FR2965750A1 - MULTILAYER STRUCTURE - Google Patents

MULTILAYER STRUCTURE Download PDF

Info

Publication number
FR2965750A1
FR2965750A1 FR1058199A FR1058199A FR2965750A1 FR 2965750 A1 FR2965750 A1 FR 2965750A1 FR 1058199 A FR1058199 A FR 1058199A FR 1058199 A FR1058199 A FR 1058199A FR 2965750 A1 FR2965750 A1 FR 2965750A1
Authority
FR
France
Prior art keywords
microperforation
microperforations
layer
multilayer structure
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1058199A
Other languages
French (fr)
Inventor
Philippe Dietemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArjoWiggins Security SAS
Original Assignee
ArjoWiggins Security SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArjoWiggins Security SAS filed Critical ArjoWiggins Security SAS
Priority to FR1058199A priority Critical patent/FR2965750A1/en
Priority to PCT/IB2011/054423 priority patent/WO2012046212A1/en
Publication of FR2965750A1 publication Critical patent/FR2965750A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B42D2033/18
    • B42D2033/20
    • B42D2033/22
    • B42D2035/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/346Perforations

Abstract

La présente invention concerne une structure multicouche (10) comportant au moins : - une couche de recto (11) ayant au moins une région non transparente (11a), - une couche de verso (12) ayant au moins une région non transparente (12a), - de préférence, au moins une couche interne (13; 16) située entre les couches de recto et de verso, - une première microperforation (20) à travers la région non transparente de la couche de recto, - une deuxième microperforation (30) à travers la région non transparente de la couche de verso, l'une au moins des microperforations s'étendant obliquement ou étant non traversante, les couches et les microperforations étant agencées de telle sorte que les microperforations apparaissent côté recto et verso de couleurs respectives différentes, pour certaines conditions d'observation au moins.The present invention relates to a multilayer structure (10) comprising at least: - a front layer (11) having at least one non-transparent region (11a), - a back layer (12) having at least one non-transparent region (12a) preferably, at least one inner layer (13; 16) located between the front and back layers, a first microperforation (20) through the non-transparent region of the front layer, a second microperforation ( 30) through the non-transparent region of the backing layer, at least one of the microperforations extending obliquely or non-traversing, the layers and microperforations being arranged so that the microperforations appear on the front and back side of colors different, for certain observation conditions at least.

Description

La présente invention se rapporte au domaine des documents de sécurité. L'invention concerne une structure multicouche comportant des microperforations, un article de sécurité incorporant une telle structure ainsi qu'un procédé d'authentification d'une telle structure ou d'un tel article de sécurité. The present invention relates to the field of security documents. The invention relates to a multilayer structure comprising microperforations, a security article incorporating such a structure and a method for authenticating such a structure or such a security article.

Il est connu, notamment des billets suisses, de faire des perforations verticales dans un papier afin de le sécuriser. L'effet visuel obtenu relève de la seule observation en lumière transmise des perforations. La demande de brevet EP 1 525 100 décrit un document de sécurité comprenant un support au travers duquel s'étend une pluralité de perforations de section ellipsoïdale, orientées selon la normale au support. La demande WO 00/43216 décrit un élément de sécurité contre la falsification, comportant des perforations non traversantes, aboutissant à différentes profondeurs, et en particulier pouvant comporter des perforations obliques. Les perforations sont visibles sous la forme d'un dégradé de gris lorsque la structure est observée en transmission. It is known, including Swiss banknotes, to make vertical perforations in a paper to secure it. The visual effect obtained is the only observation in light transmitted perforations. The patent application EP 1 525 100 describes a security document comprising a support through which a plurality of perforations of ellipsoidal section, orientated according to the normal to the support, extend. WO 00/43216 discloses a security element against forgery, having non-through perforations, resulting in different depths, and in particular may include oblique perforations. The perforations are visible in the form of a gray gradient when the structure is observed in transmission.

La demande WO 02/33652 décrit un élément de sécurité comportant des perforations coniques orientées normalement à l'élément, traversantes ou non, pour former une image multi-ton. Il existe un besoin pour renforcer encore la sécurité des documents de sécurité. L'invention a ainsi pour objet, selon l'un de ses aspects, une structure 20 multicouche comportant au moins : - une couche de recto ayant au moins une région non transparente, - une couche de verso ayant au moins une région non transparente, - de préférence au moins une couche interne située entre les couches de recto et de verso, 25 - une première microperforation à travers la région non transparente de la couche de recto, - une deuxième microperforation à travers la région non transparente de la couche de verso, l'une au moins des première et deuxième microperforations s'étendant obliquement, ou 30 étant non traversante, c'est-à-dire ne traversant pas l'intégralité de la structure, lesdites couches et lesdites microperforations étant agencées de telle sorte que les microperforations apparaissent côté recto et côté verso de couleurs respectives différentes l'une de l'autre, pour certaines conditions d'observation au moins. On peut jouer sur l'épaisseur des couches, les dimensions des 5 microperforations et leur inclinaison pour obtenir ce résultat. Grâce à l'invention, l'utilisateur peut observer au moins une première couleur au niveau de la première microperforation en observant le recto de l'article ou du document de sécurité qui incorpore la structure et au moins une deuxième couleur, différente de la première, en observant le verso de l'article ou du document. La première 10 couleur est différente de la couleur de la face externe de la couche de recto, au moins dans la région non transparente où se trouve la première microperforation, de sorte à ce que la première microperforation soit repérable par la différence de couleur qui apparaît entre la microperforation et ladite région. Il en va de même pour la deuxième couleur, qui est différente de la couleur de la face externe de la couche de verso, au moins au niveau de la 15 région dans laquelle se trouve la deuxième microperforation. L'utilisateur peut ainsi, en observant tour à tour le recto et le verso de l'article ou du document qui incorpore la structure, en déduire une information sur l'authenticité du document. Les conditions d'observation côté recto et côté verso peuvent être les mêmes, c'est-à-dire selon le même angle d'observation relativement à la normale à la structure, par 20 exemple sous incidence normale ou oblique des deux côtés. Les conditions d'observation côté recto et côté verso peuvent aussi différer, l'observation s'effectuant par exemple selon la normale d'un côté et obliquement de l' autre. Par « couleur », on désigne une couleur observée sous un illuminant qui peut 25 être une lumiere visible, notamment la lumière du four, ou une lumière non visible, notamment une lumière UV ou IR. Par « microperforation », on entend un trou éventuellement rempli d'un matériau non opaque, présentant une plus grande dimension transversale de taille millimétrique ou micrométrique, notamment comprise entre 200 microns et 5 microns, 30 mieux entre 50 et 10 microns. La dimension transversale est mesurée perpendiculairement à l'axe de la microperforation. La section transversale de la microperforation présente une superficie inférieure ou égale à 0.1 mm2, mieux, 0.002 mm2. The application WO 02/33652 describes a security element comprising conical perforations normally oriented to the element, passing through or not, to form a multi-tone image. There is a need to further enhance the security of security documents. The invention thus has, according to one of its aspects, a multilayer structure comprising at least: a front layer having at least one non-transparent region, a back layer having at least one non-transparent region, preferably at least one inner layer located between the front and back layers, a first microperforation through the non-transparent region of the front layer, a second microperforation through the non-transparent region of the back layer. at least one of the first and second microperforations extending obliquely, or being non-traversing, that is to say not passing through the entirety of the structure, said layers and said microperforations being arranged in such a way that the microperforations appear on the front and back side of respective colors different from each other, for certain observation conditions at least. We can play on the thickness of the layers, the dimensions of the micro-perforations and their inclination to obtain this result. Thanks to the invention, the user can observe at least one first color at the first microperforation by observing the front of the article or security document that incorporates the structure and at least a second color, different from the first one. , looking at the back of the article or document. The first color is different from the color of the outer face of the front layer, at least in the non-transparent region where the first microperforation is located, so that the first microperforation is detectable by the difference in color that appears between the microperforation and said region. The same is true for the second color, which is different from the color of the outer face of the backing layer, at least at the region in which the second microperforation is located. The user can thus, by observing in turn the front and back of the article or document that incorporates the structure, deduce information on the authenticity of the document. The observation conditions on the front and back sides may be the same, ie at the same angle of observation relative to the normal to the structure, for example under normal or oblique incidence on both sides. The observation conditions on the front and back sides may also differ, the observation taking place for example according to the normal on one side and obliquely on the other. By "color" is meant a color observed under an illuminant which may be visible light, especially oven light, or non-visible light, especially UV or IR light. By "microperforation" is meant a hole optionally filled with a non-opaque material having a greater transverse dimension of millimetric or micrometric size, especially between 200 microns and 5 microns, more preferably between 50 and 10 microns. The transverse dimension is measured perpendicularly to the axis of the microperforation. The cross section of the microperforation has an area less than or equal to 0.1 mm 2, better still 0.002 mm 2.

Une microperforation présente l'avantage de n'être détectable que sous certaines conditions d'observation, et n'est ainsi pas visible à l'oeil nu si ces conditions d'observation ne sont pas respectées. Une microperforation peut notamment être de section transversale constante ou non. Elle peut être de section circulaire ou non circulaire, notamment polygonale, en particulier polygonale régulière ou non régulière, oblongue, notamment elliptique. Par microperforation « oblique » on entend une microperforation s'étendant dans la structure suivant une direction faisant un angle non nul avec la normale à la structure. A microperforation has the advantage of being detectable only under certain observation conditions, and is thus not visible to the naked eye if these observation conditions are not respected. A microperforation may especially be of constant cross section or not. It may be of circular or non-circular section, in particular polygonal, in particular polygonal regular or non-regular, oblong, in particular elliptical. By "oblique" microperforation means a microperforation extending in the structure along a direction forming a non-zero angle with the normal to the structure.

Par couches « de recto » et « de verso », on entend des couches côté recto et côté verso. Une couche côté recto est plus proche de la face extérieure recto observée par l'utilisateur que ne l'est une couche côté verso, et inversement. Il n'est pas exclu que ces couches soient recouvertes de couches supplémentaires, par exemple une couche de vernis transparente venant recouvrir ou obstruer les microperforations, notamment lorsque la structure est incorporée à un article ou un document de sécurité. Les première et deuxième microperforations peuvent communiquer entre elles ou non. Les première et/ou deuxième microperforations peuvent s'étendre selon un axe oblique, faisant un angle non nul avec la normale à la structure, notamment un angle compris entre 10 et 80°, de préférence compris entre 30 et 60°. Alternativement, les première et/ou deuxième microperforations peuvent être orientées suivant un axe normal à la structure. Les première et deuxième microperforations peuvent être de même axe ou non. Selon un premier mode de réalisation, la structure ne comporte pas de couche 25 interne, les couches de recto et de verso étant adjacentes l'une à l'autre et présentant chacune une couleur différente. La première microperforation peut traverser partiellement la couche de recto, voire traverser entièrement la couche de recto et déboucher sur la couche de verso sans y pénétrer ou en y pénétrant, voire traverser entièrement la structure. 30 La deuxième microperforation peut traverser partiellement la couche de verso, voire traverser entièrement la couche de verso et déboucher sur la couche de recto sans y pénétrer ou en y pénétrant, voire traverser entièrement la structure. By "front" and "back" layers are meant front and back side layers. A front-side layer is closer to the front-facing face of the user than a back-side layer, and vice versa. It is not excluded that these layers are covered with additional layers, for example a layer of transparent varnish from covering or obstruct the microperforations, especially when the structure is incorporated in an article or a security document. The first and second microperforations can communicate with each other or not. The first and / or second microperforations may extend along an oblique axis, making a non-zero angle with the normal to the structure, in particular an angle of between 10 and 80 °, preferably between 30 and 60 °. Alternatively, the first and / or second microperforations can be oriented along an axis normal to the structure. The first and second microperforations may be of the same axis or not. According to a first embodiment, the structure has no internal layer, the front and back layers being adjacent to each other and each having a different color. The first microperforation can pass partially through the front layer, or even completely through the front layer and lead to the back layer without penetrating or penetrating or even through the entire structure. The second microperforation can pass partially through the back layer, or even pass completely through the back layer and lead to the front layer without penetrating or penetrating, or even through the entire structure.

Pour une structure d'épaisseur totale er + ev, les angles a et/ou 13 peuvent être choisis tels que : eY + e,> dl/sin (a) et a 0 et/ou eY + e,> dz / sin (8) et 13 0 où er désigne l'épaisseur de la couche de recto, e' désigne l'épaisseur de la couche de verso, a désigne l'angle que fait l'axe de la première microperforation avec la normale à la structure multicouche et dl désigne la plus grande dimension transversale de l'orifice par lequel ladite microperforation débouche sur la face externe de recto de la structure, mesurée perpendiculairement à l'axe de la microperforation, et 13 désigne l'angle que fait l'axe de la deuxième microperforation avec la normale à la structure multicouche et dz désigne la plus grande dimension transversale de l'orifice par lequel ladite microperforation débouche sur la face externe de verso de la structure, mesurée perpendiculairement à l'axe de la microperforation. For a total thickness structure er + ev, the angles a and / or 13 can be chosen such that: eY + e,> dl / sin (a) and a 0 and / or eY + e,> dz / sin ( 8) and 13 0 where er denotes the thickness of the front layer, e 'denotes the thickness of the back layer, a denotes the angle made by the axis of the first microperforation with the normal to the multilayer structure and d1 denotes the largest transverse dimension of the orifice through which said microperforation opens on the outer face of the recto of the structure, measured perpendicular to the axis of the microperforation, and 13 denotes the angle that the axis of the microperforation second microperforation with the normal to the multilayer structure and dz denotes the largest transverse dimension of the orifice through which said microperforation opens on the outer side of the back of the structure, measured perpendicular to the axis of the microperforation.

Cela peut avantageusement permettre, notamment si l'une des première et deuxième microperforations est traversante oblique ou si elles définissent ensemble une microperforation traversante oblique, d'éviter que l'on puisse voir, lors de l'observation en transvision de la structure, au travers de la structure via la microperforation traversante oblique. This can advantageously allow, especially if one of the first and second microperforations is oblique through or if they together define an oblique through microperforation, to avoid that we can see, during the observation in transvision of the structure, the through the structure via the oblique through microperforation.

Lorsque les premières et secondes perforations communiquent l'une avec l'autre et présentent une même dimension D mesurée parallèlement au plan de la structure, les épaisseurs er, e, étant fixées de même que l'angle a on eut avoir > t 1 D - er.tga p R- g( ) ev afin d'éviter de voir à travers la structure. En l'absence de couche interne, l'observateur peut voir, dans un exemple de mise en oeuvre de l'invention, du côté recto la couleur de la couche de verso à travers la première microperforation et du côté verso la couleur de la couche de recto à travers la deuxième microperforation. Selon un mode de réalisation préféré, la structure comporte au moins une couche interne, située entre les couches de recto et de verso. La présence d'au moins une couche interne présente l'avantage, lorsque la microperforation débouche sur ou traverse cette couche interne, de permettre l'observation d'un changement de couleur au niveau de la microperforation quand la direction d'observation change. La teinte de la couleur est également modifiée, car, grâce à la présence d'au moins une couche interne, la profondeur de la microperforation change, et selon l'angle d'observation, la couleur apparaît plus ou moins sombre. Cela offre également une plus grande liberté de choix dans les coloris et matériaux utilisables. La première microperforation peut traverser partiellement la couche de recto, voire traverser entièrement la couche de recto et déboucher sur la couche interne sans y pénétrer ou en y pénétrant, voire traverser entièrement la couche interne et déboucher sur la couche de verso sans y pénétrer ou en y pénétrant, voire traverser entièrement la structure. La deuxième microperforation peut traverser partiellement la couche de verso, voire traverser entièrement la couche de verso et déboucher sur la couche interne sans y pénétrer ou en y pénétrant, voire traverser entièrement la couche interne et déboucher sur la couche de recto sans y pénétrer ou en y pénétrant, voire traverser entièrement la structure. Pour une structure d'épaisseur totale er + el + ev, les angles a et 13 peuvent être choisis tels que : eY + et + e,> dl/sin (a) et a 0 et/ou eY + et + e,> dz / sin (8) et 13 0 où er désigne l'épaisseur de la couche de recto, e' désigne l'épaisseur de la couche de verso, et désigne l'épaisseur de la couche interne, a désigne l'angle que fait l'axe de la première microperforation avec la normale à la structure multicouche et dl désigne la plus grande dimension transversale de l'orifice par lequel ladite microperforation débouche sur la face externe de recto de la structure mesurée perpendiculairement à l'axe de la microperforation, et 13 désigne l'angle que fait l'axe de la deuxième microperforation avec la normale à la structure multicouche et dz désigne la plus grande dimension transversale de l'orifice par lequel ladite microperforation débouche sur la face externe de verso de la structure, mesurée perpendiculairement à l'axe de la microperforation. Cela peut avantageusement permettre, notamment si l'une des première et deuxième microperforations est traversante oblique ou si elles définissent ensemble une microperforation traversante oblique, d'éviter que l'on puisse voir, lors de l'observation en transvision de la structure, au travers de la structure via la microperforation traversante oblique. Selon un mode de réalisation encore préféré davantage, la structure comporte plusieurs couches internes situées entre les couches de recto et de verso, étant de préférence de couleurs différentes, dont au moins des première et deuxième couches internes. Par exemple, la première couche interne est adjacente à la couche de recto, la deuxième couche interne adjacente à la couche de verso, et les première et deuxième couches internes adjacentes l'une à l'autre. Lors d'une observation côté recto, l'observateur peut voir la couleur de la première couche interne à travers la première microperforation et celle de la deuxième couche interne à travers la deuxième microperforation côté verso. La première microperforation peut traverser partiellement la couche de recto, voire traverser entièrement la couche de recto et déboucher sur la première couche interne sans y pénétrer ou en y pénétrant. La première microperforation peut encore traverser entièrement la première couche interne et déboucher sur la deuxième couche interne sans y pénétrer ou en y pénétrant, voire traverser entièrement la deuxième couche interne et déboucher sur la couche de verso sans y pénétrer ou en y pénétrant, voire traverser entièrement la structure. When the first and second perforations communicate with each other and have the same dimension D measured parallel to the plane of the structure, the thicknesses e, e, being fixed as the angle has had t 1 D - er.tga p R- g () ev to avoid seeing through the structure. In the absence of an inner layer, the observer can see, in an exemplary implementation of the invention, the front side the color of the back layer through the first microperforation and the back side the color of the layer. one side through the second microperforation. According to a preferred embodiment, the structure comprises at least one inner layer, located between the front and back layers. The presence of at least one inner layer has the advantage, when the microperforation opens on or passes through this inner layer, to allow the observation of a color change at the microperforation when the direction of observation changes. The hue of the color is also modified because, thanks to the presence of at least one inner layer, the depth of the microperforation changes, and depending on the angle of observation, the color appears more or less dark. This also offers greater freedom of choice in the colors and materials that can be used. The first microperforation can partially cross the front layer or even completely cross the front layer and lead to the inner layer without penetrating or penetrating or even completely through the inner layer and lead to the back layer without entering or penetrating, or even completely through the structure. The second microperforation can partially cross the back layer or even cross the entire back layer and lead to the inner layer without penetrating or penetrating, or through the entire inner layer and lead to the front layer without entering or penetrating, or even completely through the structure. For a total thickness structure er + el + ev, the angles a and 13 can be chosen such that: eY + and + e,> dl / sin (a) and a 0 and / or eY + and + e,> dz / sin (8) and 13 0 where er denotes the thickness of the front layer, e 'denotes the thickness of the back layer, and denotes the thickness of the inner layer, a denotes the angle made by the axis of the first microperforation with the normal to the multilayer structure and d1 denotes the largest transverse dimension of the orifice through which said microperforation opens on the outer face of the recto of the structure measured perpendicularly to the axis of the microperforation, and 13 denotes the angle made by the axis of the second microperforation with the normal to the multilayer structure and dz denotes the largest transverse dimension of the orifice through which said microperforation opens on the outer side of the back of the structure, measured perpendicular to the axis of the microperforation. This can advantageously allow, especially if one of the first and second microperforations is oblique through or if they together define an oblique through microperforation, to avoid that we can see, during the observation in transvision of the structure, the through the structure via the oblique through microperforation. According to a still more preferred embodiment, the structure comprises a plurality of inner layers located between the front and back layers, preferably being of different colors, including at least first and second inner layers. For example, the first inner layer is adjacent to the front layer, the second inner layer adjacent to the back layer, and the first and second inner layers adjacent to each other. During a recto observation, the observer can see the color of the first inner layer through the first microperforation and that of the second inner layer through the second microperforation on the back side. The first microperforation can pass partially through the front layer, or even completely through the front layer and lead to the first inner layer without penetrating or penetrating. The first microperforation can still completely cross the first inner layer and lead to the second inner layer without penetrating or penetrating, or even completely through the second inner layer and lead to the back layer without penetrating or penetrating or even cross entirely the structure.

La deuxième microperforation peut traverser partiellement la couche de verso, voire traverser entièrement la couche de verso et déboucher sur la deuxième couche interne sans y pénétrer ou en y pénétrant. La deuxième microperforation peut encore traverser entièrement la deuxième couche interne et déboucher sur la première couche interne sans y pénétrer ou en y pénétrant, voire traverser entièrement la première couche interne et déboucher sur la couche de recto sans y pénétrer ou en y pénétrant, voire traverser entièrement la structure. Pour des épaisseurs et et ez des première et deuxième couches internes données, les angles a et 13 peuvent être choisis tels que : et > dl / sin (a) et a 0 et/ou ez > dz / sin (8) et R 0 où el désigne l'épaisseur de la première couche interne, a désigne l'angle que fait l'axe de la première microperforation avec la normale à la structure multicouche et di désigne la plus grande dimension transversale de l'orifice par lequel ladite microperforation débouche sur la face externe de recto de la structure, mesurée perpendiculairement à l'axe de l'orifice, et ez désigne l'épaisseur de la deuxième couche interne, R désigne l'angle que fait l'axe de la deuxième microperforation avec la normale à la structure multicouche et dz désigne la plus grande dimension transversale de l'orifice par lequel ladite microperforation débouche sur la face externe de recto de la structure, mesurée perpendiculairement à l'axe de l'orifice. The second microperforation can partially cross the back layer, or even completely cross the back layer and lead to the second inner layer without penetrating or penetrating. The second microperforation can still completely cross the second inner layer and lead to the first inner layer without penetrating or penetrating, or even completely through the first inner layer and lead to the front layer without entering or entering or even cross entirely the structure. For thicknesses and and ez first and second given inner layers, the angles a and 13 can be chosen such that: and> dl / sin (a) and a 0 and / or ez> dz / sin (8) and R 0 where el denotes the thickness of the first inner layer, a denotes the angle made by the axis of the first microperforation with the normal to the multilayer structure and di denotes the largest transverse dimension of the orifice through which said microperforation opens on the outer face of the recto of the structure, measured perpendicularly to the axis of the orifice, and ez denotes the thickness of the second inner layer, R denotes the angle that the axis of the second microperforation makes with the normal to the multilayer structure and dz denotes the largest transverse dimension of the orifice through which said microperforation opens on the outer face of the recto of the structure, measured perpendicularly to the axis of the orifice.

Cela peut avantageusement permettre, notamment si l'une des première et deuxième microperforations est traversante oblique ou si elles définissent ensemble une microperforation traversante oblique, d'éviter que l'on puisse voir au travers de la structure via ladite microperforation observée en transvision. En outre, cela peut permettre d'éviter de voir la couleur de la couche interne la plus éloignée, sous incidence normale. This may advantageously allow, especially if one of the first and second microperforations is oblique through or if they together define an oblique through microperforation, to avoid that we can see through the structure via said microperforation observed in transvision. In addition, this may prevent the color of the innermost layer from being seen at normal incidence.

Pour une structure multicouche d'épaisseur totale donnée, les angles a et 13 peuvent ainsi être choisis tels que : eY + el+ ez + e' > dl / sin (a) + dz / sin (8) où er désigne l'épaisseur de la couche de recto et e' désigne l'épaisseur de la couche de verso. For a given total thickness multilayer structure, the angles a and 13 can thus be chosen such that: eY + el + ez + e '> dl / sin (a) + dz / sin (8) where er denotes the thickness of the front layer and e 'denotes the thickness of the back layer.

La structure peut encore comporter une couche interne intermédiaire, notamment une couche réfléchissante, séparant les première et deuxième couches internes. Selon l'un quelconque des modes de réalisation précédents, la structure peut comporter, outre les première et deuxième microperforations, une troisième microperforation traversant entièrement la structure multicouche, les première et deuxième microperforations étant non traversantes. La structure peut encore comporter au moins deux microperforations non coaxiales et se rejoignant à une extrémité commune et ayant des extrémités opposées disjointes. L'une de ces microperforations, voire les deux, peu(ven)t être la première microperforation et/ou la deuxième microperforation. En variante, il peut s'agir de microperforations distinctes des première et deuxième microperforations. Lesdites au moins deux microperforations non coaxiales peuvent s'étendre dans des directions faisant entre elles un angle y compris entre 20° et 90°. The structure may further comprise an intermediate inner layer, in particular a reflective layer, separating the first and second inner layers. According to any one of the preceding embodiments, the structure may comprise, in addition to the first and second microperforations, a third microperforation completely traversing the multilayer structure, the first and second microperforations being non-traversing. The structure may further comprise at least two non-coaxial microperforations that meet at a common end and have disjointed opposite ends. One or both of these microperforations may be the first microperforation and / or the second microperforation. As a variant, these may be distinct microperforations of the first and second microperforations. Said at least two non-coaxial microperforations may extend in directions forming between them an angle of between 20 ° and 90 °.

La structure peut encore comporter au moins trois microperforations non coaxiales se rejoignant à une extrémité commune et ayant des extrémités opposées disjointes. L'une de ces microperforations, voire deux, peu(ven)t être la première microperforation et/ou la deuxième microperforation. En variante, il peut s'agir de microperforations distinctes des première et deuxième microperforations. Au moins l'une des microperforations non coaxiales peut être normale à la structure de sécurité et les deux autres disposées symétriquement par rapport à l'axe de la première microperforation. La structure peut être recouverte par au moins une couche de protection transparente, recouvrant une extrémité des première ou deuxième microperforations. La ou les couche(s) interne(s) peut comporter un matériau guide d'onde, recevant de la lumière depuis une surface d'entrée de la lumière, notamment définie par un ajour à travers la couche de recto et/ou la couche de verso, ladite surface d'entrée étant distincte des première et deuxième microperforations. The structure may further comprise at least three non-coaxial microperforations joining at a common end and having opposite ends disjoint. One of these microperforations, or even two, may be the first microperforation and / or the second microperforation. As a variant, these may be distinct microperforations of the first and second microperforations. At least one of the non-coaxial microperforations may be normal to the security structure and the other two arranged symmetrically with respect to the axis of the first microperforation. The structure may be covered by at least one transparent protective layer, covering one end of the first or second microperforations. The inner layer (s) may comprise a waveguide material, receiving light from an input surface of the light, in particular defined by an aperture through the front layer and / or the layer. on the other hand, said entrance surface being distinct from the first and second microperforations.

Les couches de verso et de recto peuvent être au moins partiellement réfléchissantes, notamment métallisées. Selon un autre de ses aspects, l'invention concerne un article de sécurité, notamment un fil, un foil ou un patch, comportant une structure multicouche selon l'invention. The back and front layers can be at least partially reflective, especially metallized. According to another of its aspects, the invention relates to a security article, in particular a wire, a foil or a patch, comprising a multilayer structure according to the invention.

Selon encore un autre de ses aspects, l'invention concerne un document de sécurité constituant ou comportant une structure multicouche selon l'invention. D'une manière générale, le document de sécurité peut être un moyen de paiement, tel qu'un billet de banque, un chèque ou un ticket restaurant, un document d'identité, tel qu'une carte d'identité, un visa, un passeport ou un permis de conduire, un ticket de loterie, un titre de transport ou encore un ticket d'entrée à des manifestations culturelles ou sportives. Enfin, l'invention se rapporte à un procédé d'authentification d'un article ou d'un document de sécurité incorporant une structure multicouche selon l'invention, comportant les étapes suivantes : - observer le recto et le verso de l'article ou du document, - déterminer, sur la base au moins d'une comparaison des première et deuxième couleurs observées au travers des microperforations, l'authenticité de l'article ou du document de sécurité. L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'exemples de mise en oeuvre non limitatifs de celle-ci, et à l'examen du dessin annexé, sur lequel : - la figure 1 représente, en coupe, un exemple de structure multicouche selon l'invention, - les figures 2 à 15 et 24-25 sont des vues analogues à la figure 1 10 représentant des variantes de réalisation de la structure multicouche, - les figures 14a-14h illustrent la structure multicouche de la figure 14, vue sous différentes directions d'observation, en vue de face et en coupe, - les figures 16 à 18c représentent en coupe, schématiquement et partiellement, une microperforation, 15 - les figures 19 à 23 représentent des exemples de documents de sécurité selon l'invention, la figure 22 étant une vue en coupe de la figure 21. Sur les figures, les proportions réelles des différents éléments représentés n'ont pas toujours été respectées, dans un souci de clarté du dessin. Pour la même raison, les microperforations ont été représentées dans un même 20 plan de coupe, mais elles peuvent s'étendre dans des plans différents, notamment parallèles entre eux. Les éléments identiques ou similaires se retrouvant dans des modes de réalisation distincts ont été désignés sur les figures par un même numéro de référence. On a représenté à la figure 1 une structure multicouche 10 selon l'invention, 25 comportant au moins une couche de recto 1l, une couche de verso 12, et au moins une première couche interne 13 présentant une première couleur, située entre les couches 11 et 12. La structure 10 comporte également une première microperforation 20 réalisée à travers une région non transparente 11 a de la couche de recto 11 et une deuxième 30 microperforation 30 réalisée à travers une région non transparente 12a de la couche de verso 12. According to yet another of its aspects, the invention relates to a security document constituting or comprising a multilayer structure according to the invention. In general, the security document can be a means of payment, such as a bank note, a check or a restaurant ticket, an identity document, such as an identity card, a visa, a passport or a driving license, a lottery ticket, a ticket or a ticket for cultural or sporting events. Finally, the invention relates to a method of authenticating an article or a security document incorporating a multilayer structure according to the invention, comprising the following steps: - observe the front and back of the article or of the document, - determining, on the basis of at least a comparison of the first and second colors observed through the microperforations, the authenticity of the article or the security document. The invention will be better understood on reading the following detailed description, non-limiting examples of implementation thereof, and on examining the appended drawing, in which: FIG. in section, an example of a multilayer structure according to the invention, - Figures 2 to 15 and 24-25 are views similar to Figure 1 showing alternative embodiments of the multilayer structure, - Figures 14a-14h illustrate the multilayer structure of FIG. 14, seen in different viewing directions, in front view and in section, FIGS. 16 to 18c show in section, schematically and partially, a microperforation, FIGS. 19 to 23 represent examples. of security documents according to the invention, Figure 22 being a sectional view of Figure 21. In the figures, the actual proportions of the various elements shown have not always been respected, for the sake of clarity of the Essin. For the same reason, the microperforations have been represented in one and the same plane of section, but they can extend in different planes, in particular parallel to one another. Identical or similar elements found in separate embodiments have been designated in the figures by the same reference numeral. FIG. 1 shows a multilayer structure 10 according to the invention, comprising at least one recto layer 11, a backing layer 12, and at least a first inner layer 13 having a first color, located between the layers 11 and 12. The structure 10 also includes a first microperforation 20 made through a non-transparent region 11a of the front layer 11 and a second micro-perforation 30 made through a non-transparent region 12a of the back layer 12.

Avantageusement, pour une orientation convenable de la direction d'observation, confondue avec l'axe de la microperforation 20, la première couleur de la première couche interne 13 est visible côté recto de la structure 10, à travers l'orifice 21 par lequel la première microperforation 20 débouche sur la face 14 de la couche de recto 11, tandis qu'une deuxième couleur, différente de la première, est visible côté verso de la structure, à travers l'orifice 31 par lequel la deuxième microperforation 30 débouche sur la face externe 15 de la couche de verso 12. La deuxième couleur est celle d'une deuxième couche interne 16, située entre les couches de recto et de verso. Les première et deuxième couches internes 13 et 16 sont par exemple, comme illustré, accolées. Advantageously, for a proper orientation of the observation direction, coinciding with the axis of the microperforation 20, the first color of the first inner layer 13 is visible on the front side of the structure 10, through the orifice 21 through which the first microperforation 20 opens on the face 14 of the front layer 11, while a second color, different from the first, is visible on the back side of the structure, through the hole 31 through which the second microperforation 30 opens on the external face 15 of the back layer 12. The second color is that of a second inner layer 16, located between the front and back layers. The first and second inner layers 13 and 16 are for example, as illustrated, contiguous.

Par ailleurs, lorsque l'orientation de la direction d'observation est décalée par rapport à l'axe de la microperforation 20, de préférence la direction d'observation faisant un angle par rapport à l'axe de la microperforation 20 compris entre 10 et 30 degrés, la première couleur de la première couche interne 13 est visible sur les parois de la microperforation 20 côté recto de la structure 10, à travers l'orifice 21 par lequel la première microperforation 20 débouche sur la face 14 de la couche de recto 11. On comprend que le décalage entre la direction d'observation et l'axe de la microperforation offre une surface d'observation de la couche interne 13 qui est supérieure à celle observable dans le cas où la direction d'observation est confondue avec l'axe de la microperforation. En conséquence, la première couleur de la couche interne 13 est plus visible. De la même manière, la deuxième couleur, différente de la première, peut également être observée selon une direction d'observation décalée par rapport à l'axe de la microperforation 30 de sorte à obtenir une surface d'observation de la couche interne 16 qui est supérieure à celle observable dans le cas où la direction d'observation est confondue avec l'axe de la microperforation. En conséquence, la deuxième couleur de la couche interne 16 est plus visible. Dans l'exemple considéré, les microperforations 20 et 30 sont non traversantes et s'étendent obliquement suivant des directions différentes, faisant par exemple des angles respectifs a et 13 compris entre 30° et 80° avec la normale à la structure. La première microperforation 20 traverse entièrement la couche de recto 11 et son fond 22 est défini par la première couche interne 13. La deuxième microperforation 30 traverse entièrement la couche de verso 12 et son fond 32 est défini par la deuxième couche interne 16. Moreover, when the orientation of the observation direction is shifted with respect to the axis of the microperforation 20, preferably the viewing direction is at an angle to the axis of the microperforation 20 between 10 and 30 degrees, the first color of the first inner layer 13 is visible on the walls of the recto-side microperforation of the structure 10, through the orifice 21 through which the first microperforation 20 opens on the face 14 of the front layer 11. It is understood that the shift between the observation direction and the axis of the microperforation provides an observation surface of the inner layer 13 which is greater than that observable in the case where the observation direction is confused with the axis of microperforation. As a result, the first color of the inner layer 13 is more visible. In the same way, the second color, different from the first, can also be observed in an observation direction offset with respect to the axis of the microperforation 30 so as to obtain an observation surface of the inner layer 16 which is greater than that observable in the case where the direction of observation is coincident with the axis of the microperforation. As a result, the second color of the inner layer 16 is more visible. In the example considered, the microperforations 20 and 30 are non-traversing and extend obliquely in different directions, for example making respective angles α and 13 between 30 ° and 80 ° with the normal to the structure. The first microperforation 20 completely crosses the front layer 11 and its bottom 22 is defined by the first inner layer 13. The second microperforation 30 completely crosses the back layer 12 and its bottom 32 is defined by the second inner layer 16.

Les couches 11 et 12 de recto et de verso peuvent être constituées par des impressions ou par un revêtement rapporté ou couché sur le reste de la structure. Les couches 11 ou 12 peuvent encore être constituées par une métallisation ou un film laminé sur le reste de la structure. Elles peuvent présenter des épaisseurs respectives er et ev comprises entre 2 et 20 microns, étant par exemple voisine de 10microns. La première couche interne 13 peut être réalisée en matériau fibreux, par exemple du papier, ou en matériau synthétique, par exemple du polyester, présentant par exemple une couleur jaune en lumière visible. Elle peut présenter une épaisseur et comprise entre 20 microns et 70 microns, étant par exemple voisine de 50 microns. Layers 11 and 12 of front and back can consist of impressions or a coating reported or lying on the rest of the structure. The layers 11 or 12 may also be constituted by a metallization or a laminated film on the rest of the structure. They may have respective thicknesses e and ev of between 2 and 20 microns, being for example close to 10 microns. The first inner layer 13 may be made of fibrous material, for example paper, or synthetic material, for example polyester, having for example a yellow color in visible light. It may have a thickness and between 20 microns and 70 microns, being for example close to 50 microns.

La deuxième couche interne 16 peut être réalisée en matériau fibreux, par exemple du papier, ou en matériau synthétique, par exemple du polyester, présentant par exemple une couleur cyan. Elle peut présenter une épaisseur ez comprise entre 20 microns et 70microns, étant par exemple voisine de 50 microns. D'une façon générale, l'écart de couleur AE sous illuminant D65 entre les couleurs des couches internes 13 et 16 est par exemple supérieur ou égal à 2. La couleur de l'une des couches 13 et 16 est par exemple achromatique, comme le blanc ou le noir. Dans une variante, l'une au moins des couches 13 et 16 est luminescente, par exemple phosphorescente ou fluorescente. Dans ce cas, l'observation des couches internes doit être effectuée au moyen d'une source lumineuse émettant un rayonnement par exemple dans une gamme de longueurs d'ondes correspondant aux ultraviolets ou aux infrarouges. Selon cet agencement, il est également préférable que les couches externes recto / verso 11 et 12 soient opaques à la lumière émise par les couches 13 et 16. Les couches 13 et 16 peuvent avoir des couleurs de luminescence différentes. D'une façon générale, les microperforations peuvent être réalisées à l'aide d'un laser ou de micro aiguilles, ou par jet d'eau. De préférence, les microperforations sont réalisées après assemblage de toutes les couches entre elles lorsqu'elles ne traversent pas complètement l'une des couches. A contrario, lorsqu'une microperforation est destinée à traverser complètement une des couches, il est préférable de réaliser la perforation préalablement à l'assemblage des couches. The second inner layer 16 may be made of fibrous material, for example paper, or of synthetic material, for example polyester, having for example a cyan color. It may have a thickness ez of between 20 microns and 70 microns, being for example close to 50 microns. In general, the color difference AE under illuminant D65 between the colors of the inner layers 13 and 16 is, for example, greater than or equal to 2. The color of one of the layers 13 and 16 is, for example, achromatic, as white or black. In a variant, at least one of the layers 13 and 16 is luminescent, for example phosphorescent or fluorescent. In this case, the observation of the inner layers must be performed by means of a light source emitting radiation for example in a wavelength range corresponding to ultraviolet or infrared. According to this arrangement, it is also preferable that the recto / verso outer layers 11 and 12 are opaque to the light emitted by the layers 13 and 16. The layers 13 and 16 may have different colors of luminescence. In general, the micro-perforations may be carried out using a laser or micro-needles, or by water jet. Preferably, the microperforations are made after all the layers are assembled together when they do not completely pass through one of the layers. Conversely, when a microperforation is intended to completely cross one of the layers, it is preferable to perform the perforation prior to assembling the layers.

Les microperforations peuvent présenter une plus grande section transversale inférieure ou égale à 0,1 mm2, par exemple de l'ordre de 0,002 mm2. Dans les exemples illustrés, les microperforations présentent une section transversale circulaire, mais l'invention n'est pas limitée à une section particulière. La section peut être constante ou variable. La structure de la figure 1 offre une sécurité de premier niveau à l'utilisateur en ce qu'elle permet à celui-ci d'observer deux couleurs différentes au verso et au recto, au niveau des microperforations, pour une orientation convenable de la direction d'observation. Sur la figure 1, les couches 11 et 12 apparaissent homogènes et couvrant entièrement les couches sous-jacentes, mais dans une variante les couches 11 et 12 peuvent ne couvrir qu'une parties des couches sous-jacentes, étant par exemple absentes ou transparentes à une certaine distance des microperforations, comme illustré sur la figure suivante. La structure multicouche représentée sur la figure 2 diffère de celle de la figure 1 en ce que les première et deuxième microperforations 20 et 30 débouchent respectivement, sans y pénétrer, sur les première et deuxième couches internes 13 et 16. The microperforations may have a larger cross section less than or equal to 0.1 mm 2, for example of the order of 0.002 mm 2. In the illustrated examples, the microperforations have a circular cross section, but the invention is not limited to a particular section. The section can be constant or variable. The structure of Figure 1 provides a first level of security to the user in that it allows the user to observe two different colors on the back and front, at the microperforations, for a proper orientation of the direction observation. In FIG. 1, the layers 11 and 12 appear homogeneous and completely cover the underlying layers, but in a variant the layers 11 and 12 may cover only a part of the underlying layers, being, for example, absent or transparent to the underlying layers. a certain distance from the microperforations, as shown in the following figure. The multilayer structure shown in FIG. 2 differs from that of FIG. 1 in that the first and second microperforations 20 and 30 respectively open, without penetrating, onto the first and second inner layers 13 and 16.

Cette variante présente l'avantage suivant : si la surface externe de la couche 13 par exemple, qui est en contact avec la couche 11, est colorée, fluo ou métallique, l'effet au niveau du fond 22 de la microperforation sera d'autant plus visible . La structure multicouche illustrée à la figure 3 diffère de celle de la figure 1 notamment en ce que la première microperforation 20 traverse entièrement la première couche interne 13 et débouche, sans y pénétrer, sur la deuxième couche interne 16. La deuxième microperforation 30 traverse entièrement la deuxième couche interne 16, et débouche, sans y pénétrer, sur la première couche interne 13. Si les faces des couches internes 13 et/ou 16, qui sont en contact, présentent un aspect différent, par exemple ont une surface colorée, fluo ou métallique, une différence est constatée lors de l'observation recto/verso. De plus, on a illustré sur la figure 3 la possibilité pour les différentes couches d'être en vue de dessus, de dimensions différentes. Par exemple, la couche interne 13 sur la figure 3 peut appartenir à un substrat fibreux et la couche interne 16 à un élément rapporté sur ce substrat fibreux, tel qu'un patch, foil ou fil de sécurité. This variant has the following advantage: if the outer surface of the layer 13 for example, which is in contact with the layer 11, is colored, fluo or metallic, the effect at the bottom 22 of the microperforation will be all more visible . The multilayer structure illustrated in FIG. 3 differs from that of FIG. 1 in particular in that the first microperforation 20 completely traverses the first inner layer 13 and opens, without penetrating, onto the second inner layer 16. The second microperforation 30 passes entirely through the second inner layer 16, and opens, without penetrating, on the first inner layer 13. If the faces of the inner layers 13 and / or 16, which are in contact, have a different appearance, for example have a colored surface, fluo or metallic, a difference is noted during the observation recto / verso. In addition, FIG. 3 illustrates the possibility for the different layers to be seen from above, of different dimensions. For example, the inner layer 13 in FIG. 3 may belong to a fibrous substrate and the inner layer 16 to an insert element on this fibrous substrate, such as a patch, foil or safety thread.

On a représenté sur la figure 16 une première microperforation 20, dans le cas où celle-ci est oblique d'angle a relativement à la normale à la structure et traverse de part en part la première couche interne 13. Cette figure illustre le cas limite où l'épaisseur el de la première couche est égale à une épaisseur minimale elmin qui empêche de voir à travers la première microperforation ou de voir la couleur d'une couche interne sous-jacente, en observation normale. Cette épaisseur minimale elmin est calculée en fonction de la plus grande dimension transversale dl de l'un des orifices de la première microperforation, mesurée perpendiculairement à l'axe de l'orifice, et de l'angle a que fait cette microperforation avec la normale locale, de sorte que : elmin = dl / sin (a) avec a0. L'épaisseur et de la première couche 13 est de préférence supérieure ou égale à et min. FIG. 16 shows a first microperforation 20, in the case where the latter is oblique of angle α relative to the normal to the structure and passes right through the first inner layer 13. This figure illustrates the limiting case where the thickness el of the first layer is equal to a minimal thickness elmin which prevents to see through the first microperforation or to see the color of an underlying inner layer, under normal observation. This minimum thickness elmin is calculated as a function of the largest transverse dimension dl of one of the orifices of the first microperforation, measured perpendicularly to the axis of the orifice, and of the angle α that this microperforation makes with the normal local, so that: elmin = dl / sin (a) with a0. The thickness and the first layer 13 is preferably greater than or equal to and min.

De même, on a représenté à la figure 17 une deuxième microperforation 30, dans le cas où celle-ci est oblique d'angle R relativement à la normale à la structure et traverse de part en part la deuxième couche. Cette figure illustre le cas limite où l'épaisseur e2 de la deuxième couche est égale à une épaisseur minimale e2min qui empêche de voir à travers la deuxième microperforation ou de voir la couleur d'une couche interne sus- jacente, en observation normale. Cette épaisseur minimale e2min est calculée en fonction de la plus grande dimension transversale d2 de l'un des orifices de la deuxième microperforation, mesurée perpendiculairement à l'axe de l'orifice, et de l'angle R que fait cette microperforation avec la normale locale, de sorte que : e2min = d2 / sin (13) avec P0. Similarly, there is shown in Figure 17 a second microperforation 30, in the case where the latter is oblique R angle relative to the normal to the structure and passes right through the second layer. This figure illustrates the limit case where the thickness e2 of the second layer is equal to a minimum thickness e2min which prevents to see through the second microperforation or to see the color of an overlying internal layer, under normal observation. This minimum thickness e2min is calculated as a function of the largest transverse dimension d2 of one of the orifices of the second microperforation, measured perpendicularly to the axis of the orifice, and of the angle R that this microperforation makes with the normal local, so that: e2min = d2 / sin (13) with P0.

L'épaisseur e2 de la deuxième couche 16 est de préférence supérieure ou égale a e2min. Selon la variante illustrée à la figure 4, la structure multicouche 10 diffère de celle de la figure 1 en ce que la première microperforation 20 traverse entièrement la première couche interne 13 et pénètre dans la deuxième couche interne 16 sans la traverser, débouchant en son sein. Cela peut par exemple permettre d'observer du côté de la couche de recto 11, au travers de l'orifice 21 de la première microperforation 20, une couleur supplémentaire, en l'espèce celle de la deuxième couche interne 16, lorsque l'on observe sensiblement dans l'axe de la microperforation. On a illustré sur cette figure la possibilité pour la deuxième microperforation 30 d'être orientée normalement à la structure. On a également illustré la possibilité qu'au moins l'une des microperforations soit remplie d'un matériau ou d'un fluide autre que l'air, translucide ou transparent, par exemple une résine transparente, un traitement de surface tel que décrit dans le document EP1319104 ou encore un vernis. Selon la variante illustrée à la figure 5, la structure multicouche 10 diffère de celle de la figure 3 en ce que les première et deuxième microperforations 20 et 30 communiquent entre elles, se rejoignant à l'interface entre les première et deuxième couches internes 13 et 16. Une telle réalisation est difficile à reproduire par un contrefacteur. Selon la variante illustrée à la figure 6, la structure multicouche diffère de celle de la figure 5 en ce que les première et deuxième microperforations 20 et 30 sont de même axe, étant par exemple de sections transversales identiques et constantes. Ainsi, les première et deuxième microperforations 20 et 30 définissent ensemble une unique microperforation traversante franchissant obliquement de part en part la structure multicouche 10. Une telle réalisation ajoute une possibilité d'observer les microperforations en lumière transmise. The thickness e2 of the second layer 16 is preferably greater than or equal to e2min. According to the variant illustrated in Figure 4, the multilayer structure 10 differs from that of Figure 1 in that the first microperforation 20 completely through the first inner layer 13 and enters the second inner layer 16 without passing through it, opening therein . This may for example make it possible to observe, on the side of the front layer 11, through the orifice 21 of the first microperforation 20, an additional color, in this case that of the second inner layer 16, when one observes substantially in the axis of the microperforation. This figure illustrates the possibility for the second microperforation to be oriented normally to the structure. It has also been illustrated that at least one of the microperforations may be filled with a material or a fluid other than air, translucent or transparent, for example a transparent resin, a surface treatment as described in FIG. EP1319104 or a varnish. According to the variant illustrated in FIG. 5, the multilayer structure 10 differs from that of FIG. 3 in that the first and second microperforations 20 and 30 communicate with each other, meeting at the interface between the first and second inner layers 13 and 16. Such an achievement is difficult to reproduce by a counterfeiter. According to the variant illustrated in Figure 6, the multilayer structure differs from that of Figure 5 in that the first and second microperforations 20 and 30 are of the same axis, for example of identical and constant cross sections. Thus, the first and second microperforations 20 and 30 together define a single through microperforation obliquely crossing the multilayer structure 10 from one end to the other. Such an embodiment adds a possibility of observing the microperforations in transmitted light.

On a représenté partiellement sur la figure 18a à échelle agrandie la microperforation traversante de la figure 6. Au sein de celle-ci, la première microperforation 20 fait un angle a avec la normale à la structure et présente un orifice de plus grande section transversale dl, mesurée perpendiculairement à l'axe de l'orifice. La deuxième microperforation 30 fait un angle 13 avec la normale à la structure et présente un orifice de plus grande section transversale dz, mesurée perpendiculairement à l'axe de l'orifice. Les première et deuxième microperforations sont de même axe, de sections identiques et constantes dans l'exemple considéré, a=R et dl =dz, mais il peut en être autrement. La structure présente une épaisseur totale E, la première couche interne 13 présentant une épaisseur el, la deuxième couche interne 16 une épaisseur ez, la couche de recto 11 une épaisseur er et la couche de verso 12 une épaisseur e,,. L'épaisseur totale des couches internes 13 et 16 est notée e. De préférence, on a er + e + e' > dl / sin (a) + dz l sin (13), de sorte à empêcher que l'on puisse voir à travers la structure par la microperforation traversante en observation 30 normale. Dans le cas particulier illustré à la figure 18c où a R et où la première microperforation 20 s'étend sur l'épaisseur er + el et la deuxième sur e, + ez, D étant la dimension des microperforations mesurée parallèlement au plan de la microstructure, ev, er et a étant fixés, on peut avoir R > tg-1 (D - (e. + e».tgoc ), pour éviter de voir à travers la (e,+ ez) structure. On a illustré à la figure 18b le cas où la structure ne comporte qu'une couche interne, en l'espèce la couche 13 d'épaisseur el. De préférence on a E > eY + et + e' > dl / sin (a) et/ou E > eY + et + e' > dz / sin (8). L'épaisseur totale E de la structure peut être comprise entre 20 microns et 500 microns, étant par exemple voisine de 100 microns. Dans la variante illustrée à la figure 7, la structure multicouche comporte une ou plusieurs couches intermédiaires 40, s'étendant entre les première et deuxième couches internes 13 et 16, par exemple une unique couche intermédiaire 40 attenante à celles-ci. La ou les couches intermédiaires 40 peuvent être opaques ou transparentes, l'une d'entre elles étant par exemple réfléchissante. La couche réfléchissante peut avantageusement permettre d'augmenter la quantité de lumière dans la perforation et notamment lors de l'observation des parois de la perforation. La ou les couches intermédiaires 40 peu(ven)t servir à assembler les couches internes 13 et 16, comportant par exemple un adhésif. Les première et deuxième microperforations 20 et 30 débouchent sur la couche intermédiaire 40, sans y pénétrer. Les fonds 22 et 32 des première et deuxième microperforations peuvent par exemple, comme illustré, être disposés en regard l'un de l'autre de part et d'autre de la couche intermédiaire, l'orifice 21 de la première microperforation 20 côté recto étant par exemple aligné avec l'orifice 31 de la deuxième microperforation 30 côté verso, de sorte à donner l'illusion d'une unique perforation lorsque l'on observe tour à tour le recto et le verso de la structure. La structure multicouche 10 peut en outre comporter d'autres microperforations, par exemple une perforation oblique 41 traversant de part en part la structure, y compris la couche intermédiaire 40, débouchant sur la face externe 14 de la couche de recto 11 par un orifice 42 et sur la face externe 15 de la couche de verso 12 par un orifice 43. L'exemple de la figure 8 reprend la structure 10 de la figure 7, les première et 30 deuxième couches internes 13 et 16 comportant chacune un matériau collecteur de lumière du type « guide d'onde », par exemple un film luminescent à base de polycarbonate commercialisé par la société BAYER sous la dénomination USA®. La présence du matériau « guide d'onde » est avantageuse en ce qu'elle permet de mieux distinguer les couleurs renvoyées par les première et deuxième couches internes 13 et 16 au travers des microperforations 20, 30 et 41. Le matériau guide d'onde des couches 13 et 16 peut comporter des matériaux luminescents. Les couches de recto et de verso 11 et 12 comportent des ajours respectifs 51 et 52, distincts des orifices 21, 31, 42 et 43 des microperforations, définissant des surfaces d'entrée de la lumière. Les couches 11 et 12 peuvent être réfléchissantes, afin d'accentuer l'effet « guide d'onde ». Dans l'exemple considéré, les microperforations 20, 30 et 41 sont obliques, mais elles pourraient être normales à la structure, comme illustré à la figure 9. La lumière qui pénètre par les surfaces d'entrée 51 et 52 se propage dans les couches 13 et 16 et ressort par les microperforations. Ainsi, lors de la mise en oeuvre du procédé d'authentification, l'utilisateur illumine les ajours 51 et/ou 52 et observe la lumière sortant des microperforations. Selon la variante illustrée à la figure 10, les première et deuxième microperforations 20 et 30 sont traversantes et convergentes, se rejoignant à une extrémité commune, en l'espèce un même orifice 60, et ont des extrémités opposées disjointes, en l'espèce les orifices 21 et 31. Ainsi, les microperforations 20 et 30 débouchent d'une part à l'extérieur de la couche de recto 11 par l'orifice 60 et d'autre part à l'extérieur de la couche de verso 12 par les orifices 21 et 31. Les première et deuxième microperforations 20 et 30 s'étendent par exemple dans des directions faisant entre elles un angle y compris entre20° et 90°. Selon la variante illustrée à la figure 1l, la structure multicouche 10 comporte, outre les première et deuxième microperforations 20 et 30 de la figure 1, deux microperforations convergentes 20' et 30' analogues aux microperforations 20 et 30 décrites en relation avec la figure 10. Selon la variante illustrée à la figure 12, on a représenté une structure multicouche 10 dans laquelle les première et deuxième microperforations 20 et 30 sont traversantes, convergentes et communiquent avec une troisième microperforation 70, les trois microperforations étant non coaxiales, se rejoignant à une extrémité commune, en l'espèce un même orifice 72, et ayant des extrémités opposées disjointes, en l'espèce les orifices 21, 31 et 71. Les microperforations débouchent d'une part à l'extérieur de la couche de recto 11 par l'orifice 72, et d'autre part à l'extérieur de la couche de verso 12 par les orifices 21, 31 et 71. L'écart angulaire maximal y entre les microperforations, en l'espèce les première et deuxième microperforations 20 et 30, est de préférence compris entre 20° et90°. Dans l'exemple considéré, la troisième microperforation 70 est normale à la structure de sécurité 10 et les première et deuxième microperforations 20 et 30 sont disposées symétriquement par rapport à l'axe de la troisième microperforation 70, mais il peut en être autrement. Par exemple, on peut agencer les trois microperforations selon trois angles différents, non nuls relativement à la normale à la structure, de façon à ce que les microperforations ne soient par repérables en observation normale. Dans l'exemple de mise en oeuvre de l'invention illustré à la figure 13, on a représenté une structure 10 telle que celle décrite en relation avec la figure 12, dans laquelle les couches de recto 11 et de verso 12 sont recouvertes par des couches de protection transparentes 80 et 90 obturant les orifices 21, 31, 71, 72 des microperforations. The microperforation of FIG. 6 is partly shown in FIG. 18a on an enlarged scale. Within it, the first microperforation 20 forms an angle α with the normal to the structure and has an orifice of larger cross-section. , measured perpendicular to the axis of the orifice. The second microperforation 30 makes an angle 13 with the normal to the structure and has a larger cross section orifice dz, measured perpendicular to the axis of the orifice. The first and second microperforations are of the same axis, of identical and constant sections in the example considered, a = R and dl = dz, but it may be otherwise. The structure has a total thickness E, the first inner layer 13 having a thickness e1, the second inner layer 16 having a thickness ez, the front layer 11 having a thickness e 1 and the backing layer 12 having a thickness e 1. The total thickness of the inner layers 13 and 16 is denoted e. Preferably, we have e + e + e '> dl / sin (a) + dz l sin (13), so as to prevent one from seeing through the structure through the through microperforation in normal observation. In the particular case illustrated in FIG. 18c where a R and where the first microperforation 20 extends over the thickness er + el and the second over e, + ez, D being the dimension of the microperforations measured parallel to the plane of the microstructure , ev, er and a being fixed, we can have R> tg-1 (D - (e. + e ».tgoc), to avoid seeing through the (e, + ez) structure. FIG 18b the case where the structure comprises only an inner layer, in this case the layer 13 of thickness el, preferably E> eY + and + e '> dl / sin (a) and / or E > eY + and + e '> dz / sin (8) The total thickness E of the structure may be between 20 microns and 500 microns, being for example close to 100 microns. the multilayer structure comprises one or more intermediate layers 40, extending between the first and second inner layers 13 and 16, for example a single intermediate layer 40 The intermediate layer (s) 40 may be opaque or transparent, one of them being for example reflective. The reflective layer may advantageously make it possible to increase the quantity of light in the perforation and in particular during the observation of the walls of the perforation. The intermediate layer or layers 40 may be used to assemble the inner layers 13 and 16, comprising for example an adhesive. The first and second microperforations 20 and 30 open on the intermediate layer 40, without penetrating. The bottoms 22 and 32 of the first and second microperforations may for example, as illustrated, be placed facing each other on either side of the intermediate layer, the orifice 21 of the first microperforation 20 front side for example, being aligned with the orifice 31 of the second microperforation 30 on the back side, so as to give the illusion of a single perforation when we observe in turn the front and back of the structure. The multilayer structure 10 may also comprise other microperforations, for example an oblique perforation 41 passing right through the structure, including the intermediate layer 40, opening on the external face 14 of the front layer 11 by an orifice 42 and on the outer face 15 of the backing layer 12 by an orifice 43. The example of FIG. 8 shows the structure 10 of FIG. 7, the first and second inner layers 13 and 16 each comprising a light-collecting material of the "waveguide" type, for example a luminescent film based on polycarbonate marketed by the company BAYER under the name USA®. The presence of the "waveguide" material is advantageous in that it makes it possible to better distinguish the colors returned by the first and second inner layers 13 and 16 through microperforations 20, 30 and 41. The waveguiding material layers 13 and 16 may comprise luminescent materials. The front and back layers 11 and 12 comprise respective openings 51 and 52, distinct from the orifices 21, 31, 42 and 43 of the microperforations, defining light entry surfaces. The layers 11 and 12 may be reflective, in order to accentuate the "waveguide" effect. In the example considered, the microperforations 20, 30 and 41 are oblique, but they could be normal to the structure, as shown in FIG. 9. The light that enters through the entry surfaces 51 and 52 propagates in the layers 13 and 16 and emerges through the microperforations. Thus, during the implementation of the authentication method, the user illuminates the openings 51 and / or 52 and observes the light emerging from the microperforations. According to the variant illustrated in FIG. 10, the first and second microperforations 20 and 30 are traversing and converging, joining at a common end, in this case a same orifice 60, and have opposite ends disjoint, in this case the orifices 21 and 31. Thus, the microperforations 20 and 30 open on the one hand outside the recto layer 11 through the orifice 60 and on the other hand outside the back layer 12 through the orifices. 21 and 31. The first and second microperforations 20 and 30 extend for example in directions forming between them an angle between 20 ° and 90 °. According to the variant illustrated in FIG. 11, the multilayer structure 10 comprises, besides the first and second microperforations 20 and 30 of FIG. 1, two convergent microperforations 20 'and 30' similar to the microperforations 20 and 30 described with reference to FIG. 10 According to the variant illustrated in FIG. 12, there is shown a multilayer structure 10 in which the first and second microperforations 20 and 30 are through, convergent and communicate with a third microperforation 70, the three microperforations being non-coaxial, joining at a common end, in this case a same orifice 72, and having disjointed opposite ends, in this case the orifices 21, 31 and 71. The microperforations open on the one hand on the outside of the front layer 11 by the orifice 72, and secondly outside the backing layer 12 through the orifices 21, 31 and 71. The maximum angular difference y between the microperforations s, in this case the first and second microperforations 20 and 30, is preferably between 20 ° and 90 °. In the example considered, the third microperforation 70 is normal to the safety structure 10 and the first and second microperforations 20 and 30 are arranged symmetrically with respect to the axis of the third microperforation 70, but it may be otherwise. For example, the three microperforations can be arranged according to three different angles, which are non-zero relative to the normal to the structure, so that the microperforations are not detectable under normal observation. In the exemplary embodiment of the invention illustrated in FIG. 13, there is shown a structure 10 such as that described with reference to FIG. 12, in which the front 11 and back 12 layers are covered by transparent protective layers 80 and 90 closing the orifices 21, 31, 71, 72 of the microperforations.

Dans l'exemple considéré, les couches 80 et 90 recouvrent intégralement les deux faces 14 et 15 de la structure 10. En variante, les couches 80 et 90 peuvent ne recouvrir que partiellement la structure dans le voisinage des orifices des microperforations, de façon à les obturer. Une couche de protection transparente 80 ou 90 n'est pas liée spécifiquement à ce mode de réalisation et peut recouvrir la structure multicouche 10 selon l'un quelconque des modes de réalisation précédemment décrits, ou illustrés par la suite. On a représenté sur la figure 14 un exemple de structure multicouche 10 selon l'invention, comportant une pluralité d'ensembles Gi, G' de microperforations traversantes obliques pi...p,,. Chaque ensemble Gi, G2...G,, comporte des microperforations pi s'étendant parallèlement suivant une même direction Xi. Les directions Xi, X2, ... X' des n ensembles Gi, ... G' par rapport à la normale sont de préférence distinctes les unes des autres, comme illustré. Par exemple, le premier ensemble Gi peut comporter au moins trois microperforations pi s'étendant suivant une direction faisant un angle bi avec la normale, le deuxième ensemble Gz peut comporter au moins trois microperforations pz s'étendant suivant une direction faisant un angle 82 avec la normale, et le énième ensemble G' peut comporter au moins trois microperforations p' s'étendant suivant une direction faisant un angle 8n avec la normale. In the example considered, the layers 80 and 90 completely cover the two faces 14 and 15 of the structure 10. In a variant, the layers 80 and 90 may only partially cover the structure in the vicinity of the orifices of the microperforations, so as to to seal them. A transparent protective layer 80 or 90 is not specifically related to this embodiment and may cover the multilayer structure 10 according to any of the previously described embodiments, or illustrated thereafter. FIG. 14 shows an example of multilayer structure 10 according to the invention, comprising a plurality of sets Gi, G 'of oblique through microperforations pi ... p ,,. Each set Gi, G2 ... G ,, comprises micro-perforations pi extending parallel in the same direction Xi. The directions X 1, X 2,..., X 'of the n sets G 1,... G' with respect to the normal are preferably distinct from each other, as illustrated. For example, the first set Gi may comprise at least three microperforations pi extending in a direction forming a bi angle with the normal, the second set Gz may comprise at least three microperforations pz extending in a direction making an angle 82 with the normal, and the uth set G 'may comprise at least three microperforations p' extending in a direction at an angle 8n with the normal.

Les angles 81, 82, ...8' peuvent avantageusement être choisis en respectant la relation 81<81<...<8n, avec les différents ensembles G1, ... G' se succédant dans une direction, par exemple de gauche à droite dans l'exemple de la figure 14. Cet ordonnancement peut permettre, lors de l'observation de la structure en transvision et en faisant varier continûment l'angle de la direction d'observation, de créer une impression de mouvement car l'intensité lumineuse maximale issue des microperforations passe successivement par les différents ensembles lorsque l'angle d'observation change. Lorsque les couleurs observées au sein des microperforations changent d'un ensemble de microperforations à l'autre, l'impression de mouvement peut se cumuler avec un effet de changement de couleur. On a représenté sur les figures 14a à 14h un exemple de structure multicouche 10 ayant une disposition des microperforations similaire à celle de la figure 14, observée selon différentes directions d'observations. La structure 10 comporte ici trois ensembles G1, Gz et G3 de microperforations, ces ensembles étant par exemple agencés de manière à former trois motifs adjacents, en l'espèce les lettres AWS, visibles en vue de face de la structure. L'ensemble G1 comporte des microperforations pi s'étendant parallèlement suivant une même direction Xi faisant un angle 81 avec la normale, et débouchant par des orifices o i sur la face externe 14 de la couche de verso 11, comme illustré sur la figure 14b. The angles 81, 82,... 8 'can advantageously be chosen respecting the relation 81 <81 <... <8n, with the different sets G1, ... G' succeeding one another in a direction, for example on the left on the right in the example of Figure 14. This scheduling can allow, during the observation of the structure in transvision and by continuously varying the angle of the direction of observation, to create an impression of movement because the Maximum luminous intensity resulting from microperforations passes successively through the different sets when the observation angle changes. When the colors observed in the microperforations change from one set of microperforations to the other, the impression of movement can be combined with a color change effect. FIGS. 14a to 14h show an example of a multilayer structure 10 having a microperforation arrangement similar to that of FIG. 14, observed along different directions of observation. The structure 10 here comprises three sets G1, Gz and G3 of microperforations, these sets being for example arranged to form three adjacent patterns, in this case the letters AWS, visible in front view of the structure. The assembly G1 comprises microperforations pi extending parallel in the same direction X at an angle 81 with the normal, and opening through orifices o i on the outer face 14 of the back layer 11, as shown in Figure 14b.

L'ensemble Gz comporte des microperforations pz s'étendant parallèlement suivant une même direction Xz faisant un angle 82 avec la normale, et débouchant par des orifices oz sur la face externe 14, comme illustré sur la figure 14£ L'ensemble G3 comporte des microperforations p3 s'étendant parallèlement suivant une même direction X3 faisant un angle b3 avec la normale, et débouchant par des orifices o3 sur la face externe 14, comme illustré sur la figure 14h. Les angles 81, 82, b3 sont choisis tels que 81<82<b3. La structure 10 représentée sur les figures 14a et 14b correspond à une observation en transvision, suivant une première direction d'observation coïncidant sensiblement avec la direction Xi du premier ensemble G1 de microperforations. Le motif A formé par les microperforations pi du premier ensemble apparaît ainsi lumineux tandis que les motifs W et S formés par les microperforations pz, p3 des deuxième et troisième ensembles Gz et G3 apparaissent relativement obscurs, comme illustré sur la figure 14a. The assembly Gz comprises microperforations pz extending parallel in the same direction Xz at an angle 82 with the normal, and opening through orifices oz on the outer face 14, as illustrated in FIG. 14. The assembly G3 comprises microperforations p3 extending parallel in the same direction X3 making an angle b3 with the normal, and opening through orifices o3 on the outer face 14, as shown in Figure 14h. Angles 81, 82, b3 are chosen such that 81 <82 <b3. The structure 10 represented in FIGS. 14a and 14b corresponds to an observation in transvision, according to a first direction of observation substantially coinciding with the direction Xi of the first set G1 of microperforations. The pattern A formed by the pi microperforations of the first set thus appears bright whereas the patterns W and S formed by the microperforations pz, p3 of the second and third sets Gz and G3 appear relatively obscure, as illustrated in FIG. 14a.

La même structure 10, représentée sur les figures 14c et 14d, est observée en transvision suivant une deuxième direction d'observation, différente des directions Xi, X2, X3 des trois ensembles, par exemple selon la normale à la structure 10, comme illustré sur la figure 14d. Les trois motifs AWS apparaissent alors obscurs, comme illustré sur la figure 14c. Lorsque la structure 10 est observée en transvision suivant une troisième direction d'observation correspondant sensiblement à la direction Xz du deuxième ensemble Gz de microperforations, comme illustré sur la figure 14f, les motifs A et S formés par les microperforations pi, p3 des premier et troisième ensembles Gi, G3 apparaissent obscurs et celui W formé par les microperforations pz du deuxième ensemble Gz apparaît lumineux, comme illustré sur la figure 14e. Enfin, lorsque la structure 10 est observée en transvision suivant une quatrième direction d'observation correspondant sensiblement à la direction X3 du troisième ensemble G3 de microperforations, comme illustré sur la figure 14h, les motifs A et W formés par les microperforations pi, pz du premier et deuxième ensembles Gi, Gz apparaissent relativement obscurs et le motif S formé par les microperforations p3 du troisième ensemble G3 apparaît lumineux, comme illustré sur la figure 14g. Ainsi, lorsque l'on fait varier la direction d'observation en balayant continûment l'intervalle [81;(82 ; 83] les lettres AWS apparaissent tour à tour lumineuses puis obscures, donnant l'impression d'être animées d'un mouvement. Un tel procédé peut être utile pour déterminer l'authenticité de la structure, notamment lorsque celle-ci est incorporée dans un document de sécurité. On a représenté à la figure 15 une variante de structure multicouche 10 conforme à l'invention, dans laquelle la structure multicouche comporte outre les couches précitées une troisième couche interne 18 et une quatrième couche interne 19 accolées, par exemple présentant respectivement une troisième et une quatrième couleur, situées entre les première et deuxième couches internes 13 et 16. La structure présente une pluralité de microperforations non traversantes, définissant par exemple plusieurs ensembles de microperforations Ui, U2, U distincts, au nombre de six dans l'exemple illustré. Les microperforations d'un même ensemble Ui sont orientées suivant une même direction. Au sein d'un même ensemble U,, au moins deux, voire toutes les microperforations peuvent déboucher dans des couches distinctes, comme tel est le cas notamment des microperforations 100 et 101 ou dans une même couche, comme tel est le cas notamment des microperforations 102 et 103, afin par exemple de créer des effets coloriels différents. L'inclinaison propre à chaque ensemble de microperforations peut en outre permettre d'obtenir des effets coloriels changeant selon l'angle d'observation des microperforations. The same structure 10, shown in FIGS. 14c and 14d, is observed in transvision along a second direction of observation, different from the directions X 1, X 2, X 3 of the three sets, for example according to the normal to structure 10, as illustrated in FIG. Figure 14d. The three AWS patterns then appear dark, as shown in Figure 14c. When the structure 10 is observed in transvision along a third direction of observation substantially corresponding to the direction Xz of the second set Gz microperforations, as shown in Figure 14f, the patterns A and S formed by the microperforations pi, p3 of the first and third sets Gi, G3 appear obscure and that W formed by the microperforations pz of the second set Gz appears bright, as shown in Figure 14e. Finally, when the structure 10 is observed in transvision along a fourth direction of observation substantially corresponding to the direction X3 of the third set G3 of microperforations, as illustrated in FIG. 14h, the patterns A and W formed by the microperforations pi, pz of first and second sets Gi, Gz appear relatively obscure and the pattern S formed by the microperforations p3 of the third set G3 appears bright, as illustrated in Figure 14g. Thus, when the direction of observation is varied by continuously scanning the interval [81; (82; 83], the letters AWS appear alternately luminous and then obscure, giving the impression of being animated by a movement Such a method may be useful for determining the authenticity of the structure, especially when it is incorporated in a security document. [0028] FIG. 15 shows an alternative multilayer structure 10 according to the invention, in which the multilayer structure comprises, in addition to the aforementioned layers, a third inner layer 18 and a fourth inner layer 19 contiguous, for example having respectively a third and a fourth color, located between the first and second inner layers 13 and 16. The structure has a plurality of non-through microperforations, defining for example several sets of microperforations Ui, U2, U distinct, six in the example illu The microperforations of the same set Ui are oriented in the same direction. Within the same set U ,, at least two, or all, of the microperforations can lead into distinct layers, as is the case in particular with microperforations 100 and 101 or in the same layer, as is the case in particular with microperforations. 102 and 103, for example to create different color effects. The inclination specific to each set of microperforations can furthermore make it possible to obtain color effects that vary according to the angle of observation of the microperforations.

Dans un exemple de réalisation non illustré, la structure 10 comporte plusieurs ensembles G1, ... G' de microperforations, toutes les microperforations p; d'un même ensemble G; ayant une même inclinaison Si et aboutissant dans une même couche interne, toutes les microperforations d'au moins un autre ensemble Gi et de préférence celles de tous les autres ensembles aboutissant à des couches internes respectives différentes. Ainsi, lorsque les couches internes sont de couleurs différentes on peut observer un changement de couleur lorsque l'angle d'observation change. Une structure multicouche 10 selon l'invention peut ne comporter qu'une seule couche interne 13, située entre les couches de recto 11 et de verso 12, comme illustré sur la figure 24, par exemple si les faces opposées de la couche 13 présentent des matériaux phosphorescents ou fluorescents différents. Par exemple, la première microperforation 20 s'étend normalement au travers de la couche de recto et la deuxième microperforation 30 s'étend obliquement au travers de la couche de verso 12, les deux microperforations 20, 30 débouchant sur la couche interne 13 sans y pénétrer. Ainsi, en observant la première microperforation 20 suivant la normale N à la structure, on voit une première couleur, par exemple celle de la couche interne 13. L'inclinaison de la deuxième microperforation est avantageusement choisie pour permettre de voir, au niveau de la deuxième microperforation 30, en observation normale à la structure, une deuxième couleur, différente de la première, étant par exemple celle de la paroi interne 33 de la deuxième microperforation 30. In an embodiment not illustrated, the structure 10 comprises several sets G1, ... G 'of microperforations, all microperforations p; of the same set G; having the same Si inclination and terminating in the same inner layer, all the microperforations of at least one other set Gi and preferably those of all other sets resulting in different respective inner layers. Thus, when the inner layers are of different colors, a color change can be observed when the viewing angle changes. A multilayer structure 10 according to the invention may comprise only one inner layer 13, situated between the front 11 and back 12 layers, as illustrated in FIG. 24, for example if the opposite faces of the layer 13 have different phosphorescent or fluorescent materials. For example, the first microperforation 20 normally extends through the front layer and the second microperforation 30 extends obliquely through the back layer 12, the two microperforations 20, 30 opening on the inner layer 13 without enter. Thus, by observing the first microperforation 20 following the normal N to the structure, we see a first color, for example that of the inner layer 13. The inclination of the second microperforation is advantageously chosen to allow to see, at the level of the second microperforation 30, in normal observation to the structure, a second color, different from the first, being for example that of the inner wall 33 of the second microperforation 30.

Une structure multicouche 10 selon l'invention peut ne pas comporter de couche interne, comme illustré sur la figure 25. On a représenté le cas où la première microperforation 20 traverse perpendiculairement la couche de recto 11 et débouche sur la couche de verso sans y pénétrer, et la deuxième microperforation 30 traverse obliquement la couche de verso 12 et débouche sur la couche de recto sans y pénétrer. La couche de recto peut présenter une première couleur et la couche de verso une deuxième couleur, différente de la première. Ainsi, en observant le recto de la structure sous incidence normale N, on voit au niveau de la première microperforation la deuxième couleur, et en observant sous incidence oblique O le verso de la structure selon un axe correspondant sensiblement à celui de la deuxième microperforation, on voit au niveau de celle-ci la première couleur. On a représenté sur les figures 19 à 23 des exemples de réalisation de documents de sécurité 105 selon l'invention, comportant une structure de sécurité 10 conforme à l'invention. D'une manière générale, le document de sécurité peut être un moyen de paiement, tel qu'un billet de banque, un chèque ou un ticket restaurant, un document d'identité, tel qu'une carte d'identité, un visa, un passeport ou un permis de conduire, un ticket de loterie, un titre de transport ou encore un ticket d'entrée à des manifestations culturelles ou sportives. Sur la figure 19, la structure de sécurité 10 selon l'invention est directement intégrée dans le document de sécurité 105, par exemple un billet de banque. Les microperforations p dessinent par exemple un motif sur celui-ci. Les couches de recto et de verso peuvent être des impressions et les couches internes des jets de papier de différentes couleurs. L'agencement des microperforations est de préférence similaire à celui de la figure 6 mais peut être autre, notamment similaire à celui des autres figures précédemment décrites. Sur la figure 20, le document 105 comporte un fil de sécurité ou un foil 107 définissant avec le reste du document une structure de sécurité 10 conforme à l'invention. A multilayer structure 10 according to the invention may not comprise an inner layer, as illustrated in FIG. 25. The case is shown where the first microperforation 20 passes perpendicularly through the front layer 11 and opens onto the back layer without penetrating it. and the second microperforation 30 passes obliquely through the back layer 12 and opens onto the front layer without penetrating it. The front layer may have a first color and the back layer a second color, different from the first. Thus, by observing the front of the structure at normal incidence N, we see at the first microperforation the second color, and observing at oblique incidence O the back of the structure along an axis substantially corresponding to that of the second microperforation, we see at this level the first color. FIGS. 19 to 23 show exemplary embodiments of security documents 105 according to the invention, comprising a security structure 10 according to the invention. In general, the security document can be a means of payment, such as a bank note, a check or a restaurant ticket, an identity document, such as an identity card, a visa, a passport or a driving license, a lottery ticket, a ticket or a ticket for cultural or sporting events. In FIG. 19, the security structure 10 according to the invention is directly integrated in the security document 105, for example a banknote. The microperforations p draw for example a pattern on it. The front and back layers can be prints and the inner layers of the paper jets of different colors. The arrangement of the microperforations is preferably similar to that of Figure 6 but may be other, in particular similar to that of the other previously described figures. In FIG. 20, the document 105 comprises a security thread or a foil 107 defining with the remainder of the document a security structure 10 according to the invention.

Le fil ou foil 107 peut apparaître intégralement en surface 109 du document et s'étendre sur toute la largeur /du document, entre deux bords 111 et 113 opposés. La largeur du fil ou foil 107 peut être comprise entre 0,5 mm et 30 mm. Dans le cas d'une structure 10définie au moins partiellement par un fil de sécurité, la couche de recto 11 ou de verso peut être constituée par exemple par une métallisation, une impression fluorescente ou non, un film laminé ; les couches internes peuvent comporter des films en matière thermoplastique colorés dans la masse ou incorporant dans la masse des composés luminescents, ou par des enductions d'encres, de vernis ou d'adhésifs colorées ou luminescentes. Lorsque le fil ou foil 107 n'est pas visible d'une face du document, en raison par exemple d'une couche de papier ou autre matériau opaque recouvrant le fil ou foil, la structure 10 peut être formée en partie par une couche du document telle qu'un substrat fibreux ou thermoplastique et le reste de la structure 10 peut être défini par le fil ou foil. The wire or foil 107 may appear wholly on the surface 109 of the document and extend over the entire width / document between two opposite edges 111 and 113. The width of the wire or foil 107 may be between 0.5 mm and 30 mm. In the case of a structure 10 at least partially defined by a security thread, the recto layer 11 or back can be constituted for example by a metallization, a fluorescent printing or not, a laminated film; the inner layers may comprise films of thermoplastic material colored in the mass or incorporated in the mass of luminescent compounds, or by coatings of inks, varnishes or colored or luminescent adhesives. When the wire or foil 107 is not visible from one side of the document, for example due to a layer of paper or other opaque material covering the wire or foil, the structure 10 may be formed in part by a layer of such as a fibrous or thermoplastic substrate and the remainder of the structure 10 may be defined by the wire or foil.

Il est avantageux dans ce cas que les microperforations soient réalisées, au moins pour celles situées du côté opposé au fil ou foil, après incorporation du fil ou foil au document. Sur la variante de la figure 23, le fil 107 intégré en fenêtres, dit "window thread", apparaît dans une ou plusieurs fenêtres 115. Il est intéressant de prévoir des fenêtres sur les deux faces opposées du document, de façon à permettre d'observer des microperforations des deux côtés du document, sur le fil. Sur la figure 21, le document 105 comporte une fenêtre 117, dans laquelle est intégrée une structure de sécurité 10 selon l'invention. On a représenté sur la figure 22 une vue en coupe de la figure 21, illustrant le cas où la fenêtre 117 est définie par un ajour, la structure de sécurité étant prise en sandwich entre deux jets de papier du document. Selon une variante non représentée, la fenêtre peut être définie par une zone transparente du document. D'une façon générale, la structure selon l'invention et/ou le document de sécurité qui intègre une telle structure peut comporter des éléments de sécurité additionnels, tels que définis ci-après. Parmi les éléments de sécurité supplémentaires, certains sont détectables à l'oeil, en lumière du jour ou en lumière artificielle, sans utilisation d'un appareil particulier. Ces éléments de sécurité comportent par exemple des fibres ou planchettes colorées, des fils imprimés ou métallisés totalement ou partiellement. Ces éléments de sécurité sont dits de premier niveau. D'autres types d'éléments de sécurité supplémentaires sont détectables seulement à l'aide d'un appareil relativement simple, tel qu'une lampe émettant dans l'ultraviolet (UV) ou l'infrarouge (IR). Ces éléments de sécurité comportent par exemple des fibres, des planchettes, des bandes, des fils ou des particules. Ces éléments de sécurité peuvent être visibles à l'oeil nu ou non, étant par exemple luminescents sous un éclairage d'une lampe de Wood émettant dans une longueur d'onde de 365 nm. Ces éléments de sécurité sont dits de deuxième niveau. D'autres types d'éléments de sécurité supplémentaires nécessitent pour leur détection un appareil de détection plus sophistiqué. Ces éléments de sécurité sont par exemple capables de générer un signal spécifique lorsqu'ils sont soumis, de manière simultanée ou non, à une ou plusieurs sources d'excitation extérieure. La détection automatique du signal permet d'authentifier, le cas échéant, le document. Ces éléments de sécurité comportent par exemple des traceurs se présentant sous la forme de matières actives, de particules ou de fibres, capables de générer un signal spécifique lorsque ces traceurs sont soumis à une excitation optronique, électrique, magnétique ou électromagnétique. Ces éléments de sécurité sont dits de troisième niveau. Le ou les éléments de sécurité supplémentaires présents au sein du document de sécurité, ou de la structure de sécurité qu'il comporte, peuvent présenter des caractéristiques de sécurité de premier, de deuxième ou de troisième niveau. Bien entendu, l'invention ne se limite pas aux modes de réalisation décrits. En particulier, le nombre de microperforations, leur répartition, leur forme et leur taille peuvent être modifiés. Il en va de même pour le nombre de couches, leur nature, leur épaisseur respective et leur agencement au sein de la structure multicouche, en fonction de l'effet optique désiré. Les caractéristiques des différents modes de réalisation peuvent être combinées entre elles, au sein de variantes non illustrées. L'expresssion « comportant un » doit être comprise comme étant synonyme de « comportant au moins un », sauf si le contraire est spécifié.20 It is advantageous in this case that the micro-perforations are made, at least for those located on the opposite side to the wire or foil, after incorporation of the wire or foil to the document. In the variant of FIG. 23, the wire 107 integrated in windows, called "window thread", appears in one or more windows 115. It is advantageous to provide windows on the two opposite sides of the document, so as to allow observe microperforations on both sides of the document, on the wire. In FIG. 21, the document 105 comprises a window 117, in which is integrated a security structure 10 according to the invention. Shown in FIG. 22 is a sectional view of FIG. 21, illustrating the case where the window 117 is defined by an aperture, the security structure being sandwiched between two paper jets of the document. According to a variant not shown, the window can be defined by a transparent area of the document. In general, the structure according to the invention and / or the security document which incorporates such a structure may comprise additional security elements, as defined below. Among the additional security features, some are detectable by eye, daylight or artificial light, without the use of a particular device. These security elements comprise for example colored fibers or boards, fully or partially printed or metallized wires. These security elements are called first level. Other types of additional security elements are detectable only with a relatively simple apparatus, such as a lamp emitting in the ultraviolet (UV) or infrared (IR). These security elements comprise, for example, fibers, boards, strips, wires or particles. These security elements may be visible to the naked eye or not, being for example luminescent under a lighting of a Wood lamp emitting in a wavelength of 365 nm. These security elements are said to be second level. Other types of additional security elements require for their detection a more sophisticated detection device. These security elements are for example capable of generating a specific signal when they are subjected, simultaneously or not, to one or more external excitation sources. The automatic detection of the signal makes it possible to authenticate, if necessary, the document. These security elements comprise, for example, tracers in the form of active materials, particles or fibers capable of generating a specific signal when these tracers are subjected to optronic, electrical, magnetic or electromagnetic excitation. These security elements are said to be third level. The additional security element or elements present in the security document, or the security structure that it comprises, may have first, second or third level security features. Of course, the invention is not limited to the embodiments described. In particular, the number of microperforations, their distribution, their shape and their size can be modified. It is the same for the number of layers, their nature, their respective thickness and their arrangement within the multilayer structure, depending on the desired optical effect. The characteristics of the different embodiments can be combined with each other, within non-illustrated variants. Expressing "with one" should be understood as being synonymous with "having at least one" unless otherwise specified.

Claims (27)

REVENDICATIONS1. Structure multicouche (10) comportant au moins : - une couche de recto (11) ayant au moins une région non transparente (11a), - une couche de verso (12) ayant au moins une région non transparente (12a), - de préférence, au moins une couche interne (13;16) située entre les couches de recto et de verso, - une première microperforation (20) à travers la région non transparente de la couche de recto, - une deuxième microperforation (30) à travers la région non transparente de la couche de verso, l'une au moins des microperforations s'étendant obliquement ou étant non traversante, les couches et les microperforations étant agencées de telle sorte que les microperforations apparaissent côté recto et verso de couleurs respectives différentes, pour certaines conditions d'observation au moins. REVENDICATIONS1. Multilayer structure (10) comprising at least: - a front layer (11) having at least one non-transparent region (11a), - a back layer (12) having at least one non-transparent region (12a), preferably at least one inner layer (13; 16) between the front and back layers; - a first microperforation (20) through the non-transparent region of the front layer; and - a second microperforation (30) across the non-transparent region of the back layer, at least one of the microperforations extending obliquely or non-traversing, the layers and microperforations being arranged so that the microperforations appear on the front and back side of respective different colors, for some observing conditions at least. 2. Structure selon la revendication 1, comportant une, et de préférence plusieurs couches internes, de préférence encore de couleurs différentes, dont au moins des première (13) et deuxième (16) couches internes, lesdites couleurs respectives différentes étant de préférence les couleurs desdites couches internes. 2. Structure according to claim 1, comprising one, and preferably several internal layers, preferably still of different colors, including at least first (13) and second (16) inner layers, said respective different colors being preferably the colors. said inner layers. 3. Structure multicouche selon la revendication 2, la première microperforation (20) débouchant sur la couche interne (13) sans y pénétrer. 3. Multilayer structure according to claim 2, the first microperforation (20) opening on the inner layer (13) without penetrating. 4. Structure selon la revendication 2, la première microperforation (20) débouchant sur la couche interne (13) en y pénétrant. 4. Structure according to claim 2, the first microperforation (20) opening on the inner layer (13) penetrating therethrough. 5. Structure selon la revendication 4, la première microperforation (20) traversant entièrement la couche interne (13), voire traversant entièrement la structure. 5. Structure according to claim 4, the first microperforation (20) completely passing through the inner layer (13), or even completely through the structure. 6. Structure selon la revendication 4 et la revendication 2, comportant au moins des première (13) et deuxième (16) couches internes, la première microperforation (20) traversant entièrement la première couche interne (13) et pénétrant dans la deuxième couche interne (16) en la traversant entièrement, voire traversant entièrement la structure. 6. Structure according to claim 4 and claim 2, comprising at least first (13) and second (16) inner layers, the first microperforation (20) completely passing through the first inner layer (13) and penetrating into the second inner layer (16) crossing it entirely, or even completely through the structure. 7. Structure selon l'une quelconque des revendications 1 à 6 avec au moins un rattachement à la revendication 2, la deuxième microperforation (30) débouchant sur la couche interne (16) sans y pénétrer. 7. Structure according to any one of claims 1 to 6 with at least one attachment to claim 2, the second microperforation (30) opening on the inner layer (16) without penetrating. 8. Structure selon l'une quelconque des revendications 1 à 6 avec au moins 5 un rattachement à la revendication 2, la deuxième microperforation (30) débouchant sur la couche interne (16) en y pénétrant, notamment en la traversant. 8. Structure according to any one of claims 1 to 6 with at least 5 an attachment to claim 2, the second microperforation (30) opening on the inner layer (16) penetrating therethrough, including passing through. 9. Structure selon l'une quelconque des revendications 1 à 6 avec au moins un rattachement à la revendication 2, comportant au moins des première (13) et deuxième (16) couches internes, la deuxième microperforation (30) débouchant sur la première 10 couche interne (13), voire la traversant, voire traversant entièrement la structure. 9. Structure according to any one of claims 1 to 6 with at least one attachment to claim 2, comprising at least first (13) and second (16) inner layers, the second microperforation (30) opening on the first 10 inner layer (13), or even through it, or even completely through the structure. 10. Structure multicouche selon l'une quelconque des revendications précédentes, les première (20) et deuxième (30) microperforations communiquant entre elles. 10. Multilayer structure according to any one of the preceding claims, the first (20) and second (30) microperforations communicating with each other. 11. Structure multicouche selon l'une quelconque des revendications 15 précédentes, au moins l'une des première (20) et deuxième (30) microperforations s'étendant selon un axe oblique, faisant un angle non nul avec la normale à la structure, notamment un angle compris entre 30° et 60°. 11. Multilayer structure according to any one of the preceding claims, at least one of the first (20) and second (30) microperforations extending along an oblique axis, making a non-zero angle with the normal to the structure, in particular an angle of between 30 ° and 60 °. 12. Structure multicouche selon l'une quelconque des revendications précédentes, les première (20) et deuxième (30) microperforations étant de même axe. 20 12. multilayer structure according to any one of the preceding claims, the first (20) and second (30) microperforations being of the same axis. 20 13. Structure multicouche selon l'une quelconque des revendications précédentes, dans laquelle : et > dl / sin (a) et a 0 et/ou ez > dz / sin (8) et R 0 25 où el désigne l'épaisseur de la couche interne (13), a désigne l'angle que fait l'axe de la première microperforation (20) avec la normale à la structure multicouche et di désigne la plus grande dimension transversale de l'orifice (21) par lequel ladite microperforation débouche sur la face externe de recto de la structure, mesurée perpendiculairement à l'axe de l'orifice, et 30 ez désigne l'épaisseur d'une autre couche interne (16) éventuelle, R désigne l'angle que fait l'axe de la deuxième microperforation (30) avec la normale à la structure multicouche et dz désigne la plus grande dimension transversale de l'orifice (31) par lequel laditemicroperforation débouche sur la face externe de recto de la structure, mesurée perpendiculairement à l'axe de l'orifice. 13. A multilayer structure as claimed in any one of the preceding claims, wherein: and dl / sin (a) and a 0 and / or ez dz / sin (8) and R 0 where el denotes the thickness of the inner layer (13), a designates the angle made by the axis of the first microperforation (20) with the normal to the multilayer structure and di denotes the largest transverse dimension of the orifice (21) through which said microperforation opens on the outer face of the recto of the structure, measured perpendicularly to the axis of the orifice, and ez denotes the thickness of another internal layer (16), where R is the angle that the axis of the second microperforation (30) with the normal to the multilayer structure and dz denotes the largest transverse dimension of the orifice (31) by which the microperforation emerges on the outer face of the recto of the structure, measured perpendicularly to the axis of the 'orifice. 14. Structure multicouche selon la revendication précédente, dans laquelle : eY + et + e,> dl / sin (a) et/ou eY + et + e,> dz / sin (8) et/ou eY + el+ ez+ e' > dl / sin (a) + dz / sin (8) où er désigne l'épaisseur de la couche de recto (11) et e' désigne l'épaisseur de la couche de verso (12). 14. multilayer structure according to the preceding claim, wherein: eY + and + e,> dl / sin (a) and / or eY + and + e,> dz / sin (8) and / or eY + el + ez + e ' dl / sin (a) + dz / sin (8) where er denotes the thickness of the front layer (11) and e 'denotes the thickness of the backing layer (12). 15. Structure multicouche selon l'une quelconque des revendications précédentes, comportant, outre les première (20) et deuxième (30) microperforations, une troisième microperforation (41) traversant entièrement la structure multicouche, les première et deuxième microperforations étant non traversantes. 15. multilayer structure according to any one of the preceding claims, comprising, besides the first (20) and second (30) microperforations, a third microperforation (41) completely through the multilayer structure, the first and second microperforations being non-traversing. 16. Structure multicouche selon l'une quelconque des revendications précédentes, comportant au moins deux microperforations non coaxiales et se rejoignant à une extrémité commune et ayant des extrémités opposées disjointes, ces deux microperforations non coaxiales comportant la première microperforation (20) et/ou la deuxième microperforation (30). 16. multilayer structure according to any one of the preceding claims, comprising at least two non-coaxial microperforations and joining at a common end and having opposite ends disjoint, these two non-coaxial microperforations comprising the first microperforation (20) and / or the second microperforation (30). 17. Structure multicouche selon l'une quelconque des revendications 1 à 15, comportant au moins deux microperforations (20') et (30') non coaxiales se rejoignant à une extrémité commune et ayant des extrémités opposées disjointes, distinctes des première (20) et deuxième (30) microperforations. 17. Multilayer structure according to any one of claims 1 to 15, comprising at least two non-coaxial microperforations (20 ') and (30') joining at a common end and having opposite ends disjoint, distinct from the first (20). and second (30) microperforations. 18. Structure multicouche selon l'une des deux revendications immédiatement précédentes, lesdites au moins deux microperforations non coaxiales s'étendant dans des directions faisant entre elles un angle y compris entre 20° et 90°. 18. Multilayer structure according to one of the two immediately preceding claims, said at least two non-coaxial microperforations extending in directions forming between them an angle between 20 ° and 90 °. 19. Structure multicouche selon l'une quelconque des revendications 16 à 18, comportant au moins trois microperforations non coaxiales se rejoignant à une extrémité commune et ayant des extrémités opposées disjointes. 19. Multilayer structure according to any one of claims 16 to 18, comprising at least three non-coaxial microperforations joining at a common end and having opposite ends disjoint. 20. Structure multicouche selon la revendication précédente, au moins l'une des microperforations non coaxiales étant normale à la structure de sécurité et les deux 30 autres étant disposées symétriquement par rapport à l'axe de la première microperforation. 20. Multilayer structure according to the preceding claim, at least one of the non-coaxial microperforations being normal to the safety structure and the two others being arranged symmetrically with respect to the axis of the first microperforation. 21. Structure multicouche selon l'une quelconque des revendications précédentes, étant recouverte par au moins une couche de protection transparente (80;90) recouvrant une extrémité des première (20) ou deuxième (30) microperforations. 21. Multilayer structure according to any one of the preceding claims, being covered by at least one transparent protective layer (80; 90) covering one end of the first (20) or second (30) microperforations. 22. Structure multicouche selon l'une quelconque des revendications précédentes avec au moins un rattachement à la revendication 2, la couche interne (13;16) comportant un matériau guide d'onde, recevant de la lumière depuis une surface d'entrée (51 ;52) de la lumière, notamment définie par un ajour à travers la couche de recto et/ou la couche de verso, ladite surface d'entrée étant distincte des première (20) et deuxième (30) microperforations. A multilayer structure according to any one of the preceding claims with at least one attachment to claim 2, the inner layer (13; 16) having a waveguide material receiving light from an entrance surface (51). 52) of the light, in particular defined by an aperture through the front layer and / or the back layer, said input surface being distinct from the first (20) and second (30) microperforations. 23. Structure multicouche selon la revendication 2, comprenant des première (13) et deuxième (16) couches internes séparées par une couche interne intermédiaire (40), notamment une couche réfléchissante. 23. Multilayer structure according to claim 2, comprising first (13) and second (16) inner layers separated by an intermediate inner layer (40), in particular a reflective layer. 24. Structure multicouche selon l'une quelconque des revendications précédentes, les couches de verso (12) et de recto (11) étant notamment au moins 15 partiellement réfléchissantes. 24. multilayer structure according to any one of the preceding claims, the backsheet layers (12) and front (11) being in particular at least partially reflecting. 25. Article de sécurité, notamment un fil, foil ou un patch, comportant une structure multicouche selon l'une quelconque des revendications 1 à 24. 25. Security article, in particular a wire, foil or patch, comprising a multilayer structure according to any one of claims 1 to 24. 26. Document de sécurité constituant ou comportant une structure multicouche selon l'une quelconque des revendications 1 à 25. 20 26. Security document constituting or comprising a multilayer structure according to any one of claims 1 to 25. 27. Procédé d'authentification d'un article ou d'un document de sécurité incorporant une structure multicouche telle que définie dans l'une quelconque des revendications 1 à 24, comportant les étapes suivantes : - observer le recto et le verso de l'article ou du document, - déterminer, sur la base au moins d'une comparaison des première et 25 deuxième couleurs observées au travers des microperforations, l'authenticité de l'article ou du document de sécurité. 27. A method of authenticating an article or a security document incorporating a multilayer structure as defined in any one of claims 1 to 24, comprising the following steps: - observe the front and back of the article or document, - determine, based on at least a comparison of the first and second colors observed through microperforations, the authenticity of the article or the security document.
FR1058199A 2010-10-08 2010-10-08 MULTILAYER STRUCTURE Withdrawn FR2965750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1058199A FR2965750A1 (en) 2010-10-08 2010-10-08 MULTILAYER STRUCTURE
PCT/IB2011/054423 WO2012046212A1 (en) 2010-10-08 2011-10-07 Multi-layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1058199A FR2965750A1 (en) 2010-10-08 2010-10-08 MULTILAYER STRUCTURE

Publications (1)

Publication Number Publication Date
FR2965750A1 true FR2965750A1 (en) 2012-04-13

Family

ID=43798300

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1058199A Withdrawn FR2965750A1 (en) 2010-10-08 2010-10-08 MULTILAYER STRUCTURE

Country Status (2)

Country Link
FR (1) FR2965750A1 (en)
WO (1) WO2012046212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909041B1 (en) 2012-10-19 2016-09-21 Gemalto SA Secure data carrier and method of production of said secure data carrier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108345923A (en) * 2018-04-25 2018-07-31 捷德(中国)信息科技有限公司 A kind of identification card
DE102019113005A1 (en) * 2019-05-16 2020-11-19 Bundesdruckerei Gmbh Luminescent security element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185807A1 (en) * 1984-12-10 1986-07-02 Computer Identification Systems, Inc. Coloured engraved indentification card
DE19934434A1 (en) * 1999-07-22 2001-02-01 Bundesdruckerei Gmbh Valuable and security document has micro channels arranged in and/or on it at different angles to surface of document to prevent division and re-assembly without detection
EP1266768A2 (en) * 1999-01-21 2002-12-18 Industrial Automation Integrators (Iai) B.V. Security document with a perforation pattern
EP1997643A2 (en) * 2007-06-01 2008-12-03 OVD Kinegram AG Security document and method for its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814476B1 (en) 2000-09-11 2003-04-11 Arjo Wiggins Sa SAFETY SHEET HAVING A TRANSPARENT OR TRANSLUCENT LAYER
DE10052184A1 (en) 2000-10-20 2002-05-02 Datacard Corp test methods
EP1525100B1 (en) 2002-07-25 2009-06-10 Orell Füssli Sicherheitsdruck AG Security document and verification method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185807A1 (en) * 1984-12-10 1986-07-02 Computer Identification Systems, Inc. Coloured engraved indentification card
EP1266768A2 (en) * 1999-01-21 2002-12-18 Industrial Automation Integrators (Iai) B.V. Security document with a perforation pattern
DE19934434A1 (en) * 1999-07-22 2001-02-01 Bundesdruckerei Gmbh Valuable and security document has micro channels arranged in and/or on it at different angles to surface of document to prevent division and re-assembly without detection
EP1997643A2 (en) * 2007-06-01 2008-12-03 OVD Kinegram AG Security document and method for its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909041B1 (en) 2012-10-19 2016-09-21 Gemalto SA Secure data carrier and method of production of said secure data carrier

Also Published As

Publication number Publication date
WO2012046212A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
EP2598693B1 (en) Security structure including phosphorescent and fluorescent compositions
EP2989250B1 (en) Security element comprising a volume hologram
FR2965752A1 (en) SECURITY STRUCTURE INCORPORATING MICROPERFORATIONS
EP2984229B1 (en) Security element comprising an interference pigment and a nanometric filler
FR2976954A1 (en) SECURITY WIRE
FR2977190A1 (en) ENHANCEMENT OF SECURITY DEVICES INCORPORATING COLOR SHIFT INK
FR2969670A1 (en) ELEMENT FOR SAFETY DOCUMENT HAVING AN OPTICAL STRUCTURE
FR2948216A1 (en) SECURITY ELEMENT WITH PARALLAX EFFECT
EP3007903A1 (en) Security structure having a diffractive optical element
EP3142864B1 (en) Method for manufacturing a security element
FR2965750A1 (en) MULTILAYER STRUCTURE
EP3083258B1 (en) Security item
FR2993204A1 (en) SAFETY STRUCTURE.
EP3194178B1 (en) Security element
EP2984227B1 (en) Security element comprising a masking structure containing a mixture of nanometric fillers
EP3206884B1 (en) Security element and security document
EP3206885B1 (en) Security element for a security document
EP3137313B1 (en) Security strip and security document incorporating said strip
EP3558692A1 (en) Secure document

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20150630