GB2083779A - A method of manufacturing a composite material - Google Patents

A method of manufacturing a composite material Download PDF

Info

Publication number
GB2083779A
GB2083779A GB8029268A GB8029268A GB2083779A GB 2083779 A GB2083779 A GB 2083779A GB 8029268 A GB8029268 A GB 8029268A GB 8029268 A GB8029268 A GB 8029268A GB 2083779 A GB2083779 A GB 2083779A
Authority
GB
United Kingdom
Prior art keywords
filaments
thermoplastic polymer
composite material
manufacturing
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB8029268A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10515996&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=GB2083779(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Priority to GB8029268A priority Critical patent/GB2083779A/en
Priority to EP81303195A priority patent/EP0047576B1/en
Priority to DE8181303195T priority patent/DE3169034D1/en
Priority to US06/283,976 priority patent/US4380523A/en
Priority to JP56143144A priority patent/JPS6047111B2/en
Priority to SU813332301A priority patent/SU1321362A3/en
Publication of GB2083779A publication Critical patent/GB2083779A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/685Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by laminating inserts between two plastic films or plates
    • B29C70/687Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by laminating inserts between two plastic films or plates the inserts being oriented, e.g. nets or meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

1
GB 2 083 779 A
1
SPECIFICATION
A method of manufacturing a composite material
5 "Phis invention relates to a method of manufacturing composite materials and in particular to a method of manufacturing composite materials comprising reinforcing filaments enclosed in a matrix of a thermoplastic . polymer.
" It has long been common practice to manufacture composite materials which comprise reinforcing filaments enclosed in a matrix of a thermosetting polymer. Thus one particularly useful composite material 10 comprises reinforcing filaments of carbon enclosed in a matrix of an epoxy resin. Whilst such composite materials have been extremely useful in replacing certain metals as constructional materials in the engineering industry, they do nevertheless suffer from certain disadvantages which makes their manufacture troublesome. For instance, there are storage problems associated with thermosetting polymers prior to their incorporation into a matrix since they tend to have finite shelf lives and sometimes require to be 15 stored in a refrigerated environment. Additionally after a thermosetting polymer has been heated to an appropriate temperature, it hardens permanently, thereby effectively precluding its further shaping by deformation.
Thermoplastic polymers do not have these storage problems since they already have high molecular weights and additionally are thermoformable so that they can be re-worked many times after their initial 20 moulding at temperature. Thus thermoplastic polymers have certain attractions as a replacement for thermosetting polymers as a matrix material in filament reinforced composite materials. However, there are difficulties in producing a composite material which comprises reinforcing filaments enclosed in a matrix of a thermoplastic polymer. One route for the manufacture of such composite materials entails impregnating the reinforcing filaments with a solution of the thermoplastic polymer in a suitable solvent. The solvent is 25 then evaporated off and moulding carried out to provide the resultant composite material. Composite materials manufactured by such a method suffer from several disadvantages. For instance, it is very difficult to completely evaporate off the polymer solvent. Some trapping of the solvent may occur with the result that the composite material is, to a certain extent, porous. This reduces its strength and sometimes leads to the accelerated thermal degradation of the polymer if the composite material is subjected in use to elevated 30 temperatures. Another disadvantage is that it is not usually possible to accurately monitorthe actual amount of polymer which is impregnated into the filaments. Some resin usually runs off the filaments with the result that the final polymer content of the composite material is lower than anticipated.
In U.K. Patent No. 1,485,586 there is described a method of manufacturing a composite material in which filaments are interleaved between films of a thermoplastic polymer and the resultant sandwich structures 35 subjected to heat and pressure so that the polymer flows and impregnates the filaments. This method has the advantage of not requiring the use of a solvent and consequently avoids the pitfalls associated with solvent use. However, if the polymer is of high viscosity at the temperatures usually employed in this type of method, then difficulty is encountered in achieving a satisfactory level of impregnation of the filaments by the polymer. Consequently the resultant composite material has a low filament level per unit volume of 40 composite material, thereby adversely affecting its mechanical properties.
U.K. Patent No. 1,570,000 describes a somewhat similar method of manufacture of a composite material, differing in that the filaments are impregnated with a solution of a thermoplastic polymer in a suitable solvent and the solvent evaporated off prior to the impregnated filaments being interleaved between films of a second thermoplastic polymer. Then as in the previous method, the resultant sandwich structure is 45 subjected to heat and pressure to cause the thermoplastic material to flow after which the assembly is cooled under pressure to avoid distortion of the resultant composite material. The teachings of U.K. Patent No. 1,570,000 are directed to impregnation of the filaments with a thermoplastic polymer so that there is a polymer pick-up by the fibres which, after solvent evaporation, amounts to 16 to 40% by weight.
Unfortunately this means that whilst the method permits the use of films of high viscosity thermoplastic 50 polymers, the resultant composite material is prone to solvent attack, even if the thermoplastic polymer of the film is of low solvent solubility. Thus the thermoplastic polymer originally applied in solvent solution is prone to solvent attack, thereby leading to increased likelihood of stress-cracking occurring in the composite material. A further disadvantage of this method is that whilst the thermoplastic polymer used for the films may have desirable properties as matrix material, the incorporation of a relatively large amount of a different 55 thermoplastic polymer in that matrix may have a deleterious effect upon the properties of the resultant composite material.
Jt is an object of the present invention to provide a method of manufacture a composite material wherein the aforementioned difficulties in manufacturing filament reinforced, thermoplastic polymer matrix composite materials are substantially avoided.
60 According to the present invention, a method of manufacturing a composite material comprises the steps of applying a first high temperature resistant thermoplastic polymer to a layer or layers of reinforcing filaments in an amount sufficient only to lightly bind said filaments together, forming a structure of the or each layer or layers of the thus bound filaments and sheets of a second high temperature resistant polymer so that the or each layer of bound filaments is interposed between sheets of said second thermoplastic 65 polymer, compressing said structure at a temperature at which said first thermoplastic polymer does not
5
10
15
20
25
30
35
40
45
50
55
60
65
2
GB 2 083 779 A
2
thermally decompose and at which second thermoplastic polymer is mobile, maintaining said compression at said temperature for sufficient time for said second thermoplastic polymer to impregnate said layer or layers of bound filaments and for at least a major portion of said first thermoplastic polymer to diffuse into said second thermoplastic polymer, cooling said thus formed composite material under compression in 5 order to avoid any distortion thereof and subsequently discontinuing said compression. -
We have found that in order to lightly bind the filaments together, it is necessary to apply sufficient of the .first high temperature resistant thermoplastic polymer to increase the weight of the filaments by up to 5%.
A convenient method of applying the first thermoplastic polymer to the filaments is to dissolve the * polymer in a suitable solvent, apply that solution to the fibres and subsequently evaporate off the solvent. 10 There are however other methods of application. Thus for example the filaments could be interposed between two thin sheets of the first thermoplastic polymer and the assembly compressed at or above the glass transition temperature of the polymer so as to directly apply the polymer to the filaments. An alternative method could be to pass the filaments through a heated fluidised bed containing the powdered polymer.
15 It is desirable to apply the first thermoplastic polymer to the filaments when those filaments are in a given configuration so that when the filaments are formed into a structure with the sheets of the second thermoplastic polymer, that configuration is retained. This being so, we prefer to apply the first thermoplastic polymer by winding the filaments on to a mandrel so that they adopt the desired configuration, spraying a solution of the first thermoplastic polymer on to the wound filaments, evaporating 20 off the solvent and finally removing the filaments from the mandrel. We have found that if this procedure is carried out, the filaments may be easily handled without losing their initial general configuration.
The first thermoplastic polymer may be a polycarbonate, a polysulphone, a polyethersulphoneora polyimide, these being polymers which have high temperature resistance and are capable of lightly binding the filaments together. They are moreover readily soluble in a number of organic solvent which makes it 25 possible to apply them to the filaments by the previously mentioned solvent route.
The second thermoplastic polymer may be an aromatic polyether polymer. The preferred aromatic polyether polymer is an aromatic polyetheretherketone which is marketed by ICI Limited under the name "PEEK". This aromatic polyetheretherketone differs from a large number of other thermoplastic polymers such as polysulphones and polyethersulphones in that it is capable of a high degree of crystallisation. Thus a 30 figure of 48% crystallinity has been reported. This degree of crystallinity imparts to the polymer enhanced mechanical properties and a high degree of resistance to the common solvents. Moreover it has a melting point of 334°C which makes it suitable for high temperature applications.
The structure of filaments bound by the first thermoplastic polymer and the sheets of the second thermoplastic polymer is compressed at a pressure, for instance 14 MN/m2, which is sufficient to result in the 35 impregnation of the bound filaments by the second thermoplastic polymer. If the first thermoplastic polymer is a polyethersulphone and the second thermoplastic polymer is "PEEK" then this compression may be carried out at a temperature of approximately 400°C. In order for the major portion of the first thermoplastic polymer, to diffuse into the second, the application of heat and pressure is preferably maintained for at least one hour. In fact we have found that adequate diffusion usually occurs if the pressure and heat are 40 maintained for approximately two hours.
The diffusion of the first thermoplastic polymer into the second ensures that in the resultant composite material, a large proportion of the polymer which is in contact with the filaments is in fact the second thermoplastic polymer. This means that if the mechanical properties of the second thermoplastic polymer are superior to those of the first thermoplastic polymer, then direct bonding between the filaments and the 45 second thermoplastic polymer will result in a composite material having mechanical properties superior to those of a composite material in which the majority of the polymer in contact with the filaments is the first thermoplastic polymer. A further advantage of such diffusion is that if the first thermoplastic polymer is readily soluble in organic solvents and the second thermoplastic polymer is not, then the resultant composite material will be less prone to organic solvent attack than composite materials in which diffusion is 50 limited or non-existent.
The filaments may be of any of the types which are commonly used for reinforcement in composite materials. Thus mention may be made of filaments of glass, graphite, steel, silicon carbide, alumina, boron, boron nitride etc. However we prefer to utilise filaments of carbon.
Whilst the method of the present invention may be utilised in the manufacture of finished articles, it may' 55 also be used in the manufacture of prepregs. Thus prepregs comprise composite material portions which may be subsequently grouped together and subjected to heat and pressure in order to fuse them together and form them into a finished article.
The following examples will serve to illustrate the invention:-
60 Example 1
A release layer of a non-porous PTFE/glass cloth known as Tygafluor ("Tygafluor" is a registered -trademark) was attached to a flat 270 mm square flat mandrel. Carbon fibre (Toray 3000 90A) was then wound overthe mandrel at 36 turns per 25.4 mm. Polyethersulphone (Grade 100P and manufactured by ICI Limited) was dissolved in methylene chloride and the solution was sprayed on to the wound fibres until a 65 total amount of 0.8 grams of the polyethersulphone had been applied to the fibres adjacent the Tygafluor
5
10
15
20
25
30
35
40
45
50
55
60
65
3
GB 2 083 779 A , 3
cloth. After allowing the coated fibres to dry in air at room temperature overnight, it was found that they were lightly bound by the polyethersulphone so that they could be removed from the mandrel and cut into 16 unidirectional pieces measuring 113 mm x 44.5 mm without losing their fibre orientation. The sixteen pieces were then further dried at 125°C in order to ensure complete removal of the methylene chloride from 5 tfce polyethersulphone. It was found after drying that the application of the polyethersulphone to the carbon fibres had increased their weight by 4.5%.
Eight of the unidirectional pieces were taken and each one was sandwiched between two 50 |xm thick sheets of £ high temperature resistant aromatic polyetheretherketone polymer which is marketed by ICI Limited under the name "PEEK". The resultant sandwich structures were then formed into a stack containing ■jO eight of the unidirectional pieces of lightly bonded carbon fibre and sixteen sheets of "PEEK". The stack was then compression moulded for two hours at 400°C and 14 MN/m2 pressure was then allowed to cool to room temperature before compression was discontinued.
The resultant composite material was found to contain 67% by volume of carbon fibre and was completely void free. It has a flexural strength of 1.79 GN/m2 and a flexural modulus of 138 GN/m2 giving a composite 15 breaking strain of 1.30%.
Example 2
Example 1 was repeated with the exception that the stack was compression moulded at 400°C and 14 MN/m2 pressure for only Vz hour.
20 The resultant composite material contained 67% by volume of carbon fibre. It had a flexural strength of
1.62 GN/m2 and a flexural modulus of 143 GB/m2 giving a breaking strain of 1.13%.
Example 3
Example 1 was repeated with the exception that the stack was compression moulded at 400°C and 13 25 MN/m2 pressure for one hour.
The resultant composite material contained 67% by volume of carbon fibre. It had a flexural strength of
1.63 GN/m2 and a flexural modulus of 141 GN/m2 giving a breaking strain of 1.16%.
It will be seen therefore from Examples 1 to 3 that the time during which the stack is maintained under compression and temperature has an important bearing on the flexural strength and breaking strain of the 30 resultant composite material. Thus we believe that this is due to the fact that the compression and temperature results in the diffusion of polyethersulphone from the carbon fibres into the polyetheretherketone matrix material. Thus to ensure that a composite material is produced with an adequate degree of diffusion, we prefer that compression of the stack at temperature should be maintained for at least an hour.
35 Example 4
Example 1 was repeated using CourtauldsXAS 3000 filament tow carbon fibre instead oftheToray 3000 90A.
The resultant composite material contained 68% by volume of the carbon fibre. It had a flexural strength of 2.22 GN/m2 and it has a flexural modulus of 147 GN/m2 giving a breaking strain of 1.51%.
40 In order to demostrate the superior properties of composite materials produced in accordance with the method of the present invention, the properties of samples of composite materials produced by the conventional solvent route were compared with those of the composite material of Example 1. The conventional solvent route entails dissolving the matrix polymer in a suitable solvent, impregnating fibres with the resultant solution, evaporating off the solvent and subsequently moulding under temperature and 45 pressure to produce the required shape. The test pieces produced by the conventional route were of the same dimensions as that produced in Example 1.
The results obtained were as follows:
5
10
15
20
25
30
35
40
45
4
GB 2 083 779 A
4
Composite Material
Moulding Conditions
Fibre
Volume
%
Flexural
Strength
NM/m2
Flexural
Modulus
MN/m2
Breaking
Strain
%
10
15
20
Toray 3000 90A
Carbon Fibre
Polysulphone resin matrix
Toray 3000 90A
Carbon Fibre
Polyethersulphone resin matrix
Example 1
14 MN/m2 at 320°C
71
1.36
132
1.03
12 MN/m2 at 360°C
14 MN/m2 at 400°C
59
67
1.29
1.79
122
138
1.06
1.30
10
15
20
It will be seen therefore that the flexural strength, flexural modulus and breaking strain of the composite
25 material of Example 1 are superior to those of composite materials produced by the conventional solvent 25 route.
Although the method of the present invention has been described with references to composite materials produced from particular thermoplastic polymers, it will be appreciated that it is not restricted to those polymers and is generally applicable to all high temperature resistant thermoplastic polymers.
30 30

Claims (11)

1. A method of manufacturing a composite material comprising the steps of applying a first high temperature resitant thermoplastic polymerto a layer or layers of reinforcing filaments in an amount
35 sufficient only to lightly bind said filaments together, forming a structure of the or each layer or layers of the 35 thus bound filaments and sheets of a second high temperature resistant polymer so that the or each layer of bound filaments is interposed between sheets of said second thermoplastic polymer, compressing said structure at a temperature at which said first thermoplastic polymer does not thermally decompose and at which said second thermoplastic polymer is mobile, maintaining said compression at said temperature for
40 sufficient time for said second thermoplastic polymer to impregnate said layeror layers of bound filaments 40 and for at least a major portion of said first thermoplastic polymer to diffuse into said second thermoplastic polymer, cooling said thus formed composite under compression in order to avoid any distortion thereof and subsequently discontinuing said compression.
2. A method of manufacturing a composite material as claimed in claim 1 wherein said first high
45 temperature resistant thermoplastic polymer is applied to said layer or layers of reinforcing filaments in 45
amount sufficient to increase the weight of said filaments by up to 5%.
3. A method of manufacturing a composite material as claimed in claim 1 or claim 2 wherein said first thermoplastic polymer is dissolved in a solvent prior to its application to said filaments and said solvent is subsequently evaporated off after application to said filaments.
50
4. A method of manufacturing a composite material as claimed in any one preceding claim wherein said 50 filaments are arranged in a given configuration prior to the application thereto of said first thermoplastic polymer so that said configuration of said filaments is maintained by said first thermoplastic polymer.
5. A method of manufacturing a composite material as claimed in claim 4 wherein said filaments are arranged in said configuration by winding them on to a mandrel.
55
6. A method of manufacturing a composite material as claimed in any one preceding claim wherein said 55 first thermoplastic polymer is a polycarbonate, a polysulphone, a polyethersulphone or a polyimide.
7. A method of manufacturing a composite material as claimed in any one preceding claim wherein said second thermoplastic polymer in an aromatic polyether.
8. A method of manufacturing a composite material as claimed in claim 7 wherein said aromatic
60 polyether polymer is an aromatic polyetheretherketone. 60
9. A method of manufacturing a composite material as claimed in any one preceding claim wherein said compression is maintained at said temperature for at least one hour.
5
GB 2 083 779 A
5
10. A method of manufacturing a composite material as claimed in any one preceding claim wherein said filaments are of carbon.
11. A method of manufacturing a composite material substantially as hereinbefore described with reference to the accompanying examples.
Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon, Surrey, 1982. » Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.
GB8029268A 1980-09-10 1980-09-10 A method of manufacturing a composite material Withdrawn GB2083779A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
GB8029268A GB2083779A (en) 1980-09-10 1980-09-10 A method of manufacturing a composite material
EP81303195A EP0047576B1 (en) 1980-09-10 1981-07-13 A method of manufacturing a composite material
DE8181303195T DE3169034D1 (en) 1980-09-10 1981-07-13 A method of manufacturing a composite material
US06/283,976 US4380523A (en) 1980-09-10 1981-07-16 Method of manufacturing a composite material
JP56143144A JPS6047111B2 (en) 1980-09-10 1981-09-10 Composite manufacturing method
SU813332301A SU1321362A3 (en) 1980-09-10 1981-09-10 Method of producing laminated plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8029268A GB2083779A (en) 1980-09-10 1980-09-10 A method of manufacturing a composite material

Publications (1)

Publication Number Publication Date
GB2083779A true GB2083779A (en) 1982-03-31

Family

ID=10515996

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8029268A Withdrawn GB2083779A (en) 1980-09-10 1980-09-10 A method of manufacturing a composite material

Country Status (6)

Country Link
US (1) US4380523A (en)
EP (1) EP0047576B1 (en)
JP (1) JPS6047111B2 (en)
DE (1) DE3169034D1 (en)
GB (1) GB2083779A (en)
SU (1) SU1321362A3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0116875A1 (en) * 1983-02-18 1984-08-29 The Foxboro Company Electromagnetic flowmeter and method for fabricating an electrode assembly for such a flowmeter
US4640861A (en) * 1984-06-07 1987-02-03 E. I. Du Pont De Nemours And Company Fiber reinforced thermoplastic material
GB2178364A (en) * 1985-07-31 1987-02-11 Smith H R Laminates of fibre-reinforced thermoplastics resins

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3301346A1 (en) * 1983-01-18 1984-07-19 Basf Ag, 6700 Ludwigshafen SOLUTION OF POLYETHERSULPHONE IN AN ORGANIC SOLVENT AND THEIR USE
GB8306989D0 (en) * 1983-03-14 1983-04-20 Ae Plc Composition of matter
JPS6235403U (en) * 1985-08-09 1987-03-02
IT1188547B (en) * 1986-02-05 1988-01-14 Tecnocompositi Spa FLEXIBLE COLUMN IN COMPOSITE MATERIAL
US4869855A (en) * 1986-05-02 1989-09-26 Allied Signal Inc. Method of manufacturing molded articles
DE3742833A1 (en) * 1987-12-17 1989-07-13 Basf Ag METHOD FOR PRODUCING FIBER COMPOSITES
EP0330960A3 (en) * 1988-03-04 1990-07-11 General Electric Company Method of forming a fiber-reinforced thermoplastic article
FR2630967B1 (en) * 1988-05-09 1993-12-10 Atochem PROCESS FOR THE MANUFACTURE OF LONG FIBER REINFORCED THERMOPLASTIC RESINS
JPH06336B2 (en) * 1989-02-09 1994-01-05 日東紡績株式会社 Preform for molding fiber-reinforced plastic and method for producing the same
US5264060A (en) * 1992-01-22 1993-11-23 Aluminum Company Of America Method for pultruding fiber-reinforced thermoplastic stock
US5409651A (en) * 1993-10-06 1995-04-25 Atkins & Pearce, Inc. Method of forming tubular parts
US5393929A (en) * 1993-11-23 1995-02-28 Junkosha Co. Ltd. Electrical insulation and articles thereof
FR2725934B1 (en) * 1994-10-21 1997-01-10 Europ Propulsion PROCESS FOR THE PREPARATION OF TUBES OF COMPOSITE MATERIAL WITH HIGH MECHANICAL AND TRIBOLOGICAL CHARACTERISTICS
US6250193B1 (en) 1996-12-02 2001-06-26 A & P Technology, Inc. Braided structure with elastic bias strands
US6148865A (en) * 1996-12-02 2000-11-21 A & P Technology, Inc. Braided sleeve, tubular article and method of manufacturing the tubular article
AUPR949401A0 (en) * 2001-12-14 2002-01-24 Australian Defence Apparel Pty Ltd. Hard armour panels or plates and production method therefor
US7648607B2 (en) * 2005-08-17 2010-01-19 Innegrity, Llc Methods of forming composite materials including high modulus polyolefin fibers
DE102006042999B3 (en) * 2006-09-14 2007-10-25 Federal-Mogul Deva Gmbh Method for manufacturing a sliding bearing component, comprises winding reinforcing element on multi-edged winding core under addition of plastic resin forming the plastic matrix and forming segments between the edges of the winding body
US20090309260A1 (en) * 2008-06-12 2009-12-17 Kenneth Herbert Keuchel Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
AU2010352374A1 (en) 2010-04-29 2012-12-20 Parker Hannifin Manufacturing Belgium Method for manufacturing a composite ring, composite ring, use of the ring in a seal assembly and seal assembly
US10773468B2 (en) * 2017-08-14 2020-09-15 The Boeing Company Hybrid non-woven composite part

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2523022A (en) * 1949-12-31 1950-09-19 Gen Electric Reinforced asbestos tape and process of making same
US3556922A (en) * 1968-08-27 1971-01-19 Du Pont Fiber-resin composite of polyamide and inorganic fibers
GB1361189A (en) * 1970-11-12 1974-07-24 Ici Ltd Thermoplastic compositions
US3765998A (en) * 1971-01-11 1973-10-16 Allied Chem Shapable fiber-reinforced low molecular weight polyethylene terephthalate
US3863758A (en) * 1971-11-02 1975-02-04 Hercules Inc Molding compositions
US3790432A (en) * 1971-12-30 1974-02-05 Nasa Reinforced polyquinoxaline gasket and method of preparing the same
US3915781A (en) * 1974-02-28 1975-10-28 United Technologies Corp Resin bonded composite articles and process for fabrication thereof
JPS5116225A (en) * 1974-07-31 1976-02-09 Hitachi Metals Ltd NIJUDOKISHIKIWAKUAWASESOCHI
GB1485586A (en) 1976-01-13 1977-09-14 Rolls Royce Method of manufacturing composite material
GB1570000A (en) * 1976-06-10 1980-06-25 Nat Res Dev Thermoplastics materials
JPS5310109A (en) * 1976-07-16 1978-01-30 Babcock Hitachi Kk Protective trap system for vacuum pump
US4131625A (en) * 1976-10-28 1978-12-26 The United States Of America As Represented By The Secretary Of The Air Force 4,4'-Bis(3-ethynylphenoxy)diphenylsulfone
JPS53132080A (en) * 1977-04-23 1978-11-17 Agency Of Ind Science & Technol Long fiberglass reinforced thermoplastic resin sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0116875A1 (en) * 1983-02-18 1984-08-29 The Foxboro Company Electromagnetic flowmeter and method for fabricating an electrode assembly for such a flowmeter
US4640861A (en) * 1984-06-07 1987-02-03 E. I. Du Pont De Nemours And Company Fiber reinforced thermoplastic material
GB2178364A (en) * 1985-07-31 1987-02-11 Smith H R Laminates of fibre-reinforced thermoplastics resins
GB2178364B (en) * 1985-07-31 1990-01-04 H R Smith Production of laminates

Also Published As

Publication number Publication date
DE3169034D1 (en) 1985-03-28
SU1321362A3 (en) 1987-06-30
JPS5780046A (en) 1982-05-19
US4380523A (en) 1983-04-19
EP0047576A3 (en) 1983-08-17
EP0047576B1 (en) 1985-02-20
JPS6047111B2 (en) 1985-10-19
EP0047576A2 (en) 1982-03-17

Similar Documents

Publication Publication Date Title
EP0047576B1 (en) A method of manufacturing a composite material
US4445951A (en) Method of manufacturing composite materials
EP0216518B1 (en) Fiber having thermoplastic resin coating
US6139942A (en) Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom
US4741873A (en) Method for forming rigid composite preforms
US5344703A (en) Ordered polymer/sol-gel microcomposite laminates with peek resin adhesive
TWI311593B (en) Porous polymeric membrane toughened composites
CN1976787B (en) Epoxy resin impregnated yarn and the use thereof for producing a preform
EP0714869B1 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
US6311542B1 (en) Moulding methods and moulded articles
EP0793573B1 (en) Low resin content unidirectional fiber tape
WO1998026912A1 (en) Carbon fiber prepreg and method of production thereof
WO2019107248A1 (en) Composite material and production method therefor
EP0326409B1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
JPS62227639A (en) Composite article and manufacture thereof
JPS62115033A (en) Fiber-reinforced composite material
GB2114055A (en) Manufacturing fibre-reinforced composites
JP4476260B2 (en) Method for manufacturing composite article
JP2997087B2 (en) High performance aramid matrix composites
JP2767329B2 (en) Prepreg for resin mold to form surface layer of resin mold
JP2000160474A (en) Coated ceramic fiber
JPH04146930A (en) Composite resin/sheet laminate
EP0319346A2 (en) Interply-hybridized laminated material
JPH07137152A (en) Manufacture of composite material
JPH01148547A (en) Symmetric hybrid laminated material

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)