
7. A memory having a plurality of data storage elements arranged in rows and columns of which each column is constructed as a memory according to any preceding claim.
8. A random access memory substantially as described herein with reference to the single figure of the accompanying drawing.
9. A memory according to any preceding 100 claim constructed as an integrated circuit.
Printed in the United Kingdom for Her Majesty's Stationery Office, Dd 8818935, 1986, 4235. Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1 AY, from which copies may be obtained.
GB08506949A 1985-03-18 1985-03-18 Random access memory using semiconductor data storage elements Expired GB2172761B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB08506949A GB2172761B (en) 1985-03-18 1985-03-18 Random access memory using semiconductor data storage elements
US06/838,495 US4739499A (en) 1985-03-18 1986-03-11 Random access memory using semiconductor data storage elements
JP61059068A JPS61267992A (en) 1985-03-18 1986-03-17 Random access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB08506949A GB2172761B (en) 1985-03-18 1985-03-18 Random access memory using semiconductor data storage elements

Publications (3)

Publication Number Publication Date
GB8506949D0 GB8506949D0 (en) 1985-04-24
GB2172761A true GB2172761A (en) 1986-09-24
GB2172761B GB2172761B (en) 1988-11-09

Family

ID=10576173

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08506949A Expired GB2172761B (en) 1985-03-18 1985-03-18 Random access memory using semiconductor data storage elements

Country Status (3)

Country Link
US (1) US4739499A (en)
JP (1) JPS61267992A (en)
GB (1) GB2172761B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247897A (en) * 1985-08-28 1987-03-02 Sony Corp Reading amplifier
JPH0810550B2 (en) * 1986-09-09 1996-01-31 日本電気株式会社 Buffer circuit
JPH0268796A (en) * 1988-09-02 1990-03-08 Fujitsu Ltd Semiconductor memory device
US4975879A (en) * 1989-07-17 1990-12-04 Advanced Micro Devices, Inc. Biasing scheme for FIFO memories
GB2277390B (en) * 1993-04-21 1997-02-26 Plessey Semiconductors Ltd Random access memory
KR0164803B1 (en) * 1995-07-15 1999-02-01 김광호 Sense amplifier of nonvolatile semiconductor memory
JP3729965B2 (en) * 1997-03-03 2005-12-21 株式会社ルネサステクノロジ Buffer circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050484A2 (en) * 1980-10-15 1982-04-28 Fujitsu Limited Sense amplifier circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412143A (en) * 1981-03-26 1983-10-25 Ncr Corporation MOS Sense amplifier
US4627033A (en) * 1984-08-02 1986-12-02 Texas Instruments Incorporated Sense amplifier with reduced instantaneous power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050484A2 (en) * 1980-10-15 1982-04-28 Fujitsu Limited Sense amplifier circuit

Also Published As

Publication number Publication date
US4739499A (en) 1988-04-19
JPS61267992A (en) 1986-11-27
GB2172761B (en) 1988-11-09
GB8506949D0 (en) 1985-04-24
JPH0574158B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US5532958A (en) Dual storage cell memory
US4873665A (en) Dual storage cell memory including data transfer circuits
US3953839A (en) Bit circuitry for enhance-deplete ram
US4959646A (en) Dynamic PLA timing circuit
US4125878A (en) Memory circuit
EP0336319B1 (en) Internal synchronization type mos sram with address transition detecting circuit
US4397000A (en) Output circuit
GB2070372A (en) Semiconductor memory device
US3983543A (en) Random access memory read/write buffer circuits incorporating complementary field effect transistors
US4514829A (en) Word line decoder and driver circuits for high density semiconductor memory
US6160748A (en) Apparatus and method for maintaining bit line charge state during a read operation
US4003035A (en) Complementary field effect transistor sense amplifier for one transistor per bit ram cell
GB2071948A (en) Precharge circuits
KR890003488B1 (en) Data transmission circuits
EP0166540A2 (en) A semiconductor memory device
EP0023847A2 (en) Semiconductor circuit for a dynamic random access memory
US4962327A (en) Decoder circuit having selective transfer circuit for decoded output signal
US4336465A (en) Reset circuit
US4447892A (en) Pre-charge for the bit lines of a random access memory
US4054865A (en) Sense latch circuit for a bisectional memory array
EP0036775A2 (en) Static memory circuit
US3747072A (en) Integrated static mnos memory circuit
US4831590A (en) Semiconductor memory including an output latch having hysteresis characteristics
US3638039A (en) Operation of field-effect transistor circuits having substantial distributed capacitance
US4433393A (en) Semiconductor memory device

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Effective date: 20050317