FR2960629A1 - METHOD FOR CONTROLLING A STORAGE DEVICE IN A REFRIGERANT CIRCUIT - Google Patents

METHOD FOR CONTROLLING A STORAGE DEVICE IN A REFRIGERANT CIRCUIT Download PDF

Info

Publication number
FR2960629A1
FR2960629A1 FR1002277A FR1002277A FR2960629A1 FR 2960629 A1 FR2960629 A1 FR 2960629A1 FR 1002277 A FR1002277 A FR 1002277A FR 1002277 A FR1002277 A FR 1002277A FR 2960629 A1 FR2960629 A1 FR 2960629A1
Authority
FR
France
Prior art keywords
refrigerant
circuit
storage device
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1002277A
Other languages
French (fr)
Other versions
FR2960629B1 (en
Inventor
Jin Ming Liu
Mohamed Yahia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Priority to FR1002277A priority Critical patent/FR2960629B1/en
Priority to EP11165429.9A priority patent/EP2400240B1/en
Publication of FR2960629A1 publication Critical patent/FR2960629A1/en
Application granted granted Critical
Publication of FR2960629B1 publication Critical patent/FR2960629B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2111Temperatures of a heat storage receiver

Abstract

L'invention concerne un procédé de contrôle d'un dispositif de stockage 9 monté dans un circuit de réfrigérant 1 parcouru par un fluide frigorigène FR, ledit dispositif de stockage 9 étant installé entre un échangeur intérieur 3 et un organe de détente 11, ledit dispositif de stockage 9 comprenant un matériau 20 qui échange avec ledit fluide frigorigène FR, ledit circuit comprenant une conduite 21 contournant le dispositif de stockage 9, caractérisé en ce que ledit procédé autorise un échange thermique entre le matériau 20 et le fluide frigorigène FR quand la température du matériau 20 est inférieure à une température seuil relative au fluide frigorigène FR déterminée en sortie de l'échangeur intérieur 3. L'invention vise également un circuit incorporant un tel dispositif de stockage et une conduite contournant le dispositif de stockage et dont la circulation de fluide frigorigène est placée sous la dépendance d'un dispositif de contrôle. Application aux véhicules automobiles.The invention relates to a method of controlling a storage device 9 mounted in a refrigerant circuit 1 traversed by a refrigerant FR, said storage device 9 being installed between an inner heat exchanger 3 and an expansion device 11, said device storage device 9 comprising a material 20 which exchanges with said refrigerant FR, said circuit comprising a pipe 21 bypassing the storage device 9, characterized in that said method allows a heat exchange between the material 20 and the refrigerant FR when the temperature of the material 20 is lower than a threshold temperature relative to the refrigerant FR determined at the outlet of the inner heat exchanger 3. The invention also relates to a circuit incorporating such a storage device and a conductor bypassing the storage device and whose circulation of refrigerant is placed under the control of a control device. Application to motor vehicles.

Description

i Procédé de contrôle d'un dispositif de stockage dans un circuit de réfrigérant i Method for controlling a storage device in a refrigerant circuit

Le secteur technique de la présente invention est celui des boucles de climatisation utilisées dans les véhicules automobiles. Plus particulièrement, l'invention vise une boucle de climatisation utilisée en mode chauffage ou pompe à chaleur et intégrant un dispositif de stockage de calories. Un véhicule automobile est classiquement équipé d'une boucle de climatisation à l'intérieur de laquelle circule un fluide réfrigérant ou fluide frigorigène. Cette boucle comprend classiquement un compresseur, un refroidisseur de gaz ou condenseur, un détendeur et un évaporateur parcourus par un fluide frigorigène. L'évaporateur est installé dans une installation de ventilation, chauffage et/ou climatisation généralement montée dans l'habitacle du véhicule pour fournir à ce dernier un flux d'air chaud ou un flux d'air froid en fonction d'une demande de l'utilisateur du véhicule. Le refroidisseur de gaz ou condenseur est quant à lui classiquement installé en face avant du véhicule pour être traversé par le flux d'air extérieur au véhicule. Cette boucle de réfrigérant peut être utilisée au moins en mode refroidissement ou en mode chauffage. En mode refroidissement, le fluide réfrigérant est mis en circulation par le compresseur qui l'envoi vers le refroidisseur de gaz ou condenseur où le fluide réfrigérant est refroidit par le flux d'air extérieur. Puis, le fluide réfrigérant circule vers le détendeur où il subit un abaissement de sa pression avant d'entrer dans l'évaporateur. Le fluide réfrigérant traversant l'évaporateur est alors chauffé par le flux d'air traversant l'installation de ventilation, ce qui se traduit corrélativement par un refroidissement de ce flux d'air dans le but de refroidir ou climatiser l'habitacle du véhicule. Le circuit étant une boucle fermée, le fluide réfrigérant retourne alors vers le compresseur. En mode chauffage, le fluide est mis en circulation par le compresseur qui l'envoi vers l'évaporateur, ce dernier se comportant alors comme un condenseur, où le fluide réfrigérant est refroidit par l'air circulant dans l'installation de ventilation. Cet air se réchauffe donc au contact de l'évaporateur et chauffe ainsi l'habitacle du véhicule. Après passage dans l'évaporateur, le fluide réfrigérant est détendu par le détendeur avant d'arriver dans le refroidisseur de gaz ou condenseur. Le flux d'air extérieur chauffe alors le fluide réfrigérant et le flux d'air extérieur est par conséquent plus froid après son passage dans le condenseur comparé à sa température avant son passage au travers du condenseur. Le fluide réfrigérant retourne alors vers le compresseur. L'amélioration du coefficient de performance d'une telle boucle est souhaitée. L'installation d'un dispositif de stockage qui échange avec le fluide réfrigérant vient améliorer la situation car une partie de la puissance chaude peut être stockée puis restituée en cas de besoin, notamment dans des situations où le condenseur givre ce qui gène de manière importante l'échange entre le fluide réfrigérant et l'air extérieur. Cependant, les conditions de contrôle de ce dispositif de stockage ne sont 15 pas maîtrisées. Le but de la présente invention est donc de résoudre l'inconvénient décrit ci-dessus principalement en contrôlant de manière astucieuse l'échange entre le fluide réfrigérant et le dispositif de stockage de calories en fonction des phases de fonctionnement et de rendement disponibles avec le circuit de 20 réfrigérant. En particulier, l'invention permet de contrôler l'échange thermique entre le fluide réfrigérant et le dispositif de stockage lors des phases de fonctionnement de la boucle dans lesquelles le condenseur n'est pas givré. Ainsi, l'invention permet d'utiliser les calories disponibles du dispositif de stockage au départ réservées pour le dégivrage du condenseur pour améliorer 25 le coefficient de performance de la boucle lorsque le condenseur n'est pas givré. L'invention a donc pour objet un procédé de contrôle d'un dispositif de stockage monté dans un circuit de réfrigérant parcouru par un fluide frigorigène, ledit dispositif de stockage étant installé entre un échangeur 30 intérieur et un organe de détente, ledit dispositif de stockage comprenant un matériau qui échange avec ledit fluide frigorigène, ledit circuit comprenant une conduite contournant le dispositif de stockage, caractérisé en ce que ledit procédé autorise un échange thermique entre le matériau et le fluide frigorigène quand la température du matériau est inférieure à une température seuil relative au fluide frigorigène déterminée en sortie de l'échangeur intérieur. A l'inverse, ledit procédé interdit l'échange thermique entre le matériau et le fluide frigorigène quand la température du matériau est supérieure à la température du fluide frigorigène déterminée en sortie de l'échangeur intérieur. Selon une première caractéristique de l'invention, la circulation de fluide frigorigène dans la conduite est placée sous la dépendance d'un dispositif de contrôle et dans lequel l'autorisation d'échange thermique entre le matériau et le fluide frigorigène est mise en oeuvre en fermant le dispositif de contrôle. On prévoit ainsi la possibilité de passer au travers ou de contourner le dispositif de stockage en fonction de la comparaison de température évoquée ci-dessus. Selon une deuxième caractéristique de l'invention, la température seuil est égale à une température du fluide frigorigène à laquelle est soustraite une marge de fonctionnement. On garantit ainsi que l'échange thermique est efficace car la différence de température est augmentée de la marge de fonctionnement. On se prémunit également des effets de cyclage du procédé par ouverture et fermeture du dispositif de contrôle de manière trop récurrente. Selon une autre caractéristique de l'invention, la température du fluide frigorigène est mesurée par un premier capteur implanté en sortie de l'échangeur intérieur. Selon encore une caractéristique de l'invention, la température du fluide frigorigène est mesurée par un capteur ou est estimée à partir d'une pression dudit fluide frigorigène mesurée entre une sortie d'un compresseur équipant ledit circuit et une entrée de l'organe de détente. De manière préférentielle, la pression est mesurée par un capteur en contact avec le fluide frigorigène et implanté directement en sortie du compresseur. Selon encore une autre caractéristique de l'invention, le circuit de réfrigérant fonctionne en mode chauffage. Le même circuit fonctionne 30 également en mode refroidissement. Avantageusement, la température du matériau est mesurée par un second capteur installé dans le dispositif de stockage. The technical sector of the present invention is that of air conditioning loops used in motor vehicles. More particularly, the invention relates to an air conditioning loop used in heating or heat pump mode and incorporating a calorie storage device. A motor vehicle is conventionally equipped with an air conditioning loop inside which circulates a refrigerant or refrigerant. This loop conventionally comprises a compressor, a gas cooler or condenser, an expander and an evaporator traversed by a refrigerant. The evaporator is installed in a ventilation, heating and / or air conditioning system that is generally installed in the passenger compartment of the vehicle in order to provide the latter with a flow of hot air or a cold air flow according to a demand of the vehicle. user of the vehicle. The gas cooler or condenser is conventionally installed on the front of the vehicle to be traversed by the flow of air outside the vehicle. This refrigerant loop can be used at least in cooling mode or heating mode. In cooling mode, the refrigerant is circulated by the compressor which sends it to the gas cooler or condenser where the coolant is cooled by the outside air flow. Then, the coolant flows to the expander where it undergoes a lowering of its pressure before entering the evaporator. The refrigerant fluid passing through the evaporator is then heated by the flow of air passing through the ventilation system, which is correlatively reflected by a cooling of this air flow in order to cool or cool the passenger compartment of the vehicle. The circuit being a closed loop, the refrigerant then returns to the compressor. In heating mode, the fluid is circulated by the compressor which sends it to the evaporator, the latter then behaving as a condenser, where the coolant is cooled by the air circulating in the ventilation system. This air heats up in contact with the evaporator and thus heats the passenger compartment of the vehicle. After passing through the evaporator, the refrigerant is expanded by the regulator before arriving in the gas cooler or condenser. The outside air flow then heats the refrigerant and the outside air flow is therefore colder after passing through the condenser compared to its temperature before it passes through the condenser. The refrigerant then returns to the compressor. The improvement of the coefficient of performance of such a loop is desired. The installation of a storage device that exchanges with the refrigerant fluid improves the situation because a portion of the hot power can be stored and then returned when needed, especially in situations where the condenser icing which gene importantly the exchange between the refrigerant and the outside air. However, the control conditions of this storage device are not controlled. The object of the present invention is therefore to solve the disadvantage described above mainly by cleverly controlling the exchange between the refrigerant and the calorie storage device according to the operating phases and efficiency available with the circuit refrigerant. In particular, the invention makes it possible to control the heat exchange between the refrigerant and the storage device during the operating phases of the loop in which the condenser is not frosted. Thus, the invention makes it possible to use the available calories of the storage device initially reserved for defrosting the condenser to improve the coefficient of performance of the loop when the condenser is not frosted. The subject of the invention is therefore a method of controlling a storage device mounted in a refrigerant circuit traversed by a refrigerant, said storage device being installed between an internal exchanger and an expansion device, said storage device comprising a material which exchanges with said refrigerant, said circuit comprising a conductor bypassing the storage device, characterized in that said method allows a heat exchange between the material and the refrigerant when the temperature of the material is lower than a relative threshold temperature to the refrigerant determined at the outlet of the indoor exchanger. Conversely, said method prohibits the heat exchange between the material and the refrigerant when the temperature of the material is higher than the temperature of the refrigerant determined at the outlet of the internal exchanger. According to a first characteristic of the invention, the circulation of refrigerant in the pipe is placed under the control of a control device and in which the authorization of heat exchange between the material and the refrigerant is implemented in closing the control device. This provides the possibility of passing through or bypassing the storage device according to the temperature comparison mentioned above. According to a second characteristic of the invention, the threshold temperature is equal to a temperature of the refrigerant to which is subtracted an operating margin. This ensures that the heat exchange is effective because the temperature difference is increased by the operating margin. The cycling effects of the method are also avoided by opening and closing the control device too recurrently. According to another characteristic of the invention, the temperature of the refrigerant is measured by a first sensor implanted at the outlet of the internal exchanger. According to another characteristic of the invention, the temperature of the refrigerant is measured by a sensor or is estimated from a pressure of said refrigerant measured between an output of a compressor equipping said circuit and an input of the relaxation. Preferably, the pressure is measured by a sensor in contact with the refrigerant and implanted directly at the outlet of the compressor. According to yet another characteristic of the invention, the refrigerant circuit operates in heating mode. The same circuit also operates in cooling mode. Advantageously, the temperature of the material is measured by a second sensor installed in the storage device.

De manière préférentielle, le second capteur est installé de sorte à être en contact direct avec le matériau. Le circuit de réfrigérant comprend un compresseur et l'échange thermique entre le matériau et le fluide frigorigène est autorisé quand une pression de fluide frigorigène déterminée entre le compresseur et l'organe de détente est inférieure à une pression seuil. Avantageusement encore, la pression seuil est dépendante d'un débit d'un flux d'air d'habitacle d'un véhicule qui échange avec le fluide frigorigène au travers de l'échangeur intérieur. 1 o Enfin, le circuit de réfrigérant comprend un compresseur et l'échange thermique entre le matériau et le fluide frigorigène est autorisé quand un taux de compression du compresseur est inférieur à un taux de compression seuil. L'invention couvre également un circuit de réfrigérant comprenant un compresseur, un échangeur extérieur, un organe de détente et un échangeur 15 intérieur parcouru dans cet ordre par un fluide frigorigène quand le circuit fonctionne en mode refroidissement et en sens inverse quand ledit circuit fonctionne en mode chauffage, caractérisé en ce qu'un dispositif de stockage est intégré audit circuit entre une sortie de l'échangeur intérieur et une entrée de l'organe de détente quand le circuit fonctionne en mode chauffage et en ce 20 qu'une conduite contourne le dispositif de stockage, une circulation de fluide frigorigène dans ladite conduite étant placé sous la dépendance d'un dispositif de contrôle. Selon une première caractéristique de l'invention, le dispositif de stockage comprend un matériau qui échange thermiquement avec le fluide frigorigène. 25 Un second capteur de température est en contact avec le matériau et un premier capteur de température du fluide frigorigène est installé entre l'échangeur intérieur et le dispositif de stockage. Selon une deuxième caractéristique de l'invention, le circuit comprend un capteur de pression du fluide frigorigène installé entre le compresseur et 30 l'organe de détente quand le circuit fonctionne en mode chauffage. Un tout premier avantage selon l'invention réside dans la possibilité d'augmenter le coefficient de performance du circuit en restituant la puissance chaude stockée en cas de besoin. Un autre avantage de l'invention réside dans la possibilité de stocker l'énergie nécessaire dans le but de dégivrer l'échangeur extérieur quand ce dernier est utilisé en tant qu'évaporateur, c'est-à-dire quand le circuit fonctionne en mode chauffage. Un autre avantage réside dans la possibilité de stocker l'énergie nécessaire à ce dégivrage quand le circuit présente des conditions de fonctionnement favorable, c'est-à-dire dans des conditions où l'accumulation d'énergie dans le dispositif de stockage n'affecte pas les performances du 1 o circuit de réfrigérant. D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels : - la figure 1 est une vue schématique d'un circuit de réfrigérant incorporant 15 un dispositif de stockage, - la figure 2 est une vue d'une variante de la figure 1, sur laquelle est ajouté un module de contrôle qui met en oeuvre le procédé selon l'invention, -la figure 3 est un logigramme illustrant le procédé, - la figure 4 illustre un logigramme d'un perfectionnement du procédé selon 20 l'invention. II faut noter que les figures exposent l'invention de manière détaillée, lesdites figures peuvent bien entendu servir à mieux définir l'invention le cas échéant. La figure 1 illustre un circuit de climatisation ou circuit de réfrigérant 1 25 parcouru par un fluide réfrigérant ou frigorigène FR, de type sous-critique ou super-critique, et comprenant un compresseur 2 à commande mécanique ou électrique, à cylindrée fixe ou variable. Le compresseur 2 est relié à un échangeur intérieur 3 par une conduite ou tube qui met en communication un premier orifice 18 du compresseur 2 avec un premier orifice 5 de l'échangeur 30 intérieur. Cet échangeur intérieur 3 est monté dans une installation de ventilation, chauffage et climatisation 4 classiquement installée dans un habitacle d'un véhicule pour délivrer dans ce dernier un flux d'air chaud ou un flux d'air froid, en fonction de la demande de l'utilisateur du véhicule. L'échangeur intérieur 3 est donc traversé par un flux d'air d'habitacle 6 qui circule dans l'installation de ventilation. Un second orifice 7 de l'échangeur intérieur 3 est relié à un premier orifice 8 d'un dispositif de stockage 9, ce dernier comprenant également un second orifice 10 relié à un premier orifice 12 d'un organe de détente 11. Un second orifice 13 de l'organe de détente 11 est connecté à un premier orifice 14 d'un échangeur extérieur 15 via une conduite. Un flux d'air extérieur 16 au véhicule traverse le corps de l'échangeur extérieur 15 de manière à échanger des 1 o calories avec le fluide frigorigène circulant dans l'échangeur extérieur 15. Un second orifice 17 de l'échangeur extérieur 15 communique avec un second orifice 19 de fluide frigorigène FR constitutive du compresseur 2. Le dispositif de stockage 9 a pour fonction de capter et de stocker des calories par échange entre le fluide frigorigène FR qui le traverse et un 15 matériau 20, ce dernier étant par exemple un matériau à changement de phase. Ce dispositif de stockage agit comme une réserve de calories qui capte une puissance calorifique dans certaines conditions de fonctionnement du circuit de réfrigérant, par exemple quand le coefficient de performance du circuit est élevé, et qui la restitue dans d'autres conditions, par exemple quand 20 le coefficient de performance du circuit se dégrade. Le circuit de réfrigérant 1 fonctionne selon au moins deux modes : un mode chauffage de l'habitacle et un mode refroidissement de l'habitacle. Dans le mode refroidissement, le fluide frigorigène FR est mis en mouvement dans le circuit 1 selon un sens de circulation représenté sur la 25 figure 1 par les flèches en pointillé. Cette circulation est opérée par le compresseur 2 qui envoi le fluide frigorigène vers l'échangeur extérieur 15. Ce dernier se comporte alors comme un refroidisseur de gaz ou condenseur, le fluide frigorigène FR étant ainsi refroidit par le flux d'air extérieur 16. L'organe de détente 11 reçoit alors le fluide frigorigène est applique à ce dernier un 30 abaissement de sa pression. Le fluide frigorigène FR continu ensuite son déplacement vers l'échangeur intérieur 3. Dans le mode refroidissement, le fluide frigorigène contourne le dispositif de stockage 9 en passant par une conduite 21 branchée d'un côté entre le second orifice 10 du dispositif de stockage et le premier orifice 12 de l'organe de détente 11 et de l'autre entre le second orifice 7 de l'échangeur intérieur 3 et le premier orifice 8 du dispositif de stockage 9. La circulation de fluide frigorigène au travers de cette conduite 21 est placée sous la dépendance d'un dispositif de contrôle 22, qui prend la forme d'une vanne d'arrêt contrôlée de manière électrique. La circulation du fluide frigorigène FR se poursuit vers l'échangeur intérieur 3 où le flux d'air habitacle 6 se trouve refroidit par échange avec le fluide frigorigène au sein de l'échangeur intérieur. Ce dernier se comporte alors comme un évaporateur. Un fois évaporé, le fluide frigorigène FR circule vers le compresseur 2 avant d'être à nouveau comprimé pour effectuer le cycle thermodynamique évoqué ci-dessus. Preferably, the second sensor is installed so as to be in direct contact with the material. The refrigerant circuit comprises a compressor and the heat exchange between the material and the refrigerant is allowed when a refrigerant pressure determined between the compressor and the expansion member is less than a threshold pressure. Advantageously, the threshold pressure is dependent on a flow rate of a cabin air flow of a vehicle that exchanges with the refrigerant through the inner heat exchanger. Finally, the refrigerant circuit comprises a compressor and the heat exchange between the material and the refrigerant is allowed when a compression ratio of the compressor is lower than a threshold compression ratio. The invention also covers a refrigerant circuit comprising a compressor, an external heat exchanger, an expansion device and an internal exchanger traversed in this order by a refrigerant when the circuit operates in cooling mode and in the opposite direction when said circuit operates in heating mode, characterized in that a storage device is integrated in said circuit between an outlet of the indoor heat exchanger and an inlet of the expansion element when the circuit is operating in heating mode and that a pipe bypasses the storage device, a flow of refrigerant in said pipe being placed under the control of a control device. According to a first characteristic of the invention, the storage device comprises a material which thermally exchanges with the refrigerant. A second temperature sensor is in contact with the material and a first refrigerant temperature sensor is installed between the indoor heat exchanger and the storage device. According to a second characteristic of the invention, the circuit comprises a refrigerant pressure sensor installed between the compressor and the expansion element when the circuit is operating in heating mode. A first advantage according to the invention lies in the possibility of increasing the coefficient of performance of the circuit by restoring the hot power stored when needed. Another advantage of the invention lies in the possibility of storing the energy necessary for the purpose of de-icing the external exchanger when the latter is used as an evaporator, that is to say when the circuit operates in the heater. Another advantage lies in the possibility of storing the energy required for defrosting when the circuit has favorable operating conditions, that is to say under conditions where the accumulation of energy in the storage device does not occur. does not affect the performance of the 1 o refrigerant circuit. Other characteristics, details and advantages of the invention will emerge more clearly on reading the description given below as an indication in relation to drawings in which: FIG. 1 is a schematic view of a refrigerant circuit; incorporating a storage device; FIG. 2 is a view of a variant of FIG. 1, to which is added a control module which implements the method according to the invention; FIG. 3 is a logic diagram illustrating FIG. 4 illustrates a flow diagram of an improvement of the process according to the invention. It should be noted that the figures show the invention in detail, said figures can of course be used to better define the invention if necessary. FIG. 1 illustrates an air conditioning circuit or refrigerant circuit 1 traversed by a refrigerant or refrigerant fluid FR, of the subcritical or supercritical type, and comprising a compressor 2 with mechanical or electrical control, with fixed or variable displacement. The compressor 2 is connected to an internal exchanger 3 by a pipe or tube which communicates a first orifice 18 of the compressor 2 with a first orifice 5 of the internal exchanger 30. This indoor exchanger 3 is mounted in a ventilation, heating and air conditioning system 4 conventionally installed in a passenger compartment of a vehicle to deliver therein a hot air flow or a cold air flow, depending on the demand of the vehicle. the user of the vehicle. The interior heat exchanger 3 is therefore traversed by a cabin air flow 6 which circulates in the ventilation system. A second orifice 7 of the internal exchanger 3 is connected to a first orifice 8 of a storage device 9, the latter also comprising a second orifice 10 connected to a first orifice 12 of a detent 11. A second orifice 13 of the expansion member 11 is connected to a first orifice 14 of an external exchanger 15 via a pipe. An outside air flow 16 to the vehicle passes through the body of the external exchanger 15 so as to exchange 1 o calories with the refrigerant circulating in the external exchanger 15. A second orifice 17 of the external exchanger 15 communicates with a second orifice 19 of refrigerant FR constituting the compressor 2. The storage device 9 has the function of collecting and storing calories by exchange between the refrigerant FR which passes through and a material 20, the latter being for example a phase change material. This storage device acts as a reserve of calories which captures a heating power under certain operating conditions of the refrigerant circuit, for example when the coefficient of performance of the circuit is high, and which restores it under other conditions, for example when The coefficient of performance of the circuit is degraded. The refrigerant circuit 1 operates in at least two modes: a heating mode of the passenger compartment and a cooling mode of the passenger compartment. In the cooling mode, the refrigerant FR is set in motion in the circuit 1 in a direction of circulation shown in FIG. 1 by the dashed arrows. This circulation is operated by the compressor 2 which sends the refrigerant to the external exchanger 15. The latter then behaves like a gas cooler or condenser, the refrigerant FR is thus cooled by the outside air flow 16. L Expansion member 11 then receives the refrigerant is applied to the latter a lowering of its pressure. The refrigerant FR then continues its movement towards the inner heat exchanger 3. In the cooling mode, the refrigerant bypasses the storage device 9 via a pipe 21 connected on one side between the second orifice 10 of the storage device and the first orifice 12 of the expansion member 11 and the other between the second orifice 7 of the internal exchanger 3 and the first orifice 8 of the storage device 9. The circulation of refrigerant through this conduit 21 is placed under the control of a control device 22, which takes the form of an electrically controlled shutoff valve. The circulation of the refrigerant FR continues to the inner heat exchanger 3 where the air flow 6 is cooled by exchange with the refrigerant within the inner heat exchanger. The latter then behaves like an evaporator. Once evaporated, the refrigerant FR flows to the compressor 2 before being compressed again to perform the thermodynamic cycle mentioned above.

Le mode chauffage de l'habitacle fonctionne comme suit. Dans l'exemple de réalisation de la figure 1, le sens de circulation du fluide frigorigène FR est inversé, ce sens étant symbolisé par des flèches en trait fort. Cette inversion de sens de circulation du fluide frigorigène est opérée directement par le compresseur 2 comme c'est le cas de l'exemple de réalisation de la figure 1 ou par le biais d'une vanne quatre voies comme illustré dans l'exemple de réalisation de la figure 2. Le compresseur 2 comprime, échauffe et met en circulation le fluide frigorigène FR vers l'échangeur intérieur 3. Dans ce mode chauffage, l'échangeur intérieur 3 se comporte comme un condenseur ou refroidisseur de gaz et le fluide frigorigène à l'état gazeux et chaud échange avec le flux d'air habitacle 6, produisant ainsi un échauffement de l'habitacle du véhicule. Le fluide frigorigène FR poursuit sa circulation soit au travers du dispositif de stockage 9, soit au travers de la conduite 21 quand le dispositif de contrôle 22 est ouvert. Quand le dispositif de contrôle 22 est ouvert, le fluide frigorigène contourne naturellement le dispositif de stockage 9 car la perte de charge dans la conduite 21 est plus faible que la perte de charge dans le dispositif de stockage quand le fluide frigorigène le traverse. L'organe de détente 11 applique alors un abaissement de la pression du fluide frigorigène avant que ce dernier ne pénètre à l'intérieur de l'échangeur extérieur 15. Cet échangeur extérieur 15 se comporte alors comme un évaporateur car le flux d'air extérieur 16 est refroidit par échange avec le fluide frigorigène qui circule dans l'échangeur extérieur 15. Le fluide frigorigène termine son cheminement en retournant vers le second orifice 19 du compresseur 2 pour effectuer à nouveau un cycle thermodynamique. Dans cette situation, le circuit de réfrigérant 1 fonctionne en mode chauffage, autrement appelé pompe à chaleur. The heating mode of the passenger compartment works as follows. In the embodiment of Figure 1, the flow direction of the refrigerant FR is reversed, this direction being symbolized by arrows in bold line. This inversion of the direction of circulation of the refrigerant is operated directly by the compressor 2 as is the case of the embodiment of FIG. 1 or by means of a four-way valve as illustrated in the embodiment example. The compressor 2 compresses, heats and circulates the refrigerant FR to the indoor heat exchanger 3. In this heating mode, the indoor heat exchanger 3 behaves like a condenser or gas cooler and the refrigerant to the gaseous state and hot exchange with the cabin air flow 6, thus producing a heating of the passenger compartment of the vehicle. The refrigerant FR continues its circulation either through the storage device 9, or through the pipe 21 when the control device 22 is open. When the control device 22 is open, the refrigerant naturally bypasses the storage device 9 because the pressure drop in the pipe 21 is lower than the pressure drop in the storage device when the refrigerant passes through it. The expansion member 11 then applies a lowering of the pressure of the refrigerant before the latter enters the inside of the external exchanger 15. This external exchanger 15 then behaves like an evaporator because the outside air flow 16 is cooled by exchange with the refrigerant flowing in the external heat exchanger 15. The refrigerant ends its path by returning to the second port 19 of the compressor 2 to perform a thermodynamic cycle again. In this situation, the refrigerant circuit 1 operates in heating mode, otherwise known as heat pump.

Selon l'invention, le dispositif de stockage est tout particulièrement utilisé pendant le mode chauffage pour compléter l'échange thermique effectué dans l'échangeur intérieur 3. Dans cette situation, le fluide frigorigène qui traverse l'échangeur intérieur 3 est refroidit par le flux d'air intérieur, ce dernier se trouvant chauffé. Le dispositif de stockage est alors utilisé pour améliorer le coefficient de performance du circuit. Ce dispositif de stockage joue aussi un rôle de levier pendant la phase de dégivrage de l'échangeur extérieur. La figure 2 montre une variante du circuit de réfrigérant selon la figure 1. L'inversion du sens de circulation du fluide frigorigène à l'intérieur du circuit est opérée au moyen d'une vanne quatre voies 23 qui gère la circulation du fluide frigorigène du compresseur soit vers l'échangeur extérieur 15 en mode refroidissement ou vers l'échangeur intérieur 3 en mode chauffage. Le compresseur envoie ainsi le fluide frigorigène comprimé par son premier orifice 18 et reçoit le fluide à basse pression par son second orifice 19 quelque soit le mode de fonctionnement du circuit, c'est-à-dire en mode chauffage ou en mode refroidissement. Cette figure 2 illustre une position de la vanne quatre voies 23 selon le mode de chauffage. Un module de contrôle 24 reçoit des informations relatives au circuit et gère la commande de certains composants de ce même circuit. Le module de contrôle 24 reçoit un signal électrique en provenance d'un capteur 25 placé dans le circuit entre le second orifice 17 de l'échangeur extérieur 15 et le second orifice 19 du compresseur 2. Ce capteur 25 mesure la pression du fluide frigorigène FR dans le circuit côté basse pression, ce côté s'étendant du second orifice 13 de l'organe de détente 11 au second orifice 19 du compresseur 2. Dans l'exemple de la figure 2, le capteur basse pression 25 est installé immédiatement en amont (selon le sens de circulation du fluide frigorigène) du compresseur, c'est-à-dire entre une première sortie 27 de la vanne quatre voies et le second orifice 19 du compresseur 2. Le module de commande reçoit également une information électrique qui est l'image de la pression dans le circuit 1 côté haute pression, c'est-à-dire entre le premier orifice 18 du compresseur 2 et le premier orifice 12 de l'organe de détente 11. Cette information est délivrée par un capteur haute pression 28 en contact avec le fluide frigorigène FR. Dans le cas d'espèce de la figure 2, le capteur haute pression 28 est implanté directement en aval du compresseur 2, c'est-à-dire entre le premier orifice 18 du compresseur et une première entrée 29 de la vanne quatre voies 23. Ce capteur mesure ainsi la pression de décharge du compresseur. Le module de contrôle 24 reçoit encore deux informations électriques. Une première information est relative à la température du fluide frigorigène à la sortie de l'échangeur intérieur 3. Un premier capteur de température 30 est donc installé sur ou dans le circuit 1, en contact avec le fluide frigorigène, entre le second orifice 7 de l'échangeur intérieur 3 et le premier orifice 8 du dispositif de stockage 9. Une seconde information est relative à la température du matériau 20 présent dans le dispositif de stockage 9. Un second capteur de température 31 est donc en contact direct ou indirect avec le matériau stockeur 20, à l'intérieur d'une enceinte qui délimite le dispositif de stockage. Le second capteur de température 31 est implanté dans le matériau 20 et préférentiellement à proximité du second orifice 10 du dispositif de stockage 9. Le module de contrôle 24 agît sur et contrôle le compresseur 2, ce contrôle étant symbolisé par une flèche référencée 32. Ce contrôle intervient par commande électrique par exemple d'une vanne de contrôle implantée dans le compresseur 2 pour le cas où le compresseur est du type à contrôle externe. Le module de contrôle 24 contrôle la vanne quatre voies 23 de sorte à 2960629 i0 commander le passage du mode chauffage en mode refroidissement et vice-etversa. Ce contrôle est symbolisé par une flèche en pointillé référencée 34. Le module de contrôle 24 agit également sur le dispositif de contrôle 22 via un lien électrique symbolisé sous la référence 33. Le module de contrôle 24 5 commande donc l'ouverture ou la fermeture de ce dispositif de contrôle 22 de sorte à respectivement autoriser ou interdire le passage du fluide frigorigène dans la conduite 21. Quand le dispositif de contrôle 22 est ouvert, le fluide frigorigène contourne naturellement le dispositif de stockage 9 car la perte de charge dans la conduite 21 est plus faible que la perte de charge dans le 10 dispositif de stockage quand le fluide frigorigène le traverse. Le procédé de contrôle d'un dispositif de stockage est mis en oeuvre par le module de contrôle 24. En effet, ce dernier calcul une température seuil directement liée à la température du fluide frigorigène FR telle que mesurée par le premier capteur de température 30. La température seuil correspond à cette 15 température mesurée à laquelle est soustraite une marge de fonctionnement, par exemple égale à 8°C. Le module de contrôle 24 compare alors la température seuil avec la température du matériau 20 telle que mesurée par le second capteur de température 31. Si le résultat de cette comparaison montre que la température 20 du matériau est inférieure à la température du fluide frigorigène, le module de contrôle 24 opère une fermeture du dispositif de contrôle 22 ce qui provoque une circulation du fluide frigorigène dans le dispositif de stockage 9 et un échange entre le matériau et ce fluide. Dans une telle situation, la température du fluide frigorigène est donc 25 abaisser par le dispositif de stockage, la température du fluide frigorigène au niveau du premier orifice 8 du dispositif de stockage étant inférieure à sa température au niveau du second orifice 10 du même dispositif. La conséquence de cette situation est une amélioration du coefficient de performance du circuit. 30 De manière alternative, le premier capteur de température 30 peut être omis. En effet, la température du fluide frigorigène en sortie de l'échangeur intérieur 3 peut être dérivée à partir de l'information de pression, dite haute 2960629 Il pression, délivrée par le capteur haute pression 28. Le procédé selon l'invention peut être amélioré par l'ajout ou l'utilisation d'une deuxième condition pour commander le dispositif de contrôle 22. En effet, après avoir comparé la température du fluide frigorigène FR avec la 5 température du matériau 20, le procédé vérifie une condition relative à la pression du fluide frigorigène en sortie du compresseur 2. La pression du fluide frigorigène côté haute pression, c'est-à-dire entre le compresseur 2 et l'organe de détente 11 et plus particulièrement directement en sortie du compresseur 2, est mesurée par le capteur haute pression 28. 10 Cette valeur de haute pression est ensuite comparée par le module de contrôle 24 à une pression seuil. Si la pression mesurée par le capteur haute pression 28 est inférieure à la pression seuil, le module de contrôle ordonne la fermeture du dispositif de contrôle 22 de sorte à forcer la circulation du fluide frigorigène au travers du dispositif de stockage 9 et ainsi opérer une échange thermique 15 entre ce fluide et le matériau 20 enfermé dans le dispositif de stockage 9. La pression seuil est déterminée en fonction d'un débit du flux d'air habitacle traversant l'échangeur intérieur 3, cette pression seuil étant plus précisément déterminée par la formule suivante : Qair *(2*k1*Psu + k2) 20 Pression seuil = * Psu2 (y - 1) * a où Qair représente le débit du flux d'air habitacle qui circule dans l'installation de ventilation et déterminé à partir d'une commande d'un ventilateur inclut dans cette installation ; Psu représente la basse pression mesurée par le capteur 25 basse pression 25 ; k1, k2 et a représentent des constantes relatives au circuit de réfrigérant 1 et y représente un ratio entre une puissance de stockage du dispositif de stockage 9 et une consommation supplémentaire du compresseur 2 pour le stockage d'énergie dans le dispositif de stockage 9. De manière alternative, la deuxième condition est déterminée en 30 fonction d'un taux de compression du compresseur qui est égal à la haute pression, mesurée par le capteur haute pression 28, divisée par la basse pression mesurée par le capteur basse pression 25. Si le module de contrôle 24 détermine que le taux de compression ainsi mesuré est inférieur à un taux de compression seuil, le module de contrôle opère la fermeture du dispositif de contrôle 22 de sorte à forcer la circulation du fluide frigorigène au travers du dispositif de stockage 9 et ainsi opérer une échange thermique entre ce fluide et le matériau 20. According to the invention, the storage device is particularly used during the heating mode to complete the heat exchange performed in the indoor heat exchanger 3. In this situation, the refrigerant that passes through the indoor heat exchanger 3 is cooled by the flow. of indoor air, the latter being heated. The storage device is then used to improve the performance coefficient of the circuit. This storage device also plays a role of leverage during the defrosting phase of the external exchanger. FIG. 2 shows a variant of the refrigerant circuit according to FIG. 1. The reversal of the direction of circulation of the refrigerant inside the circuit is effected by means of a four-way valve 23 which controls the circulation of the refrigerant of the refrigerant. compressor either to the outdoor heat exchanger 15 in cooling mode or to the indoor heat exchanger 3 in heating mode. The compressor thus sends the compressed refrigerant through its first orifice 18 and receives the fluid at low pressure through its second orifice 19 whatever the operating mode of the circuit, that is to say in heating mode or in cooling mode. This FIG. 2 illustrates a position of the four-way valve 23 according to the heating mode. A control module 24 receives information relating to the circuit and manages the control of certain components of this same circuit. The control module 24 receives an electrical signal from a sensor 25 placed in the circuit between the second orifice 17 of the external heat exchanger 15 and the second orifice 19 of the compressor 2. This sensor 25 measures the pressure of the refrigerant FR in the low pressure side circuit, this side extending from the second orifice 13 of the expansion member 11 to the second orifice 19 of the compressor 2. In the example of FIG. 2, the low pressure sensor 25 is installed immediately upstream (depending on the direction of circulation of the refrigerant) of the compressor, that is to say between a first outlet 27 of the four-way valve and the second orifice 19 of the compressor 2. The control module also receives an electrical information which is the image of the pressure in the circuit 1 high pressure side, that is to say between the first port 18 of the compressor 2 and the first port 12 of the expansion member 11. This information is delivered by a high sensor pressure 28 in contact with the refrigerant FR. In this particular case of FIG. 2, the high pressure sensor 28 is implanted directly downstream of the compressor 2, that is to say between the first orifice 18 of the compressor and a first inlet 29 of the four-way valve 23. This sensor thus measures the discharge pressure of the compressor. The control module 24 still receives two electrical information. A first piece of information relates to the temperature of the refrigerant at the outlet of the internal heat exchanger 3. A first temperature sensor 30 is therefore installed on or in the circuit 1, in contact with the refrigerant, between the second orifice 7 of the the inner heat exchanger 3 and the first orifice 8 of the storage device 9. A second piece of information relates to the temperature of the material 20 present in the storage device 9. A second temperature sensor 31 is therefore in direct or indirect contact with the storage material 20, inside an enclosure which delimits the storage device. The second temperature sensor 31 is implanted in the material 20 and preferably near the second orifice 10 of the storage device 9. The control module 24 acts on and controls the compressor 2, this control being symbolized by an arrow referenced 32. control occurs by electrical control for example of a control valve located in the compressor 2 for the case where the compressor is of the external control type. The control module 24 controls the four-way valve 23 so as to control the passage of the heating mode in cooling mode and vice-versa. This control is symbolized by a dashed arrow referenced 34. The control module 24 also acts on the control device 22 via an electrical link symbolized under the reference 33. The control module 24 therefore controls the opening or closing of this control device 22 so as to respectively allow or prohibit the passage of the refrigerant in the pipe 21. When the control device 22 is open, the refrigerant naturally bypasses the storage device 9 because the pressure drop in the pipe 21 is lower than the pressure drop in the storage device when the refrigerant passes therethrough. The control method of a storage device is implemented by the control module 24. In fact, the latter calculates a threshold temperature directly related to the temperature of the refrigerant FR as measured by the first temperature sensor 30. The threshold temperature corresponds to this measured temperature at which is subtracted an operating margin, for example equal to 8 ° C. The control module 24 then compares the threshold temperature with the temperature of the material 20 as measured by the second temperature sensor 31. If the result of this comparison shows that the temperature of the material is lower than the temperature of the refrigerant, the control module 24 operates a closure of the control device 22 which causes a circulation of the refrigerant in the storage device 9 and an exchange between the material and the fluid. In such a situation, the temperature of the refrigerant is thus lowered by the storage device, the temperature of the refrigerant at the first orifice 8 of the storage device being lower than its temperature at the second orifice 10 of the same device. The consequence of this situation is an improvement in the performance coefficient of the circuit. Alternatively, the first temperature sensor 30 may be omitted. Indeed, the temperature of the refrigerant at the outlet of the internal exchanger 3 can be derived from the pressure information, called high pressure 2960629, delivered by the high pressure sensor 28. The method according to the invention can be improved by the addition or use of a second condition for controlling the control device 22. In fact, after comparing the temperature of the refrigerant FR with the temperature of the material 20, the method verifies a condition relating to the pressure of the refrigerant at the outlet of the compressor 2. The pressure of the refrigerant side high pressure, that is to say between the compressor 2 and the expansion member 11 and more particularly directly at the outlet of the compressor 2, is measured by the high pressure sensor 28. This high pressure value is then compared by the control module 24 to a threshold pressure. If the pressure measured by the high pressure sensor 28 is lower than the threshold pressure, the control module orders the closing of the control device 22 so as to force the circulation of the refrigerant through the storage device 9 and thus make an exchange between the fluid and the material 20 enclosed in the storage device 9. The threshold pressure is determined as a function of a flow rate of the interior air flow through the inner heat exchanger 3, this threshold pressure being more precisely determined by the following formula: Qair * (2 * k1 * Psu + k2) 20 Threshold pressure = * Psu2 (y - 1) * a where Qair represents the flow rate of the interior airflow flowing through the ventilation system and determined from a fan control included in this installation; Psu represents the low pressure measured by the low pressure sensor 25; k1, k2 and a represent constants relating to the refrigerant circuit 1 and y represents a ratio between a storage power of the storage device 9 and an additional consumption of the compressor 2 for the storage of energy in the storage device 9. alternatively, the second condition is determined as a function of a compressor compression ratio which is equal to the high pressure, as measured by the high pressure sensor 28, divided by the low pressure measured by the low pressure sensor 25. control module 24 determines that the compression ratio thus measured is less than a threshold compression ratio, the control module closes the control device 22 so as to force the circulation of the refrigerant through the storage device 9 and thus to effect a heat exchange between this fluid and the material 20.

Le taux de compression seuil est déterminé par la relation suivante : Qair *(2*kl*Psu + k2*Psu) Taux de compression seuil = * Psu2 (y-1)*a dans laquelle les constituants de la formule sont identiques à la formule déterminant la pression seuil évoquée ci-dessus. La figure 3 montre un logigramme symbolisant le procédé de contrôle selon l'invention. L'étape 50 correspond à la mise en fonctionnement du circuit de réfrigérant 1 selon le mode chauffage. The compression ratio threshold is determined by the following relation: Qair * (2 * kl * Psu + k2 * Psu) Threshold compression ratio = * Psu2 (y-1) * a in which the constituents of the formula are identical to the formula determining the threshold pressure mentioned above. FIG. 3 shows a logic diagram symbolizing the control method according to the invention. Step 50 corresponds to the operation of the refrigerant circuit 1 according to the heating mode.

A l'étape 51, le module de contrôle 24 collecte les informations de température du fluide frigorigène FR et du matériau 20 à l'intérieur du dispositif de stockage 9 ainsi que les informations de haute pression et basse pression mesurées respectivement par le capteur haute pression 28 et par le capteur basse pression 25. In step 51, the control module 24 collects the temperature information of the refrigerant FR and the material 20 inside the storage device 9 as well as the high pressure and low pressure information respectively measured by the high pressure sensor. 28 and by the low pressure sensor 25.

L'étape 52 correspond à la comparaison effectuée par le module de contrôle 24 au cours de laquelle la température du matériau 20 est comparée à une température seuil. Si cette température du matériau est inférieure à la température seuil, le module de contrôle 24 ordonne à l'étape 53 la fermeture du dispositif de contrôle 22. A l'inverse, si la température du matériau est supérieure à la température seuil, le module de contrôle 24 ordonne à l'étape 54 l'ouverture du dispositif de contrôle 22 de sorte à laisser passer le fluide frigorigène dans la conduite 21 et ainsi empêcher l'échange entre ce fluide et le matériau 20. La figure 4 illustre le procédé dans sa version améliorée, c'est-à-dire en tenant compte de la deuxième condition relative à la pression. Les étapes 50 à 52 et 54 sont identiques au logigramme précédent. Après l'étape 53 et si la température du matériau 20 est inférieure à la température seuil, le module de contrôle compare, à une étape 55, la pression en sortie de compresseur telle que mesurée par le capteur haute pression 28 avec la pression seuil telle que définie auparavant. Si cette comparaison montre que la haute pression mesurée par le capteur haute pression 28 est inférieure à la pression seuil, le module de contrôle 24 ordonne à une étape 56 la fermeture du dispositif de contrôle 22. A l'inverse, si la haute pression mesurée par le capteur haute pression 28 est supérieure à la pression seuil, le procédé renvoi à l'étape 54 où le module de contrôle 24 organise l'ouverture du dispositif de contrôle 22 de sorte à laisser passer le fluide frigorigène dans la conduite 21 et ainsi empêcher l'échange entre ce fluide et le matériau 20. lo Un tel logigramme fonctionne de manière similaire en utilisant la condition relative au taux de compression. Step 52 corresponds to the comparison made by the control module 24 during which the temperature of the material 20 is compared with a threshold temperature. If this temperature of the material is lower than the threshold temperature, the control module 24 orders at step 53 the closing of the control device 22. Conversely, if the temperature of the material is higher than the threshold temperature, the module 24 controls the opening of the control device 22 so as to allow the refrigerant to pass through the pipe 21 and thus prevent the exchange between this fluid and the material 20. FIG. 4 illustrates the process in FIG. its improved version, that is to say taking into account the second condition relating to the pressure. Steps 50 to 52 and 54 are identical to the previous logic diagram. After step 53 and if the temperature of the material 20 is lower than the threshold temperature, the control module compares, in a step 55, the pressure at the compressor outlet as measured by the high pressure sensor 28 with the threshold pressure such as than previously defined. If this comparison shows that the high pressure measured by the high pressure sensor 28 is lower than the threshold pressure, the control module 24 orders a step 56 to close the control device 22. Conversely, if the high pressure measured by the high pressure sensor 28 is greater than the threshold pressure, the method refers to the step 54 where the control module 24 organizes the opening of the control device 22 so as to let the refrigerant in the pipe 21 and so to prevent the exchange between this fluid and the material 20. Such a flow chart works in a similar way using the compression ratio condition.

Claims (16)

REVENDICATIONS1. Procédé de contrôle d'un dispositif de stockage (9) monté dans un circuit de réfrigérant (1) parcouru par un fluide frigorigène (FR), ledit dispositif de stockage (9) étant installé entre un échangeur intérieur (3) et un organe de détente (11), ledit dispositif de stockage (9) comprenant un matériau (20) qui échange avec ledit fluide frigorigène (FR), ledit circuit comprenant une conduite (21) contournant le dispositif de stockage (9), caractérisé en ce que ledit procédé autorise un échange thermique entre le matériau (20) et le fluide frigorigène (FR) quand la température du matériau (20) est inférieure à une température seuil relative au fluide frigorigène (FR) déterminée en sortie de l'échangeur intérieur (3). REVENDICATIONS1. A method of controlling a storage device (9) mounted in a refrigerant circuit (1) traversed by a refrigerant (FR), said storage device (9) being installed between an indoor heat exchanger (3) and a refrigerant detent (11), said storage device (9) comprising a material (20) which exchanges with said refrigerant (FR), said circuit comprising a duct (21) bypassing the storage device (9), characterized in that said method allows a thermal exchange between the material (20) and the refrigerant (FR) when the temperature of the material (20) is lower than a threshold temperature relative to the refrigerant (FR) determined at the outlet of the internal exchanger (3) . 2. Procédé de contrôle selon la revendication 1, dans lequel on interdit l'échange thermique entre le matériau (20) et le fluide frigorigène (FR) quand la température du matériau (20) est supérieure à la température du fluide frigorigène (FR) déterminée en sortie de l'échangeur intérieur (3). 2. Control method according to claim 1, wherein the thermal exchange between the material (20) and the refrigerant (FR) is prohibited when the temperature of the material (20) is greater than the temperature of the refrigerant (FR). determined at the outlet of the indoor exchanger (3). 3. Procédé de contrôle selon les revendications 1 ou 2, dans lequel la circulation de fluide frigorigène (FR) dans la conduite (21) est placée sous la dépendance d'un dispositif de contrôle (22) et dans lequel l'autorisation d'échange thermique entre le matériau (20) et le fluide frigorigène (FR) est mise en oeuvre en fermant le dispositif de contrôle (22). 3. Control method according to claims 1 or 2, wherein the circulation of refrigerant (FR) in the pipe (21) is placed under the control of a control device (22) and in which the authorization of thermal exchange between the material (20) and the refrigerant (FR) is implemented by closing the control device (22). 4. Procédé de contrôle selon l'une des revendications 1 à 3, dans lequel la température seuil est égale à une température du fluide frigorigène (FR) à laquelle est soustraite une marge de fonctionnement. 4. Control method according to one of claims 1 to 3, wherein the threshold temperature is equal to a refrigerant temperature (FR) to which is subtracted a margin of operation. 5. Procédé de contrôle selon la revendication 4, dans lequel la 25 température du fluide frigorigène (FR) est mesurée par un premier capteur (30) implanté en sortie de l'échangeur intérieur (3). 5. Control method according to claim 4, wherein the temperature of the refrigerant (FR) is measured by a first sensor (30) implanted at the outlet of the indoor exchanger (3). 6. Procédé de contrôle selon la revendication 4, dans lequel la température du fluide frigorigène (FR) est estimée à partir d'une pression dudit fluide frigorigène mesurée entre une sortie d'un compresseur (2) équipant ledit 30 circuit et une entrée de l'organe de détente (Il). 6. A control method according to claim 4, wherein the temperature of the refrigerant (FR) is estimated from a pressure of said refrigerant measured between an output of a compressor (2) equipping said circuit and an input of the relaxing organ (II). 7. Procédé de contrôle selon l'une quelconque des revendications 1 à 6, dans lequel le circuit de réfrigérant (1) fonctionne en mode chauffage. 7. Control method according to any one of claims 1 to 6, wherein the refrigerant circuit (1) operates in heating mode. 8. Procédé de contrôle selon l'une quelconque des revendications 1 à 7, dans lequel la température du matériau (20) est mesurée par un second capteur (31) installé dans le dispositif de stockage (9). 8. Control method according to any one of claims 1 to 7, wherein the temperature of the material (20) is measured by a second sensor (31) installed in the storage device (9). 9. Procédé de contrôle selon l'une quelconque des revendications précédentes, dans lequel ledit circuit de réfrigérant (1) comprend un compresseur (2) et l'échange thermique entre le matériau (20) et le fluide frigorigène (FR) est autorisé quand une pression de fluide frigorigène déterminée entre le compresseur (2) et l'organe de détente (11) est inférieure à une pression seuil. A control method according to any one of the preceding claims, wherein said refrigerant circuit (1) comprises a compressor (2) and the heat exchange between the material (20) and the refrigerant (FR) is allowed when a refrigerant pressure determined between the compressor (2) and the expansion member (11) is less than a threshold pressure. 10. Procédé de contrôle selon la revendication 9, dans lequel la pression seuil est dépendante d'un débit d'un flux d'air d'habitacle (6) d'un véhicule qui échange avec le fluide frigorigène (FR) au travers de l'échangeur intérieur (3). 10. Control method according to claim 9, wherein the threshold pressure is dependent on a flow rate of a cabin air flow (6) of a vehicle that exchanges with the refrigerant (FR) through the inner heat exchanger (3). 11. Procédé de contrôle selon l'une quelconque des revendications 1 à 8, dans lequel le circuit de réfrigérant (1) comprend un compresseur (2) et l'échange thermique entre le matériau (20) et le fluide frigorigène (FR) est autorisé quand un taux de compression du compresseur (2) est inférieur à un taux de compression seuil. 11. A method of control according to any one of claims 1 to 8, wherein the refrigerant circuit (1) comprises a compressor (2) and the heat exchange between the material (20) and the refrigerant (FR) is allowed when a compression ratio of the compressor (2) is less than a threshold compression ratio. 12. Circuit de réfrigérant (1) comprenant un compresseur (2), un échangeur extérieur (15), un organe de détente (11) et un échangeur intérieur (3) parcouru dans cet ordre par un fluide frigorigène (FR) quand le circuit fonctionne en mode refroidissement et en sens inverse quand ledit circuit fonctionne en mode chauffage, caractérisé en ce qu'un dispositif de stockage (9) est intégré audit circuit entre un second orifice (7) de l'échangeur intérieur (3) et un premier orifice (12) de l'organe de détente (11) quand le circuit fonctionne en mode chauffage et en ce qu'une conduite (21) contourne le dispositif de stockage (9), une circulation de fluide frigorigène (FR) dans ladite conduite (21) étant placé sous la dépendance d'un dispositif de contrôle (22). Coolant circuit (1) comprising a compressor (2), an external heat exchanger (15), an expansion member (11) and an internal heat exchanger (3) traversed in this order by a refrigerant (FR) when the circuit operates in cooling mode and in opposite direction when said circuit operates in heating mode, characterized in that a storage device (9) is integrated in said circuit between a second orifice (7) of the inner heat exchanger (3) and a first orifice (12) of the expansion element (11) when the circuit is operating in heating mode and in that a pipe (21) bypasses the storage device (9), a circulation of refrigerant (FR) in said pipe (21) being under the control of a control device (22). 13. Circuit selon la revendication 12, dans lequel le dispositif de stockage (9) comprend un matériau (20) qui échange thermiquement avec le fluide frigorigène (FR). 13. Circuit according to claim 12, wherein the storage device (9) comprises a material (20) which thermally exchanges with the refrigerant (FR). 14. Circuit selon la revendication 13, dans lequel un second capteur de température (31) est en contact avec le matériau (20). The circuit of claim 13, wherein a second temperature sensor (31) is in contact with the material (20). 15. Circuit selon l'une quelconque des revendications 12 à 14, comprenant un premier capteur de température (30) du fluide frigorigène (FR) installé entre l'échangeur intérieur (3) et le dispositif de stockage (9). 15. Circuit according to any one of claims 12 to 14, comprising a first temperature sensor (30) of the refrigerant (FR) installed between the inner heat exchanger (3) and the storage device (9). 16. Circuit selon l'une quelconque des revendications 12 à 15, comprenant un capteur de pression (28) du fluide frigorigène (FR) installé entre le compresseur (2) et l'organe de détente (11) quand le circuit fonctionne en mode chauffage. 16. Circuit according to any one of claims 12 to 15, comprising a pressure sensor (28) of the refrigerant (FR) installed between the compressor (2) and the expansion member (11) when the circuit operates in mode heater.
FR1002277A 2010-05-31 2010-05-31 METHOD FOR CONTROLLING A STORAGE DEVICE IN A REFRIGERANT CIRCUIT Expired - Fee Related FR2960629B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1002277A FR2960629B1 (en) 2010-05-31 2010-05-31 METHOD FOR CONTROLLING A STORAGE DEVICE IN A REFRIGERANT CIRCUIT
EP11165429.9A EP2400240B1 (en) 2010-05-31 2011-05-10 Method for controlling a storage device in a coolant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1002277A FR2960629B1 (en) 2010-05-31 2010-05-31 METHOD FOR CONTROLLING A STORAGE DEVICE IN A REFRIGERANT CIRCUIT

Publications (2)

Publication Number Publication Date
FR2960629A1 true FR2960629A1 (en) 2011-12-02
FR2960629B1 FR2960629B1 (en) 2014-09-12

Family

ID=43707804

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1002277A Expired - Fee Related FR2960629B1 (en) 2010-05-31 2010-05-31 METHOD FOR CONTROLLING A STORAGE DEVICE IN A REFRIGERANT CIRCUIT

Country Status (2)

Country Link
EP (1) EP2400240B1 (en)
FR (1) FR2960629B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677243A (en) * 1952-08-28 1954-05-04 Telkes Maria Method and apparatus for the storage of heat
US4165037A (en) * 1976-06-21 1979-08-21 Mccarson Donald M Apparatus and method for combined solar and heat pump heating and cooling system
US4798059A (en) * 1987-01-30 1989-01-17 Kabushiki Kaisha Toshiba Air conditioner with heat regeneration cycle
US20020162342A1 (en) * 2001-05-01 2002-11-07 Kuo-Liang Weng Method for controlling air conditioner/heater by thermal storage
US20030042014A1 (en) * 2001-08-31 2003-03-06 Jin Keum Su Heat pump system
JP2005042943A (en) * 2003-07-23 2005-02-17 Hitachi Ltd Heat storage type air conditioner
US20060096308A1 (en) * 2004-11-09 2006-05-11 Manole Dan M Vapor compression system with defrost system
WO2008037896A2 (en) * 2006-09-28 2008-04-03 Heliotrans Module usable for heat storage and transfer
WO2010024553A2 (en) * 2008-08-26 2010-03-04 Jin Kum-Soo Heat pump system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677243A (en) * 1952-08-28 1954-05-04 Telkes Maria Method and apparatus for the storage of heat
US4165037A (en) * 1976-06-21 1979-08-21 Mccarson Donald M Apparatus and method for combined solar and heat pump heating and cooling system
US4798059A (en) * 1987-01-30 1989-01-17 Kabushiki Kaisha Toshiba Air conditioner with heat regeneration cycle
US20020162342A1 (en) * 2001-05-01 2002-11-07 Kuo-Liang Weng Method for controlling air conditioner/heater by thermal storage
US20030042014A1 (en) * 2001-08-31 2003-03-06 Jin Keum Su Heat pump system
JP2005042943A (en) * 2003-07-23 2005-02-17 Hitachi Ltd Heat storage type air conditioner
US20060096308A1 (en) * 2004-11-09 2006-05-11 Manole Dan M Vapor compression system with defrost system
WO2008037896A2 (en) * 2006-09-28 2008-04-03 Heliotrans Module usable for heat storage and transfer
WO2010024553A2 (en) * 2008-08-26 2010-03-04 Jin Kum-Soo Heat pump system

Also Published As

Publication number Publication date
FR2960629B1 (en) 2014-09-12
EP2400240B1 (en) 2016-04-20
EP2400240A1 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
EP2895806B1 (en) Device for thermally conditioning an interior of an electric vehicle
EP2841288B1 (en) Heating, ventilation and/or air-conditioning equipment comprising a device for controlling the temperature of a battery, and method for implementing same
EP1965156A1 (en) Air conditioning device equipped with an electric expansion valve
WO2013079382A1 (en) Method for deicing a heat management device for a motor vehicle
EP2532544B1 (en) System for thermal conditioning of a passenger compartment and an electric battery
FR2961445A1 (en) THERMAL CONDITIONING SYSTEM OF AN ELECTRIC VEHICLE
EP3781882B1 (en) Thermal conditioning device for a motor vehicle
EP2720890B1 (en) Refrigerant circuit and method of controlling such a circuit
WO2013079342A1 (en) Circuit including an internal heat exchanger, through one branch of which a coolant flows in two opposite directions
EP2790938B1 (en) Method for controlling a thermal conditioning unit of a motor vehicle passenger compartment
FR2974624A1 (en) ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT
EP2179875B1 (en) Air conditioning system having a thermal storage module in a secondary circuit
EP2517906B1 (en) Method for controlling the coolant temperature at the input of a compressor
EP2550491B1 (en) Air-conditioning loop including a heat exchanger positioned directly between two expansion members
EP2400240B1 (en) Method for controlling a storage device in a coolant circuit
FR3043762A1 (en) HEAT PUMP SYSTEM WITH ELECTRICAL EXPANSION VALVE FOR IMPROVED MONITORING OF HUMIDITY IN A HABITACLE
EP2766206B1 (en) Depressurization device including a depressurization means and a means for bypassing the depressurization means
EP2641037A1 (en) Air-conditioning loop provided with a solenoid valve and operating as a heat pump
FR3001413A1 (en) THERMAL CONDITIONING DEVICE FOR MOTOR VEHICLE AND HEATING, VENTILATION AND / OR AIR CONDITIONING SYSTEM THEREOF
WO2013000547A1 (en) Coolant circuit comprising two means for storing coolant
FR3077236A1 (en) DEVICE FOR THE HEAT TREATMENT OF A CARGO AND A TRACTION CHAIN OF A VEHICLE
WO2014095592A1 (en) System for regulating the expansion of a coolant
FR3020598A1 (en) DEVICE FOR THERMALLY CONDITIONING A HABITACLE OF A MOTOR VEHICLE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

ST Notification of lapse

Effective date: 20230105