GB2093190A - Blood Gas Sensor - Google Patents

Blood Gas Sensor Download PDF

Info

Publication number
GB2093190A
GB2093190A GB8130887A GB8130887A GB2093190A GB 2093190 A GB2093190 A GB 2093190A GB 8130887 A GB8130887 A GB 8130887A GB 8130887 A GB8130887 A GB 8130887A GB 2093190 A GB2093190 A GB 2093190A
Authority
GB
United Kingdom
Prior art keywords
hydrophilic polyurethane
membrane
water
hydrophilic
residues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8130887A
Other versions
GB2093190B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smith and Nephew PLC
Original Assignee
Smith and Nephew Associated Companies PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smith and Nephew Associated Companies PLC filed Critical Smith and Nephew Associated Companies PLC
Priority to GB8130887A priority Critical patent/GB2093190B/en
Publication of GB2093190A publication Critical patent/GB2093190A/en
Application granted granted Critical
Publication of GB2093190B publication Critical patent/GB2093190B/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/40Semi-permeable membranes or partitions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4925Blood measuring blood gas content, e.g. O2, CO2, HCO3

Abstract

A device for use in determining blood gas employs a membrane 17 of hydrophilic polyurethane permeable to the blood gas to be determined. The device is preferably an electrochemical electrode or a complete electrochemical sensor. Suitable hydrophilic polyurethanes are disclosed. <IMAGE>

Description

SPECIFICATION Coated Articles and Materials Suitable for Coating The present invention is concerned with certain medical devices which employ hydrophilic polyurethanes and is also concerned with certain hydrophilic polyurethanes suitable for such a purpose. More specifically this invention is concerned with medical devices for determining blood gas which devices employ a membrane of hydrophilic polyurethanes and is also concerned with certain hydrophilic polyurethanes suitable for use in such devices.
Medical devices used to determine blood gas levels normally employ a membrane which allows the passage of a specie involved in the determination while preventing the passage of materials such as proteins that could disadvantageously effect the operation of the device. Such medical devices are generally those which are employed in contact with the body although some devices are used in conjunction with extracorporeal circulation of blood or blood samples otherwise removed from the body. Whereas this invention is concerned with medical devices which can be used in either or both these modes it is especially concerned with medical devices suitable for use in contact with the body (even if the devices are also suitable for use away from the body).The body contact medical device will normally be one adapted to operate in contact with a body fluid such as blood, perspiration or a fluid exuded from a lesion. Whereas the devices of this invention offer considerable advantages when adapted to contact a body fluid such as perspiration or exudate on the exterior surface of the body, the advantages are most profound in medical devices used in direct contact with blood present in the circulation of the patient.
Devices for determining blood gases or electrolytes are normally either electrochemical sensors or collection devices. Electrochemical sensors are devices which in the presence of the relevant specie produce an electrical change as a result of a chemical change (which includes change of the concentration of a species). Collection devices serve to transport the gas to another place for determination. The medical devices with which this invention is particularly concerned are electrochemical sensors.
Electrochemical sensors which may be used for the determination of blood gases are described in, for example, British Patent Specifications Nos. 1265505, 1325873, 1 503908, 2005418 and 2055476, United States Patent Specifications Nos. 3088905 and 3912614, European Patent Specifications Nos. 0015075 and 0027385 and Med. and Biol. Eng. Comput, 1978, 16, 599-600.
The publications describe blood gas detectors requiring the presence of membranes and a number of useful or potentially useful membrane materials are described. Some of the publications disclose the advantages of using hydrophilic materials such as polyHEMA but none suggest that hydrophilic polyurethanes may be employed in blood gas detectors.
Hydrophilic polyurethanes have been previously described in, for example, U.K. Patent Specification No. 1551620, U.S. Patent Specifications Nos. 3975350, 3822238,4156067 and C.T.
Chen et. al., J. Appl. Polymer Science Vol. 1 6, p. 2105-2114 (1972). However none of these documents suggest the use of hydrophilic polyurethanes in devices for determining the concentration of blood gases.
It has now been found that hydrophilic polyurethanes membranes can be employed in devices for determining blood gas and that advantages can be found to accrue from use of hydrophilic polyurethane in various medical devices of this invention selected from good binding of the membrane to the mounting, rapid response time, rapid equilibration time, reduction in dependency upon certain electrolytes used within certain types of device and simplification of manufacture.
The present invention provides a medical device for use in determining blood gas which employs a membrane of material permeable to the blood gas to be determined characterised in that the membrane is hydrophilic polyurethane.
The medical device of this invention either may be adapted for use remote from the body, for example in conjunction with an extracorporeal circulation of blood or with an isolated blood sample, or may be adapted for use in contact with the body. The desirable properties imparted by the use of hydrophilic polyurethane is manifest in both classes of device but it is believed that the greatest advantages occur with body contact devices in view, inter alia, of the improved biocompatibility of the medical device employing the hydrophilic polyurethane. Certain medical devices of this invention which benefit most from the use of membranes of hydrophilic polyurethane are those adapted for use in contact with arterial or, more usually, venous blood.The hydrophilic polyurethane employed will be compatib!e with the body fluid, that is it is stable in the presence of blood or other vital fluid and that the tissue is not damaged. The compatibility of the hydrophilic polyurethanes membrane with respect to blood is of great advantage for devices contacting arterial or venous blood. Other medical devices which benefit considerably from the use of membranes of hydrophilic polyurethane are those which are adapted for use in contact with the skin.
It is believed that for use in this invention it is desirable that the hydrophilic polyurethane will have a water content in the hydrated state of from 5 to 50% water, more aptly 10 to 40% water, suitably 15 to 35% water and preferably 20 to 30% water (% water content calculated on weight of water in polymer having been immersed in water at 200 C; % water content can be determined by the obvious expedient of weighing a dry sample, allowing it to equilibrate in water and reweighing it after wiping off external moisture).Thus apt devices of this invention employ hydrophilic polyurethanes which hydrated contain 10 to 40% water, particularly suitable devices of this invention employ hydrophilic polyurethanes which hydrated contain 1 5 to 35% water and preferred devices of this invention employ hydrophilic polyurethanes which hydrated contain 20 to 30% water.
The hydrophilic polyurethane membrane of the devices of this invention will normally be in contact with the body when the device is in use (for example by contact with blood or skin) so that the device is characterised in that it is coated on a body contacting surface with hydrophilic polyurethane.
This coating (that is the membrane) will normally be from 3 to 50 microns thick and generally be from 10 to 25 microns thick, for example about 10, 20 or 25 microns thick. Such thickness of hydrophilic polyurethane can result in very favourable response and equilibration times. However, if desired thicker membranes can be employed, for example 50 to 100 microns but in general these are envisaged as being less desirable than the thinner membranes hereinbefore set forth.
It is envisaged that the hydrophilic polyurethane will be present in the medical device until use as the unhydrated form but that in use it becomes hydrated by taking up water from its new environment or else by wetting just prior to use. The aforementioned thickness of the hydrophilic polyurethane membrane refer to the unhydrated form.
It has now also been found that coatings of the desired thickness can be readily obtained on the devices of this invention by employing hydrophilic polyurethanes which are linear (that is substantially free of cross-linking and thereby soluble in organic solvents such as methylene chloride or other solvent hereinafter indicated). Thus devices of this invention will most suitably employ a hydrophilic polyurethane which is linear.
The medical devices of this invention may be adapted to determine either oxygen or carbon dioxide but certain favoured medical devices are adapted to determine both oxygen and carbon dioxide simultaneously. Medical electrochemical sensors of this sort are frequently referred to as electrodes.
Favoured electrodes suitable for determining oxygen and carbon dioxide which benefit from the use of hydrophilic polyurethanes in the manner of this invention include those of British Patent Specification No. 200541 8A (which is incorporated herein by cross reference). Such devices include those which may be used to contact blood (normally venous blood) and whose which may be used to contact the skin (when transmission via perspiration may occur). The polystyrene membrane of the known devices may be replaced by a membrane of hydrophilic polyurethane. A coating of hydrophilic polyurethane was applied over the operating area of electrode per se and over its surroundings, for example over the catheter in which the blood contacting electrode is mounted.
It is a considerable advantage of this invention that a hydrophilic polyurethane membrane is provided that does not peel away from convention materials used for mounting the electrochemical sensors such as polyvinylchloride or nylon when the membrane hydrates, for example after being placed in blood. It has now been found that for this property to be best exhibited, hydrophilic polyurethanes with a water content of not more than 50%, more favourably not more than 40%, preferably not more than 35% and most preferably not more than 30% are best suited for use in the devices of this invention. This is especially so when the devices are intended for use in contact with arterial, or more usually, venous blood and are mounted at the distal end of a catheter, for example of PVC, nylon or the like.
It is a considerable advantage of this invention that the hydrophilic polyurethanes allow a rapid response and rapid equilibration times. For optimisation of such properties the membrane material when hydrated contains not less than 5% water, more aptly not less than 10% water, favourably not less than 15% water and preferably not less than 20% water.
Certain favoured devices of this invention comprise an oxygen electrode mounted at the distal end of a catheter for intravenous use which electrode employs a membrane permeable to oxygen characterised in that the membrane is linear hydrophilic polyurethane. Most aptly the linear hydrophilic polyurethane when hydrated contains 10 to 40% water and preferably contains 20 to 30% water.
Other favoured devices of this invention comprises a carbon dioxide electrode mounted at the distal end of a catheter for intravenous use which electrode employs a membrane permeable to carbon dioxide characterised in that the membrane is linear hydrophilic polyurethane. Most aptly the linear hydrophilic polyurethane when hydrated contains 10 to 40% water and preferably contains 20 to 30% water.
Yet other favoured devices of this invention comprises an electrochemical sensor capable of monitoring oxygen and carbon dioxide mounted at the distal end of a catheter for intravenous use which electrode employs a membrane permeable to oxygen and carbon dioxide characterised in that the membrane is linear hydrophilic polyurethane. Most aptly the linear hydrophilic polyurethane when hydrated contains 10 to 40% water and preferably contains 20 to 30% water.
In blood contact devices such as those adapted to measure carbon dioxide and which employ an internal electrolyte, the use of hydrophilic polyurethane reduces the criticality of having closely controlled concentration and distribution of the electrolyte since electrolyte from the blood can diffuse through the membrane. This useful property is more aptly displayed by polymers which contain not less than 10%, more favourably not less than 1 5% and preferably not less than 20% of water when hydrated. Generally it is not apt to employ polymers which contain more than 50%, more favourably not more than 40%, most favourably not more than 35% and preferably not more than 30% water when hydrated in such devices.
The membrane of the foregoing devices is normally on the outer surface of the device (that is on a body contacting surface) and it has been found that such membranes can be readily applied by dip coating from a solution of the polymer in a solvent which is normally one in which the catheter is not soluble. The catheters may be of any suitable material such as PVC or nylon. The hydrophilic polyurethane can be used to form a membrane over the catheter as well as over the electrochemical sensor. However if a bilumen catheter in which an access port is employed the membrane may be applied by painting or by dip coating to a level distal to the port.
Preferred hydrophilic polyurethanes for use in this invention are polyether polyurethanes. It is not preferred to employ hydrophilic polyurethanes which are polyester polyurethanes or which have potentially reactive substituents such as hydroxyl or carboxyl groups.
Apt polyether polyurethanes for use in this invention will be random polymers containing units derived from diolic compound and di-isocyanates.
Aptly the ether units in the hydrophilic polyurethane for use in this invention will be notionally derivable from ethylene diol and a propylene or butylene diol; that is they will contain CH2CH20- units and -CH2CH2CH20-, -CH2CH(CH3)0- or -CH2CH2CH2CH20- units. Most aptly the ether units in the polyurethane will contain -CH2CH20- and -CH2CH(CH3)O- or -(CH2)40- mixtures thereof of which poly -CH2CH(CH3)O- blocks are preferred. Desirably the mole ratio of poly(ethylene glycol) to poly [ (prop or but)ylene glycol ] derivable blocks present in the hydrophilic polyurethanes vary between 1:1 to 1 :30, more suitably from 1:2 to 1:10 and preferably from 1:2.5 to 1:4. The molecular weights of these blocks is aptly from 600 to 60000 and favourably from 900 to 4000, for example 1000 to 2000.
Most aptly the hydrophilic polyurethane for use in this invention will contain residues of aliphatic diols of up to 10 carbon atoms and more suitably up to 4 carbon atoms (of which ethane diol is preferred) as chain extenders wherein the mole ratio of diol to polyglycol used in the preparation of the polymer is from 3:1 to 1 :4, more aptly 5:2 to 1:3 and preferably from 2:1 to 1:2.
The hydrophilic polyurethane will contain sufficient di-isocyanate residues to produce the water contents set forth hereinbefore when the polymer is hydrated.
Most aptly the hydrophilic polyurethane for use in this invention will contain di-isocyanate residues which may be residues of aromatic or aliphatic di-isocyanates such as 4,4'-diphenylmethane di-isocyanate, toluene di-isocyanate, 1 ,6-hexamethylene di-isocyanate, 4,4'-dicyclohexylmethane diisocyanate or the like. Favoured di-isocyanates for use in the hydrophilic polyurethane of this invention are 4,4'-dicyclohexylmethane di-isocyanate (which is preferred) and 4,4'-diphenylmethyl diisocyanate.
Less aptly than using aliphatic diol chain extenders, the hydrophilic polyurethane may employ equivalent quantities of aliphatic diamine or aliphatic amineol chain extenders of which ethylene diamine is preferred. Similarly somewhat less aptly than using aliphatic diol chain extenders, the hydrophilic polyurethane may employ an aromatic diamine such as phenylenediamine, benzidine or diaminodiphenylmethane.
Less aptly than using a mixture of poly(ethylene glycol) and poly [ (prop or but)ylene glycol] derived blocks, the hydrophilic polyurethane may employ poly(ethylene-glycol) derived blocks alone together with a higher proportion of chain extender and di-isocyanate.
Normally and preferably the hydrophilic polyurethane used in the devices of this invention is essentially a single type of polymer (a product of the polymerisation of the same materials) although blends may be employed to form the hydrophilic polyurethane if desired.
Most aptly the hydrophilic polyurethane employed in this invention is one that if a micron thick will transmit at least 15000 and preferably at least 20000 g/m2/24hrs/200C/RH 100~70% (Payne Cup method) and most aptly the hydrophilic polyurethane employed in this invention will have a very high transmission value for oxygen and carbon dioxide of at least 5 and preferably at least 1 Oml (STP) cmx1010/cm2 cmHg.
The devices of this invention may be prepared by any convenient method of coating surfaces such as dip coating, spraying, painting or the like. In such processes the hydrophilic polyurethane is dissolved in a suitable organic solvent, for example as a 1~10% solution or more aptly as a 2.5~5% solution. Suitable organic solvents include halogenated hydrocarbons such as dichloromethane, alkanols such as methanol or ethanol (optionally containing small amounts of water), ketones such as acetone or methylethylketone or mixtures thereof, for example a mixture of dichloromethane and methanol, for example in a ratio of about 4:1 or a mixture of dichloromethane and ethanol optionally containing about 2% water, for example in a ratio of about 1:1.
Normally and preferably the hydrophilic polyurethane will be applied in the non-hydrated state.
The hydrophilic polyurethane may be hydrated thereafter if desired but normally hydration will not be carried out until use or shortly before.
Sensors mounted at the distal end of catheters may be coated by drawing the catheter upward through a solution of the hydrophilic polyurethane and causing or allowing the solvent to evaporate, for example by drying in air at ambient or elevated temperature, for example up to 800 C. Sensors mounted at the distal end of catheters and other forms of electrodes can also be coated by painting the appropriate part with a solution of the hydrophilic polyurethane and then allowing or causing the solvent to evaporate. Membranes formed in such a manner are flexible and firmly bound to the electrode and to other surfaces contacted during the coating such as polyvinyl chloride or nylon mountings or the like even after hydration.Generally a single dipping is sufficient to provide a film of the desired thickness but if desired a second dipping may be used for thicker films.
In less favoured forms of this invention which employ a preformed film of the hydrophilic polyurethane, this may be made by casting small squares of film from solution in a 1:1 mixture of methylene chloride and ethanol containing 2% water onto a silicone release paper. Generally about a 15% solution is employed using a doctor blade with a gap of about 60 microns and drying for about 5 minutes at 700C to remove solvent. The resulting film is about 15 to 25 microns thick and is less brittle than dry polyHEMA films. In a much less apt form the hydrophilic polyurethane may be cast onto a 10 to 15 micron thick low density polyethylene film and used in the two component form.
The present invention also provides novel linear hydrophilic polyurethanes which consist essentially of 4,4'-dicyclohexylmethyl or 4,4'-diphenylmethyl residues and alkylene residues are selected from (a) aliphatic diol residues of up to 10 carbon atoms (b) poly(ethylene glycol) blocks (that is blocks of #CH2CH20- residues) and (c) poly[(prop or but)ylene glycol] blocks (that is blocks of CH2CH(CH3)0- or CH2CH2CH2CH20- residues) wherein the mole ratio of (a):(b)+(c) is from 3:1 to 1:4 and the mole ratio of (b):(c) is from 1:2 to 1:30.
Most aptly the hydrophilic polyurethane contains 4,4'-dicyciohexylmethane di-isocyanate residues. Most aptly the component (c) is composed of blocks of CH2CH(CH3)0- residues. Most aptly component (a) is ethane diol residues (that is CH2CH2O- residues).
Normally and preferably the novel polyurethane of this invention is adapted to absorb the levels of water set forth hereinbefore. Water absorbencies within these ranges may be obtained by varying the ratio of (a), (b) and (c) within the limits specified hereinbefore.
Most aptly the mole ratio of poly(ethylene glycol) to poly[(prop or but)ylene glycol ] derivable blocks present is from 1:2 to 1:10, favourably from 1:2.5 to 1:4 and preferably 1:3.
Highly favoured hydrophilic polyurethanes of this invention consist essentially of 4,4'-dicyclomethane residues and alkylene residues selected from (a1) -CH2CH2O- residues, (b') blocks of-CH2CH20- residues and (c') blocks of-CH2CH(CH3)0- residues wherein the mole ratio of (a1) (b')+(c') is from 2:1 to 1:1 and the mole ratio of (b'):(c') is from 1:2.5 to 1:4.
An apt mole ratio of (a'):(b')+(c') is 1.5:1. An apt mole ratio of (b1):(c1) is 1:3.
Particularly apt polymers of this invention comprise polyethylene glycol residues, polypropylene glycol residues, ethane diol residues and 4,4'-dicyclohexylmethane di-isocyanate residues in the mole ratios 1:2.5-3.5:5-7:9-12; more suitably 1:2.8-3.2:5.5-6.5:9.5-1 1.5 and most suitably 1:3:6:10.5~11.5.
A preferred polymer of this invention comprises polyethylene glycol 1540 residues, polypropylene glycol 1025 residues, ethane diol residues and dicyclohexylmethane di-isocyanate residues in the mole ratios 1:3:6:10. This preferred polymer of the invention has a water content when hydrated of about 26% when freshly prepared.
The polymers of this invention may be prepared by blending together the reactants (that is the diol, polymeric ethers, di-isocyanate) and optionally water and adding thereto the polymerisation catalyst. Generally the polymerisation is carried out at a moderately elevated temperature such as 50 to 900 C, which can be maintained by the reactants exotherm and finally cured at a slightly elevated temperature such as 70 to 1000C. The product of this reaction is generally a foam. This material may be used to prepare solutions for coating the medical devices of this invention by dissolving the foam in an appropriate solvent.
The catalyst employed may be any convenient catalyst such as tertiary amine or organo metallic compound such as di-n-butyl-tin dilaurate. Such catalysts will generally be employed in conventional amounts such as 0.05 to 0.5% for example 0.2%.
The di-isocyanate groups and hydroxy groups are present in the reaction mixture in approximately equimolar quantities (so that the final product is substantially free of isocyanate groups or organic hydroxyl groups) but a small amount of water (aptly 0.1 to 0.5%) may be present. Generally a slight molar excess of di-isocyanate over organic hydroxy compound is employed (e.g. 1:1.1).
The polymers are normally room temperature conditioned before use or testing (as is conventional in the polyurethane art). Such conditioning may take 1 to 4 weeks if desired.
The devices of this invention are normally used in sterile form. Sterilisation may be achieved in conventional manner, for example by irradiation.
The devices of this invention may also be used for non-medical uses such as monitoring oxygen levels in industrial gas. Thus this invention also provides an oxygen electrode which requires the presence of a protective membrane which is permeable to oxygen characterised in that the membrane is hydrophilic polyurethane.
The medical devices of this invention may be of conventional design such as those shown in Figures 1-9 herein.
Figurs 1 shows a longitudinal section of part of a catheter tip mounted electrochemical sensor suitable for measuring the concentration of oxygen dissolved in blood.
Figure 2 shows a longitudinal section of part of a catheter tip mounted electrochemical sensor suitable for measuring the concentration of carbon dioxide dissolved in blood.
Figure 3 shows a longitudinal section of a monopolar oxygen sensor mounted in the tip of a catheter.
Figure 4 shows a longitudinal section of a monopolar sensor mounted in the tip of a bilumen catheter.
Figure 5 shows a longitudinal section of a bifunctional sensor adapted to measure the partial pressures of oxygen and carbon dioxide dissolved in the blood which The electrode of Fig. 1 has a glass or polyvinyl chloride (PVC) or nylon tube (11) of diameter 3mm and has a lead pellet (12) bonded into one end by a layer of epoxy adhesive (13). The lead pellet has a tapered nose. A connecting wire (14) is attached to the pellet through the tube (11). The lead pellet has a central hole of diameter 1 mm through which passes centrally a silver wire (1 5) of diameter 0.5mm.
The wire (15) passes through the tube (11) and is secured in the hole in the lead pellet by an epoxy resin (1 6). The end of the silver wire is flush with the free end of the lead pellet. The probe is coated with a layer of hydrophilic polyurethane by immersing the end of the probe into a 3% solution of the polymer in a 50/50 mixture of methylene chloride and ethanol containing 2% water. The coating (17) covers the lead pellet (12) completely and extends onto the tube (11). After removing the probe from the coating solution the coating layer is dried at 400C for several minutes. The thickness of the resulting membrane is approximately 10 microns.
The electrode of Fig. 2 has a carbon dioxide sensor which has a solid sensing electrode (21) bonded to an epoxy resin insulator (22). The insulator (22) is bonded to a catheter (of for example PVC or nylon) (23) in such a way that an annular silver reference electrode (24) is retained as shown. The sensing electrode (21), the insulator (22), the reference electrode (24) and the catheter (23) form a smooth cylinder of diameter 1.5mm. with a hemispherical end. Electrical conductors (25) and (26) connect the reference electrode and sensing electrode to a conventional meter. The sensing electrode (21) is a palladium-hydrogen electrode. The silver reference electrode (24) of the sensor is coated with silver chloride. The sensor is coated with an electrolyte coating by dipping it into a 1.0 molar solution of sodium chloride and 0.01 molar sodium bicarbonate and allowing it to dry.A continuous coating of hydrophilic polyurethane (27) is formed over the sensor by dipping it in a 4% solution of the polymer in a 50/50 mixture of methylene chloride and ethanol. The coating (27) covers the sensing electrode (21), the silver reference electrode (24) and extend onto the catheter (23). The coating produced is about 20 microns thick.
In the electrode of Fig. 3 a hollow electrical conductor (31) such as a stainless steel tube is enclosed in PVC (32) to provide an insulating a physiologically inert coating. An electrode (33) such as a gold wire is enclosed in an electrically insulating material (34) such as an epoxy resin to form the tip of the probe. The whole tip of the electrode is coated in a layer of hydrophilic polyurethane (35) by dip coating from a 4% solution of the hydrophilic polymer in 50/50 mixture of methylene chloride and ethanol- containing 2% water. The resulting coat was approximately 20 micron thick. (a coat approximately 40 micron thick can be obtained from a 5% solution). The stainless steel tube provides support for the electrode and a means of connecting the electrode to a suitable measuring instrument.
The probe is used in conjunction with a reference electrode in conventional manner.
The electrode of Fig. 4 is a monopolar bilumen catheter electrode for measuring dissolved oxygen in blood which are formed by mounting a silver wire (41) of diameter 100 micron in a PVC catheter (42) using an epoxy resin plug (43) to locate the wire and seal the end of the catheter. The electrode, epoxy plug and the end of the catheter are coated with an approximately 18 micron thick layer of hydrophilic polyurethane (44) by dip coating from a 3.8% solution of hydrophilic polyurethane in 50/50 methylene chloride and ethanol containing 2% water. In use the catheter is inserted intravenously, for example umbilically into a neonate. A reference electrode will be also connected in conventional manner. In this catheter one lumen (45) is used to carry the oxygen sensing electrode. The second lumen (46) may be used to withdraw blood samples for analysis.The second lumen (46) is provided with access through the port which may be in the wall of the catheter (47) or at the onward facing tip of the catheter.
The electrode of Fig. 5 is an electrochemical sensor which is mounted in the tip of a PVC catheter (51). The electrochemical sensor has a carbon dioxide sensitive electrode (52) in the form of a pH glass head mounted in the end of the catheter and an oxygen electrode which is a 1 80 micron diameter silver wire (53). Electrodes (52) and (53) are common to a Ag/AgCI reference electrode (54). The area of the catheter carrying the electrode is covered with a layer of alkaline electrolytes (55) consisting of a semi-solid sodium bicarbonate, potassium chloride electrolyte. The sensor is coated in an approximately 25 micron thick hydrophilic polyurethane membrane (56) by dip coating from a 4.25% solution in 50/50 methylene chloride and ethanol containing 2% water. The pH glass electrode (52) is mounted on a hollow lead glass shaft (57) closed by a silicone rubber seal (not shown).The lumen of the glass shaft is fitted with a chloride ion gelled electrolyte or alternatively an electrically conductive epoxy resin (58). The carbon dioxide electrode (52) and the oxygen electrode (53) are 2-4mm apart.
The electrode of Fig. 6 is a transcutaneous electrode in which a sensor body (61) has positioned therein a centrally arranged pH glass electrode (62) for measuring carbon dioxide. Surrounding the pH electrode in an annular silver/silver chloride reference anode (64) and positioned therein and insulated therefrom are two radially opposed platinum oxygen electrodes (63). The reference anode (64) is provided with a heater the temperature of which is controlled by a thermistor (65) positioned in the reference electrode. The exposed surfaces of the electrodes are coated with an electrolyte mixture (66) of NaHCO3 and KCI by dipping in a 0.4 1 molar solution of NaHCO3 and 1 molar KCI. After drying the electrolyte layer is coated with a 10 micron thick membrane of hydrophilic polyurethane (67) by dip coating from a 2% solution in 50/50 methylene chloride and ethanol containing 2% water.The layer of hydrophilic polyurethane covers the exposed electrode surface and extends onto the sensor body (61).
A field effect transistor (68) is provided to lower the impedence of the CO2 electrode. In use the sensor is placed in contact with the skin of the patient and the heater is activated to raise the temperature of the skin to a value sufficient to increase blood flow locally.
The electrode of Fig. 7 is a monopolar catheter electrode of simple construction for measuring dissolved oxygen in blood and is formed by mounting a silver wire (71) of diameter 100 micron in a PVC catheter (72) using an epoxy resin plug (73) to locate the wire and seal the end of the catheter.
The electrode, epoxy plug and then end of the catheter are coated with an approximately 25 micron thick layer of hydrophilic polyurethane (74) by dip coating from a 4.2% solution of hydrophilic polyurethane in 50/50 methylene chloride and ethanol containing 2% water. The catheter is normally employed intravenously, for example umbilically into a neonate.
The electrode of Fig. 8 has a central cathode (81) insulated from a surrounding catheter (82) by a glass insulator (83). The catheter is itself surrounded by a cover (84). The preceding parts may be bound in place by an epoxy resin. The body contacting face and part of the cover is coated with a hydrophilic polyurethane membrane (85). The electrode may be activated by wetting with electrolyte solution in conventional manner.
The electrode of Fig. 9 consists of an oxygen sensing electrode assembly having a permanent part (91) (not shown in detail) and a disposable portion consisting of a housing (92) having a flow chamber (93) for the blood to be monitored, a membrane (94) retained by a ring (95) and a mounting member (96) by which the disposable portion is attached to the permanent body of the electrode (91). The membrane (94, is a cast film of hydrophilic polyurethane of thickness 25 macron. An alternative membrane may be a 10 micron film of hydrophilic polyurethane supported by a 10 micron film of low density polyethylene.
Example 1 General Preparative Procedure The required quantities of polyglycol, chain extenders (aliphatic diol or diamine) and water were warmed to approximately 800C and mixed completely in a covered beaker. The required quantity of diisocyanate was added to the warm mixture and the total mass stirred until a clear solution resulted.
The temperature was allowed to fall to 700C at which point the appropriate weight of catalyst was added from a syringe and the mixture stirred continuously until exothermic reaction reached 900C when it was poured quickly into a polypropylene tray and transferred immediately to an oven to cure for 21 hour at 1000C. The resulting foam was left at room temperature for at least 16 hours before cutting into pieces. (These pieces could be dissolved in a convenient solvent such as dichloromethane, methanol or mixtures thereof to form a solution suitable for coating objects).
Hydrophilic polyurethanes were prepared by the above procedure using polyethylene glycol 1540 (suppled by Union Carbide Corp.), polytetramethylene glycol 1010 (supplied by Quaker Oats Corporation) ethane diol and 4,4'-dicyclohexylmethane di-isocyanate (supplied as Hylene W by Du Pont or Desmodur W by Bayer).
The materials also employed 0.25% water and 0.2% di-n-butyltinlaurate solution (CatalystT- 12).
Mole ratio ofpolyglycol Mole % polyethylene to ethandiol glycol #1540 to Polymeg % Water 1:0.5 5.0 10 10.0 16 20.0 16 1:1 5.0 8 10.0* 11 12.5 15 15.0 18 15.0 17 17.5 23 20.0 30 1:1.5 7.6 9 10.0 13 14.0 19 17.0 20 20.0 26 *Formulation for this material is as follows: Material Polyethylene glycol 1540 9.159 Polymeg 1010 53.759 Ethane diol 3.689 Water 0.059 Hylene W 33.379 Catalyst T-1 2 0.20ml.
Other hydrophilic polyurethanes were prepared from the following: Polyethylene glycol mole ratio of polyethylene molecular weight glycol to Digol % Water 600 1:1.13 21 1000 1:1.13 34 *1540 1:1.13 40 6000 1:1.13 48 * Formulation for this material is as follows: Material Polyethylene glycol 1540 42.499 Digol 5.079 Water 0.239 Hylene W 29.509 Catalyst T-1 2 0.2mls.
Polyethylene glycol Mole ratio of polyethylene molecular weight glycol to Digol % Water 1000 1:0.33 38 *4000 1:4.77 39 6000 1:7.75 44 * Formulation for this material is as follows: Material Polyethylene glycol 4000 62.599 Digol 7.919 Water 0.109 Hylene W 32.109 CatalystT--12 0.2mls.
mole ratio of polyglycol Mole ratio of polyethylene to 1:2 diaminoethane glycol to polymeg 1010 % water 1:1 1:19 6 *1:1 1:9 12 1:1 1:4 22 * Formulation forthis material is as follows: Material Polyethylene glycol 1540 9.169 Polymeg 1010 53.819 1:2 Diaminoethane 3.55g Water 0.07g Hylene W 33.419 CatalystT--12 0.2mls.
(Amine extended polymer made by reacting isocyanate and polyglycol followed by reaction with amine).
Example 2 A mixture of the following: Polyethylene glycol 1540 1 5.4g (0.01 mole) Polypropylene glycol 1025 30.75g (0.03 mole) Ethane diol 3.719 (0.06 mole) Di-n-butyl tin di-laurate 0.159 was heated in a beaker to 500C on a hot plate with constant stirring. Hylene W (27.59; 0.1 1 moles) was added to the mixture which was stirred to 30 seconds when it became clear. The mixture was immediately poured into a mould (high density polythene) and placed in an oven at 700C for 1 hour.
After removal from the oven the resulting hydrophilic polyurethane was left for at least 24 hours before use. (The material had a water uptake of about 26%).
Example 3 The polymer of Example 2 may be used in place of the polystyrene membrane in the sensor specifically described in Patent Specification No. 2 005 418 A.
Example 4 Preparation of Hydrophilic Polyurethane on a 1 Kilogram Scale Polyethylene glycol 1 500 (1 93.9g, 0.14 moles), polypropylene glycol 1025 (430.59, 0.42 moles) ethanediol (52.08g, 0.84 moles) and catalyst T-1 2 (2.29) were weighed into a two litre glass beaker and placed into a fan assisted oven set at a temperature of 600C to melt the polyethylene glycol. When the polyethylene glycol had melted, the mixture was stirred well and Desmodur W (31.1 6g, 1.661 8 moles) added with continued stirring. The stirring was continued until the polymerisation mixture had changed from an opaque liquid to a clear liquid. At this point the polymerisation mixture was poured into a polypropylene mould and placed in a fan assisted oven set at a temperature of 900C for one hour to cure.The elastomer obtained was allowed to cure for a further 24 hours at room temperature before use. The material has a water content after hydration of about 23%.
(This Example uses a little more isocyanate than in Example 2 owing to the slightly wetter diols).
Example 5 Dip Coating A polargraphic bipolar silver, silver/silver chloride oxygen electrode mounted in the distal end of a 1.5mum medical grade transparent polyvinyl chloride catheter was dip coated with the dry hydrophilic polyurethane of Example 3 as follows: Into a solution of the hydrophilic polyurethane in 1:1 methylene chloride and ethanol containing 2% water was dipped the first 1 cm of the catheter carrying the electrode. The catheter was kept in the solution for about 5 seconds and then withdrawn vertically upward and maintained in this configuration in air for 1 minute and then in an oven at 700C for a further five minutes. In some cases the whole process was repeated. The resulting membranes had the following thicknesses: Coating Thickness Concentration (%) No. of Dips (Micron) 2 1 3.6 3.5 1 10 5 1 35 6.5 * 1 62 8.74 1 136 2 2 2 8.3 3.5 2 16.4 5 2 22.9

Claims (20)

Claims
1. A device for use in determining blood gas which employs a membrane of material permeable to the blood gas to be determined characterised in that the membrane is hydrophilic polyurethane.
2. A device as claimed in claim 1 adapted for use in contact with the body characterised in that it is coated on a body contacting surface with the membrane of hydrophilic polyurethane.
3. A device as claimed in claim 2 which is an electrochemical sensor.
4. A device as claimed in claim 3 adapted for contact with arterial or venous blood.
5. A device as claimed in any of claims 2 to 4 wherein the hydrophilic polymer is linear.
6. A device as claimed in any of claims 2 to 5 wherein the hydrophilic polyurethane is a polyether polyurethane.
7. A device as claimed in any of claims 2 to 5 wherein the hydrophilic polyurethane can absorb 10 O to 40% water.
8. A device as claimed in claim 7 wherein the hydrophilic polyurethane can absorb 20 to 30% water.
9. An oxygen electrode mounted at the distal end of a catheter for intravenous use which electrode employs a membrane permeable to oxygen characterised in that the membrane is linear hydrophilic polyurethane which when hydrated contains 10 to 40% water.
10. An oxygen electrode as claimed in claim 9 wherein the hydrophilic polyurethane when hydrated contains 20 to 30% water.
11. An electrochemical sensor capable of monitoring oxygen and carbon dioxide mounted at the distal end of a catheter for intravenous use which electrode employs a membrane permeable to oxygen and carbon dioxide characterised in that the membrane is linear hydrophilic polyurethane which when hydrated contains 10 to 40% water.
12. A sensor as claimed in claim 11 wherein the hydrophilic polyurethane when hydrated contains 20 to 30% water.
13. A device as claimed in any of claims 2 to 6 wherein the membrane comprises hydrophilic linear polyether polyurethane wherein the ether units contain poly(ethylene glycol) derivable blocks and poly[(prop or but)ylene glycol] derivable blocks in a mole ratio of 1:2 to 1:10.
14. A device as claimed in claim 13 wherein the hydrophilic polyurethane employs ethane diol as chain extender.
1 5. A device as claimed in claim 14 wherein the mole ratio of diol to polyglycol is from 5:2 to 1:3.
16. A device as claimed in any of claims 13 to 15 wherein the hydrophilic polyurethane employs 4,4'-dicyclohexylmethane di-isocyanate.
17. A device as claimed in any of claims 2 to 7 wherein the membrane is emplaced by dip coating from a solution of the hydrophilic polyurethane.
18. A linear hydrophilic polyurethane which consists essentially of 4,4'-dicyclohexylmethyl or 4,4'-diphenylmethyl residues and alkylene residues are selected from (a) aliphatic diol residues of up to 10 carbon atoms (b) poly(ethylene glycol) blocks (that is blocks of -CH2CH20- residues) and (c) poly[(prop or but)ylene glycol] blocks (that is blocks of CH2CH(CH3)0- or CH2CH2CH2CH2O- residues) wherein the mole ratio of (a): (b)+(c) is from 3:1 to 1:4 and the mole ratio of (b): (c) is from 1:2 to 1:30.
19. A polyurethane as claimed in claim 18 wherein the di-isocyanate is 4,4'-dicyclohexylmethane di-isocyanate, component (c) is composed of CH2CH(CH3)0- residues and component (a) is ethane diol residues.
20. An oxygen electrode which requires the presence of a protective membrane which is permeable to oxygen characterised in that the membrane is hydrophilic polyurethane.
GB8130887A 1980-10-15 1981-10-13 Blood gas sensor Expired GB2093190B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8130887A GB2093190B (en) 1980-10-15 1981-10-13 Blood gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8033313 1980-10-15
GB8130887A GB2093190B (en) 1980-10-15 1981-10-13 Blood gas sensor

Publications (2)

Publication Number Publication Date
GB2093190A true GB2093190A (en) 1982-08-25
GB2093190B GB2093190B (en) 1984-11-21

Family

ID=26277225

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8130887A Expired GB2093190B (en) 1980-10-15 1981-10-13 Blood gas sensor

Country Status (1)

Country Link
GB (1) GB2093190B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091285A2 (en) * 1982-04-02 1983-10-12 Smith and Nephew Associated Companies p.l.c. Dental prosthesis
EP0123465A2 (en) * 1983-04-13 1984-10-31 SMITH &amp; NEPHEW plc Surgical adhesive dressing
EP0165756A2 (en) * 1984-06-16 1985-12-27 Smith &amp; Nephew plc Hygienic absorbent pads
EP0170509A2 (en) * 1984-07-30 1986-02-05 Mitsubishi Rayon Co., Ltd. Electrode for living body
US4595001A (en) * 1982-04-08 1986-06-17 Smith And Nephew Associated Companies P.L.C. Surgical adhesive dressing
EP0297252A2 (en) * 1987-07-02 1989-01-04 Becton, Dickinson and Company Crosslinked polyetherurethane membranes useful in blood electrolyte sensors
WO1989005834A1 (en) * 1987-12-23 1989-06-29 Stichting Biomat A process for manufacturing a porous polyether urethane film
WO1990000066A1 (en) * 1988-06-29 1990-01-11 Smith & Nephew Plc Dressings
GB2235462A (en) * 1989-08-15 1991-03-06 Nat Res Dev Polymeric materials
US5337746A (en) * 1988-08-11 1994-08-16 Young Howard L "In-vivo" oxygen tension measurement
EP1020722A2 (en) * 1999-01-13 2000-07-19 Cha, Geun Sig Hydrophilic polyurethane-coated chloride-selective electrodes

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091285A3 (en) * 1982-04-02 1984-05-16 Smith And Nephew Associated Companies P.L.C. Dental prosthesis
US4469477A (en) * 1982-04-02 1984-09-04 Smith & Nephew Associated Companies P.L.C. Dental prosthesis
EP0091285A2 (en) * 1982-04-02 1983-10-12 Smith and Nephew Associated Companies p.l.c. Dental prosthesis
US4747401A (en) * 1982-04-08 1988-05-31 Smith And Nephew Associated Companies P.L.C. Surgical adhesive dressing
US4595001A (en) * 1982-04-08 1986-06-17 Smith And Nephew Associated Companies P.L.C. Surgical adhesive dressing
EP0123465A2 (en) * 1983-04-13 1984-10-31 SMITH &amp; NEPHEW plc Surgical adhesive dressing
EP0123465A3 (en) * 1983-04-13 1986-12-30 Smith And Nephew Associated Companies P.L.C. Surgical adhesive dressing
EP0165756A2 (en) * 1984-06-16 1985-12-27 Smith &amp; Nephew plc Hygienic absorbent pads
EP0165756A3 (en) * 1984-06-16 1987-11-04 Smith And Nephew Associated Companies P.L.C. Hygienic absorbent pads
EP0170509A3 (en) * 1984-07-30 1988-07-20 Mitsubishi Rayon Co. Ltd. Electrode for living body
EP0170509A2 (en) * 1984-07-30 1986-02-05 Mitsubishi Rayon Co., Ltd. Electrode for living body
EP0297252A2 (en) * 1987-07-02 1989-01-04 Becton, Dickinson and Company Crosslinked polyetherurethane membranes useful in blood electrolyte sensors
EP0297252A3 (en) * 1987-07-02 1991-04-10 Becton, Dickinson and Company Crosslinked polyetherurethane membranes useful in blood electrolyte sensors
WO1989005834A1 (en) * 1987-12-23 1989-06-29 Stichting Biomat A process for manufacturing a porous polyether urethane film
WO1990000066A1 (en) * 1988-06-29 1990-01-11 Smith & Nephew Plc Dressings
US5337746A (en) * 1988-08-11 1994-08-16 Young Howard L "In-vivo" oxygen tension measurement
GB2235462A (en) * 1989-08-15 1991-03-06 Nat Res Dev Polymeric materials
GB2235462B (en) * 1989-08-15 1992-12-16 Nat Res Dev Polymeric materials
EP1020722A2 (en) * 1999-01-13 2000-07-19 Cha, Geun Sig Hydrophilic polyurethane-coated chloride-selective electrodes
EP1020722A3 (en) * 1999-01-13 2004-04-14 Cha, Geun Sig Hydrophilic polyurethane-coated chloride-selective electrodes

Also Published As

Publication number Publication date
GB2093190B (en) 1984-11-21

Similar Documents

Publication Publication Date Title
US4534355A (en) Electrochemical sensor employing a gas-permeable hydrophilic polyurethane membrane
CA2079748C (en) Hydrophilic polyurethane membranes for electrochemical glucose sensors
CN102762740B (en) Analyte sensors comprising blended membrane compositions and methods for making and using them
GB2093190A (en) Blood Gas Sensor
EP0170509B1 (en) Electrode for living body
US4340615A (en) Apparatus for analysis of absorbed gases
JP3857306B2 (en) Copolymers and their non-porous, semi-permeable membranes and their use to permeate molecules of a given molecular weight range
WO1992013271A1 (en) Implantable biological fluid measuring device
US4816130A (en) Blood electrolyte sensors including crosslinked polyetherurethane membranes
EP0205349A2 (en) Impermeable barries and body implants using the same
EP1346000A2 (en) Hydrophilic polymeric material for coating biosensors
JPH03505783A (en) Biological fluid measuring device
PT1358896E (en) Hydrophilic coating for medical needles
US20150122647A1 (en) Enzyme matrices for use with ethylene oxide sterilization
WO2008109739A1 (en) Transdermal analyte monitoring systems and methods for analyte detection
JPH0534049B2 (en)
Yang et al. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles
CN112088217A (en) Thermostable glucose limiting membrane for glucose sensors
Zhang et al. Development of a haemocompatible pO2 sensor with phospholipid-based copolymer membrane
JPH0412145B2 (en)
US11311215B2 (en) Measurement of device materials using non-Faradaic electrochemical impedance spectroscopy
WO1998013685A1 (en) Silicon-containing biocompatible membranes
EP0120108A1 (en) Electrochemical cell for determining a particular component of a fluid
EP0289199A1 (en) Improvements in sensors
JP4098364B2 (en) Silicon-containing biocompatible membrane

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee