FR2939077A1 - MATERIAL OF AME. - Google Patents

MATERIAL OF AME. Download PDF

Info

Publication number
FR2939077A1
FR2939077A1 FR0858211A FR0858211A FR2939077A1 FR 2939077 A1 FR2939077 A1 FR 2939077A1 FR 0858211 A FR0858211 A FR 0858211A FR 0858211 A FR0858211 A FR 0858211A FR 2939077 A1 FR2939077 A1 FR 2939077A1
Authority
FR
France
Prior art keywords
core material
core
fibers
hollow spheres
sandwich structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0858211A
Other languages
French (fr)
Other versions
FR2939077B1 (en
Inventor
Laurent Mezeix
Dominique Poquillon
Christophe Bouvet
Jean Luc Brian
Valia Fascio
Philippe Vie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National Polytechnique de Toulouse INPT
Ateca
Universite Toulouse III Paul Sabatier
Original Assignee
Institut National Polytechnique de Toulouse INPT
Ateca
Universite Toulouse III Paul Sabatier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National Polytechnique de Toulouse INPT, Ateca, Universite Toulouse III Paul Sabatier filed Critical Institut National Polytechnique de Toulouse INPT
Priority to FR0858211A priority Critical patent/FR2939077B1/en
Priority to PCT/FR2009/052357 priority patent/WO2010063941A1/en
Priority to EP09803799A priority patent/EP2370249A1/en
Publication of FR2939077A1 publication Critical patent/FR2939077A1/en
Application granted granted Critical
Publication of FR2939077B1 publication Critical patent/FR2939077B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0221Thermoplastic elastomer particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Abstract

Matériau d'âme (3) consistant en un matériau composite utilisé pour le remplissage total ou partiel de corps creux ou comme âme dans une structure de type sandwich (10) en étant intercalé entre deux peaux (20), ce matériau composite est constitué de fibres (7, 8), de billes (6) et de résine (5).Core material (3) consisting of a composite material used for the total or partial filling of hollow bodies or as a core in a sandwich-type structure (10) being interposed between two skins (20), this composite material consists of fibers (7, 8), beads (6) and resin (5).

Description

L'invention concerne le domaine des matériaux composites et plus particulièrement celui des matériaux composites utilisés comme matériau d'âme, à propriétés structurales, pour le remplissage total ou partiel de corps creux ou comme âme dans une structure de type sandwich, et elle a pour objet un tel matériau d'âme. Un matériau d'âme de ce type peut par exemple être utilisé, non limitativement, pour le remplissage total ou partiel de structures creuses telles que par exemple un mât de bateau ou les pales d'éoliennes. Le matériau d'âme selon l'invention pourra également être utilisé comme l'un des constituants de panneaux de structure sandwich, lesquels résultent généralement de l'association de deux peaux, de faible épaisseur, constituées de matériaux à relativement haute résistance et haut module, et d'une âme beaucoup plus épaisse et de faible densité. Les peaux des panneaux de structure sandwich peuvent être métalliques, en alliages aluminium par exemple, ou composites, stratifiés carbone époxy par exemple. Ces peaux sont collées sur une âme qui en assure l'écartement, ce qui génère la rigidité en flexion du panneau. Les matériaux d'âme utilisés sont principalement des mousses, organiques ou métalliques, et des nids d'abeilles. Dans l'état actuel des techniques, ces deux familles de solution ont des avantages et des inconvénients spécifiques. Les mousses utilisées comportent des cellules fermées donc non ventilées. Les nid d'abeille présentent des parois de cellules, qui sont positionnées dans l'épaisseur de l'âme et contribuent à la rigidité du panneau notamment en compression. Toutefois les nids d'abeille ne permettent pas de faire varier les caractéristiques dimensionnelles et mécaniques sur différentes parties d'un panneau. Leur hauteur est non ajustable localement et leurs cellules fermées. Un des défauts de ces matériaux de coeur est donc leur non-ventilation malgré l'existence de trous de drainage pas toujours suffisamment efficaces pour assurer une bonne évacuation de l'eau. Cette charge additionnelle est pénalisante et nuit de plus à la durabilité des panneaux. De plus, dans le domaine aéronautique par exemple, la réalisation de pièces de formes complexes avec des âmes en nid d'abeille peut poser problème. En effet, pour de faibles rayons de courbure, le nid d'abeille est difficilement usinable ou peut être difficilement formé. La présente invention a pour but de proposer un matériau d'âme nouveau, qui constitue une alternative aux matériaux d'âme existants, et permet de pallier les inconvénients de ceux-ci. Le matériau d'âme objet de la présente invention consiste en un matériau composite utilisé pour le remplissage total ou partiel de corps creux ou comme âme dans une structure de type sandwich, et il se caractérise essentiellement en ce que ce matériau composite est constitué de fibres, de billes et de résine. Selon une caractéristique additionnelle du matériau d'âme selon l'invention, il comprend, des éléments constitués chacun d'une bille à laquelle sont solidarisées des fibres, lesdits éléments étant reliés les uns aux autres par un enchevêtrement de fibres. Les billes ne sont pas en contact les unes avec les autres, elles constituent une ossature autour de laquelle les fibres sont architecturées. The invention relates to the field of composite materials and more particularly that of composite materials used as core material, with structural properties, for the total or partial filling of hollow bodies or as a core in a sandwich-type structure, and it has the following advantages: object such a core material. A core material of this type can for example be used, without limitation, for the total or partial filling of hollow structures such as for example a boat mast or wind turbine blades. The core material according to the invention may also be used as one of the constituents of sandwich structure panels, which generally result from the combination of two skins, of small thickness, made of relatively high strength and high modulus materials. , and a much thicker soul and low density. The skins of the sandwich structure panels may be metal, for example aluminum alloys, or composites, carbon epoxy laminates, for example. These skins are glued on a soul which ensures spacing, which generates the bending stiffness of the panel. The core materials used are mainly foams, organic or metallic, and honeycombs. In the current state of the art, these two families of solutions have specific advantages and disadvantages. The foams used comprise closed cells that are not ventilated. Honeycombs have cell walls, which are positioned in the thickness of the core and contribute to the rigidity of the panel especially in compression. However honeycombs do not allow to vary the dimensional and mechanical characteristics on different parts of a panel. Their height is not adjustable locally and their cells closed. One of the defects of these core materials is therefore their non-ventilation despite the existence of drainage holes not always effective enough to ensure good drainage of water. This additional load is penalizing and further damages the durability of the panels. In addition, in the aeronautical field for example, the realization of pieces of complex shapes with honeycomb cores can be problematic. Indeed, for small radii of curvature, the honeycomb is difficult to machine or can be difficult to form. It is an object of the present invention to provide a novel core material that is an alternative to existing core materials and overcomes the disadvantages thereof. The core material according to the present invention consists of a composite material used for the total or partial filling of hollow bodies or as a core in a sandwich-type structure, and it is essentially characterized in that this composite material consists of fibers , beads and resin. According to an additional feature of the core material according to the invention, it comprises elements each consisting of a ball to which fibers are joined, said elements being connected to each other by a fiber entanglement. The balls are not in contact with each other, they constitute a frame around which the fibers are architected.

Selon un mode de réalisation particulier du matériau d'âme selon l'invention, les billes sont des sphères creuses. L'utilisation des sphères creuses présente l'intérêt non seulement de la légèreté de celles-ci, mais également de leurs propriétés mécaniques. En effet, les sphères creuses sont actuellement utilisées dans diverses applications dans le domaine du choc car elles permettent d'obtenir des absorbeurs d'énergie qui présentent une grande course d'écrasement, jusqu'à 85 %, et une insensibilité à la vitesse du choc. Les sphères creuses, en tant que renfort tridimensionnel, assurent la tenue mécanique du matériau d'âme selon l'invention. En effet, les assemblages de sphères creuses présentent une porosité ouverte qui leur confère une bonne résistance mécanique. La combinaison des sphères creuses et des fibres enchevêtrées permet d'augmenter les capacités d'absorption d'énergie de l'âme ainsi fabriquée, et d'alléger le matériau final obtenu. Les sphères creuses sont, de manière connue en soi, en métal ou en matières synthétiques telles que polymère, céramique ou élastomère, ou minérales. Le diamètre de ces sphères creuses est compris entre 1 et 6 mm, et un matériau d'âme selon l'invention peut comporter des sphères creuses toutes du même diamètre, ou non. Le diamètre et la nature de la coque des sphères creuses sont dimensionnés en fonction de la capacité d'absorption 15 recherchée et du type de fibres employées. Selon une caractéristique additionnelle du matériau d'âme selon l'invention, les fibres et les billes ou sphères creuses sont constituées de matériaux différents. De manière avantageuse, les fibres sont en carbone, en 20 verre ou en matériau métallique, leur diamètre est inférieur à leur longueur, de préférence, elles ont une section correspondant à un diamètre compris entre 5 et 200pm, et une longueur comprise entre 10 et 60mm. La concentration volumique des billes ou des sphères 25 creuses est comprise entre 20 et 70 %, et de manière préférentielle, elle est de l'ordre de 60%. La modification de la proportion de billes et/ou de la densité de fibres enchevêtrées, permet de produire des âmes à gradient de densité. 30 Les avantages et les caractéristiques du matériau d'âme selon l'invention, ressortiront plus clairement de la description qui suit et qui se rapporte aux annexes, lesquelles concernent notamment des essais comparatifs des propriétés de panneau de structure sandwich dont certain comprennent un 35 matériau d'âme selon l'invention. Dans le dessin annexé : - la figure 1 représente une vue schématique en coupe d'une partie d'une pièce comprenant un matériau d'âme selon l'invention. - la figure 2 représente une vue schématique en coupe 5 transversale d'une partie d'un panneau de structure sandwich comprenant un matériau d'âme selon l'invention. - la figure 3 représente des courbes des performances mécaniques de panneaux de structure sandwich comprenant un matériau d'âme selon l'invention. 10 - la figure 4 représente les résultats d'essais de compression réalisés sur un panneau de structure sandwich comprenant un matériau d'âme selon l'invention, et sur des panneaux de structure sandwich de matériau d'âme d'autres conceptions. 15 - la figure 5 représente des courbes illustrant la capacité d'absorption d'énergie d'un panneau de structure sandwich comprenant un matériau d'âme selon l'invention et de panneaux de structure sandwich de matériau d'âme d'autres conceptions. 20 - la figure 6 représente des courbes illustrant les valeurs du module de cisaillement en fonction de la flèche obtenues, pour deux panneaux de structure sandwich, dont l'un comprend un matériau d'âme selon l'invention. - la figure 7 représente un tableau comparatif d'un 25 panneau de structure sandwich comprenant un matériau d'âme selon l'invention et de panneaux de structure sandwich de matériau d'âme d'autres conceptions. En référence à la figure 1, on peut voir une pièce manufacturée 1, comprenant une coque 2 formant un corps creux 30 empli d'un matériau d'âme 3 selon l'invention. Le matériau d'âme 3 est constitué de l'assemblage d'éléments 4 liés entre eux par une résine 5, de l'époxy par exemple, chacun des éléments 4 étant constitué d'une bille, ou d'une sphère creuse, 6 sur laquelle sont solidarisées des fibres 35 7, les éléments 4 étant reliés entre eux, outre par la résine 5, par des fibres 8. According to a particular embodiment of the core material according to the invention, the balls are hollow spheres. The use of hollow spheres has the advantage not only of the lightness of these, but also of their mechanical properties. Indeed, the hollow spheres are currently used in various applications in the field of shock because they allow to obtain energy absorbers which have a great crushing stroke, up to 85%, and an insensitivity to the speed of shock. The hollow spheres, as a three-dimensional reinforcement, provide the mechanical strength of the core material according to the invention. Indeed, the hollow spheres assemblies have an open porosity which gives them good mechanical strength. The combination of hollow spheres and entangled fibers makes it possible to increase the energy absorption capacities of the core thus manufactured, and to lighten the final material obtained. The hollow spheres are, in a manner known per se, made of metal or of synthetic materials such as polymer, ceramic or elastomer, or mineral. The diameter of these hollow spheres is between 1 and 6 mm, and a core material according to the invention may comprise hollow spheres all of the same diameter, or not. The diameter and the nature of the shell of the hollow spheres are sized according to the desired absorption capacity and the type of fibers employed. According to an additional characteristic of the core material according to the invention, the fibers and the balls or hollow spheres are made of different materials. Advantageously, the fibers are carbon, glass or metallic material, their diameter is less than their length, preferably they have a section corresponding to a diameter of between 5 and 200 μm, and a length of between 10 and 60mm. The volume concentration of the balls or hollow spheres is between 20 and 70%, and preferably, it is of the order of 60%. By modifying the proportion of beads and / or the density of entangled fibers, it is possible to produce density gradient cores. The advantages and characteristics of the core material according to the invention will become more clearly apparent from the following description, which relates to the appendices, which relate in particular to comparative tests of the sandwich structure panel properties some of which comprise a material. of soul according to the invention. In the accompanying drawing: - Figure 1 shows a schematic sectional view of a part of a part comprising a core material according to the invention. FIG. 2 is a diagrammatic cross-sectional view of a portion of a sandwich structure panel comprising a core material according to the invention. FIG. 3 represents curves of the mechanical performances of sandwich structure panels comprising a core material according to the invention. FIG. 4 shows the results of compression tests carried out on a sandwich structure panel comprising a core material according to the invention, and on core material sandwich structure panels of other designs. FIG. 5 shows curves illustrating the energy absorbing capacity of a sandwich structure panel comprising a core material according to the invention and core material sandwich structure panels of other designs. FIG. 6 shows curves illustrating the shear modulus values as a function of the arrow obtained for two sandwich structure panels, one of which comprises a core material according to the invention. Figure 7 shows a comparative table of a sandwich structure panel comprising a core material according to the invention and core material sandwich structure panels of other designs. Referring to Figure 1, we can see a manufactured part 1, comprising a shell 2 forming a hollow body 30 filled with a core material 3 according to the invention. The core material 3 consists of the assembly of elements 4 bonded together by a resin 5, epoxy for example, each of the elements 4 consisting of a ball, or a hollow sphere, 6 on which are fixed fibers 7, the elements 4 being connected together, in addition to the resin 5, by fibers 8.

En référence maintenant à la figure 2, on peut voir une représentation schématique d'une utilisation particulière d'un matériau d'âme selon l'invention, à savoir un panneau de structure sandwich 10. Referring now to FIG. 2, a schematic representation of a particular use of a core material according to the invention, namely a sandwich structure panel 10, can be seen.

Ce panneau 10 comprend deux peaux extérieures 20 entre lesquelles est intercalée une âme 3 en matériau composite selon l'invention composé également d'éléments 4. Dans le matériau d'âme 3, que ce soit pour une pièce 1 ou un panneau 10, les fibres 7 sont solidarisées aux billes ou sphères creuses 6 par soudage, brasage ou autres techniques similaires, ou bien collées au moyen d'un liant tel que non limitativement une résine. Selon un mode de réalisation non limitatif, les fibres 7 sont pré-imprégnées par vaporisation d'une résine sur toute leur surface. This panel 10 comprises two outer skins 20 between which is inserted a core 3 of composite material according to the invention also composed of elements 4. In the core material 3, whether for a part 1 or a panel 10, the fibers 7 are secured to the balls or hollow spheres 6 by welding, brazing or other similar techniques, or glued by means of a binder such as not limited to a resin. According to a non-limiting embodiment, the fibers 7 are pre-impregnated by spraying a resin over their entire surface.

De manière préférentielle, les fibres 8 ne sont pas orientées, elles sont enchevêtrées de façon aléatoire pour former un matelas. Elles assurent la cohésion du matériau d'âme 3 et transmettent les efforts au renfort que constituent les billes 6. Preferably, the fibers 8 are not oriented, they are entangled randomly to form a mattress. They ensure the cohesion of the core material 3 and transmit the forces to the reinforcement constituted by the balls 6.

Les billes 6 permettent de donner de la rigidité à l'âme 3, l'utilisation de sphères creuses en remplacement des billes permet de plus de l'alléger, tandis que les fibres 7 et 8 permettent d'augmenter le niveau de contrainte lors du plateau de compression et donc d'obtenir une amélioration de l'absorption d'énergie. De manière préférentielle, un matériau d'âme 3 selon l'invention comporte des sphères creuses 6 en remplacement des billes. On connaît déjà des matériaux composites contenant des sphères creuses seules. Leur inconvénient principal est, qu'en cas choc, les assemblages de sphères creuses présentent des faciès de rupture adhésive. Ces structures éclatent en morceaux et l'absorption d'énergie ne se fait pas par écrasement des sphères creuses, mais par rupture de la liaison entre les sphères creuses. The balls 6 make it possible to give rigidity to the core 3, the use of hollow spheres to replace the beads makes it possible to lighten it, while the fibers 7 and 8 make it possible to increase the stress level during the compression plateau and thus to obtain an improvement of energy absorption. Preferably, a core material 3 according to the invention comprises hollow spheres 6 to replace the balls. Composite materials containing hollow spheres alone are already known. Their main disadvantage is that in case of shock, the hollow sphere assemblies have adhesive fracture facies. These structures burst into pieces and the energy absorption is not done by crushing the hollow spheres, but by breaking the connection between the hollow spheres.

Le matériau d'âme selon l'invention permet de pallier cet inconvénient en permettant de renforcer la cohésion entre les sphères creuses, et lorsque le matériau est soumis à des sollicitations extérieures, les fibres transmettent les efforts aux sphères creuses. La configuration du matériau d'âme, proposée dans le brevet, permet d'éviter de faire travailler les liaisons classiques par collage entre les billes, qui concentrent localement les efforts. Avec le matériau d'âme objet de la présente invention, les efforts sont répartis sur les fibres et les coques des sphères creuses. Cette architecture permet d'augmenter non seulement les capacités d'absorption d'énergie du matériau et mais également sa résistance au cisaillement. En référence à la figure 3 on peut voir les courbes contrainte-déformation obtenues sur quatre panneaux de structure sandwich comprenant un matériau d'âme selon l'invention, qui présentent tous de manière identique deux peaux en carbone d'épaisseur de 0,6 mm, dont l'âme présente une épaisseur de 28,8 mm et qui comprend de la résine, des fibres de carbone enchevêtrées et des sphères creuses en polymère, la densité de fibres de carbone étant égale à 250 kg/m3. Ces quatre panneaux diffèrent uniquement par leur concentration volumique de sphères creuses qui est respectivement de 20%, 40%, 60% et 70%. Parallèlement, sur la figure 4 sont représentées des courbes contrainte-déformation obtenues sur des panneaux de structure sandwich de même épaisseur et de peaux identiques, mais dont les âmes sont composées différemment. Ainsi les panneaux testés sont un panneau dont l'âme est en nid d'abeille, un panneau dont l'âme est constituée d'une mousse polyméthacrylimide, un panneau dont l'âme comprend des sphères creuses seules, et un panneau selon l'invention comprenant des sphères creuses et des fibres. Au vu de ces deux séries de tests, on peut constater, sur les courbes de la figure 3, qu'en ce qui concerne le comportement mécanique de l'âme pour une concentration de 20 % il y a absence de véritable pic, tandis que le comportement d'un panneau pour une concentration de 70% est proche de celui d'un panneau dont le matériau d'âme ne comprend que des sphères creuses, avec une faible contrainte de plateau. Il en ressort que pour obtenir un comportement intermédiaire la concentration volumique de sphères creuses doit être de l'ordre de 60% pour la géométrie et la nature des matériaux testés. Par ailleurs, les courbes de la figure 4 mettent en évidence qu'un panneau de structure sandwich comprenant un matériau d'âme selon l'invention présente une rigidité supérieure à celle de panneaux de structure sandwich dont l'âme comporte des sphères creuses seules. D'autre part on peut constater que le module de Young d'un panneau de structure sandwich à matériau d'âme selon l'invention est augmenté de 120 % par rapport au module de Young d'un panneau de structure sandwich d'âme à base de sphères creuses, et qu'il est sensiblement du même ordre de grandeur que le module de Young d'un panneau de structure sandwich d'âme en nids d'abeilles. The core material according to the invention makes it possible to overcome this disadvantage by making it possible to reinforce the cohesion between the hollow spheres, and when the material is subjected to external stresses, the fibers transmit the forces to the hollow spheres. The configuration of the core material, proposed in the patent, makes it possible to avoid making conventional bonds work by bonding between the balls, which locally concentrate the forces. With the core material object of the present invention, the forces are distributed over the fibers and hulls of the hollow spheres. This architecture makes it possible to increase not only the energy absorption capacities of the material but also its shear strength. With reference to FIG. 3, the stress-strain curves obtained on four sandwich structure panels comprising a core material according to the invention, which all identically have two 0.6 mm thick carbon skins, can be seen. , whose core has a thickness of 28.8 mm and which comprises resin, entangled carbon fibers and hollow polymer spheres, the density of carbon fibers being equal to 250 kg / m3. These four panels differ only in their volume concentration of hollow spheres which is respectively 20%, 40%, 60% and 70%. In parallel with this, FIG. 4 shows stress-strain curves obtained on sandwich structure panels of the same thickness and with identical skins, but whose cores are composed differently. Thus the panels tested are a panel whose core is honeycomb, a panel whose core is made of a polymethacrylimide foam, a panel whose core comprises hollow spheres alone, and a panel according to the invention comprising hollow spheres and fibers. In view of these two series of tests, it can be seen on the curves of FIG. 3 that as far as the mechanical behavior of the core for a concentration of 20% is concerned, there is no true peak, whereas the behavior of a panel at a concentration of 70% is close to that of a panel whose core material includes only hollow spheres, with a low plateau stress. It emerges that to obtain an intermediate behavior the volume concentration of hollow spheres must be of the order of 60% for the geometry and the nature of the materials tested. Moreover, the curves of FIG. 4 show that a sandwich structure panel comprising a core material according to the invention has a stiffness greater than that of sandwich structure panels whose core comprises hollow spheres alone. On the other hand, it can be seen that the Young's modulus of a core material sandwich structure panel according to the invention is increased by 120% with respect to the Young's modulus of a sandwich core structure panel. base of hollow spheres, and that it is of substantially the same order of magnitude as the Young's modulus of a honeycomb core sandwich structure panel.

On peut également constater, en comparant les courbes concernant le panneau à matériau d'âme selon l'invention et le panneau de structure sandwich dont l'âme contient des sphères creuses seules, que pour une déformation de 10%, l'énergie absorbée est multipliée par 10, et ce pour une augmentation de densité d'un facteur de 2 seulement. Ainsi, le panneau de structure sandwich à matériau d'âme selon l'invention n'est pas pénalisant en termes de masse, puisque les sphères creuses sont connues pour leur faible densité. Au contraire, l'ajout de sphères creuses permet d'alléger le matériau d'âme tout en améliorant les capacités d'absorption de celui-ci. La figure 5 représente la capacité d'absorption d'énergie d'un panneau de structure sandwich à matériau d'âme selon l'invention, comparée à celles de deux panneaux de structure sandwich l'un d'âme en mousse, et l'autre d'âme en nids d'abeilles. We can also see, by comparing the curves concerning the core material panel according to the invention and the sandwich structure panel whose core contains hollow spheres alone, that for a deformation of 10%, the absorbed energy is multiplied by 10 for a density increase of only a factor of 2. Thus, the core material sandwich structure panel according to the invention is not penalizing in terms of mass, since the hollow spheres are known for their low density. On the contrary, the addition of hollow spheres makes it possible to lighten the core material while improving the absorption capacities thereof. FIG. 5 represents the energy absorbing capacity of a core material sandwich structure panel according to the invention, compared with those of two sandwich structure panels, one of foam core, and the another of honeycombs.

L'énergie absorbée a ainsi été calculée à partir des essais de compression précédents en intégrant l'aire sous les différentes courbes contrainte-déformation. Sur cette figure on peut voir que le panneau de structure sandwich selon l'invention présente une augmentation de sa capacité d'absorption d'énergie par rapport à au panneau de matériau d'âme en mousse, et encore plus par rapport au panneau d'âme en nids d'abeilles. En référence à la figure 6, on peut voir l'évolution des modules de cisaillement en fonction de la flèche obtenues pour deux panneaux de structure sandwich comprenant chacun deux peaux en carbone d'épaisseur 2 mm et une âme d'épaisseur de 26 mm, l'âme de l'un étant composée, selon l'invention, de résine, de fibres de carbone enchevêtrées et de sphères creuses en polymère, pour une masse volumique de 300 kg /m3, tandis que l'âme de l'autre est composée uniquement de fibres en carbone enchevêtrées et de résine, pour une masse volumique de 250 kg /m3 Nous pouvons constater que pour un panneau de structure sandwich à matériau d'âme selon l'invention, le module de cisaillement augmente significativement, et que la valeur du module de cisaillement pour le panneau de structure sandwich à matériau d'âme contenant des fibres seules est d'environ 30 MPa, alors que pour le matériau d'âme selon l'invention la valeur du module est d'environ 140 MPa. Ainsi, pour une augmentation de la masse volumique qui n'est pas significative, on obtient un gain substantiel du module de cisaillement. Sur le tableau de la figure 7, sont reportés les résultats d'essais en flexion réalisés sur trois panneaux de structure sandwich. Chaque panneau comporte une âme de nature différente, à savoir l'une contenant des sphères creuses et des fibres selon l'invention, l'une en nids d'abeilles, et la dernière en mousse polyméthacrylimide. De ces essais il résulte que le module de cisaillement G 35 obtenu pour une âme selon l'invention est environ deux fois supérieur à ceux obtenus pour une âme en nids d'abeilles et pour une âme en mousse polyméthacrylimide. La résistance mécanique d'un panneau de structure sandwich comprenant un matériau d'âme selon l'invention est d'autant plus importante que les fibres adhèrent à la surface des billes ou des sphères creuses. On a ainsi pu constater qu'un panneau de structure sandwich comprenant un matériau d'âme selon l'invention présente des performances mécaniques supérieures à celles des panneaux de structures sandwich existantes. Ainsi sa rigidité est supérieure à celle de panneaux de structure sandwich dont l'âme comporte des sphères creuses seules ou est réalisée en mousse, et sensiblement égale à celle de panneaux de structure sandwich d'âme en nids d'abeilles, tandis que sa capacité d'absorption d'énergie est supérieure à celles de panneaux de structure sandwich d'âme en mousse et en nids d'abeilles. Du point de vue fabrication, un matériau d'âme selon l'invention peut être obtenu selon le procédé qui consiste à réaliser les étapes successives suivantes : - la séparation des fibres, - ajout de résine, - mélange des fibres et des billes ou des sphères creuses, - moulage de l'âme, et - polymérisation. The absorbed energy was thus calculated from the previous compression tests by integrating the area under the different stress-strain curves. In this figure it can be seen that the sandwich structure panel according to the invention has an increase in its energy absorption capacity compared to the foam core material panel, and even more compared to the panel of soul in honeycombs. Referring to FIG. 6, we can see the evolution of the shear moduli as a function of the deflection obtained for two sandwich structure panels each comprising two carbon skins of thickness 2 mm and a core thickness of 26 mm, the core of one being composed, according to the invention, of resin, entangled carbon fibers and hollow polymer spheres, for a density of 300 kg / m3, while the soul of the other is composed only of entangled carbon fibers and resin, for a density of 250 kg / m3 We can see that for a core material sandwich structure panel according to the invention, the shear modulus increases significantly, and that the The value of the shear modulus for core material sandwich panel containing single fibers is about 30 MPa, while for the core material according to the invention the value of the modulus is about 140 MPa. Thus, for an increase in density that is not significant, a substantial gain in shear modulus is obtained. In the table of Figure 7, are reported the results of flexural tests carried out on three panels of sandwich structure. Each panel has a different kind of core, namely one containing hollow spheres and fibers according to the invention, one in honeycombs, and the last in polymethacrylimide foam. From these tests it follows that the shear modulus G obtained for a core according to the invention is approximately twice that obtained for a honeycomb core and for a polymethacrylimide foam core. The mechanical strength of a sandwich structure panel comprising a core material according to the invention is all the more important as the fibers adhere to the surface of the balls or hollow spheres. It has thus been found that a sandwich structure panel comprising a core material according to the invention has mechanical performance superior to that of existing sandwich structure panels. Thus, its rigidity is greater than that of sandwich structure panels whose core comprises hollow spheres alone or is made of foam, and substantially equal to that of honeycomb core sandwich structure panels, while its capacity energy absorption is superior to that of foam sandwich structure panels and honeycombs. From the point of view of manufacture, a core material according to the invention can be obtained according to the process which consists in carrying out the following successive steps: the separation of the fibers, the addition of resin, the mixing of the fibers and the balls or hollow spheres, - molding of the soul, and - polymerization.

En ce qui concerne la fabrication d'un panneau de structure sandwich, la réticulation de l'âme aux peaux est réalisée conjointement avec l'étape de polymérisation. Selon un autre mode de réalisation, l'âme selon l'invention peut être obtenue en associant des couches successives de densités différentes, composées de différentes proportions de billes ou de fibres de densités différentes. Ainsi de façon non limitative, un matériau à gradient de densité pourra être construit. Le matériau d'âme selon l'invention est relativement souple et peut être moulé suivant des formes variées. Il est ainsi possible de réaliser des formes complexes par moulage comme celle représentée sur la figure 1. Ce mode de réalisation permet d'éviter tout usinage ou formage ultérieur et permet de s'affranchir des difficultés et des contraintes liées à ces techniques. As regards the manufacture of a sandwich structure panel, the crosslinking of the core to the skins is performed in conjunction with the polymerization step. According to another embodiment, the core according to the invention can be obtained by combining successive layers of different densities, composed of different proportions of beads or fibers of different densities. Thus, without limitation, a density gradient material can be constructed. The core material according to the invention is relatively flexible and can be molded into various shapes. It is thus possible to produce complex shapes by molding such as that shown in FIG. 1. This embodiment makes it possible to avoid any subsequent machining or forming and makes it possible to overcome the difficulties and constraints associated with these techniques.

Par ailleurs, ce matériau offre des avantages tels que sa porosité ouverte qui permet une certaine ventilation ou la possibilité à s'adapter aux géométries complexes. En terme d'applicabilité, ce matériau, de part ses constituants, est multifonctionnel et pourra être utilisé pour des applications où, par exemple, une bonne tenue au feu et des propriétés de conductibilité électrique sont recherchées. Le matériau d'âme selon l'invention peut être utilisé dans la fabrication de panneaux de structure sandwich destiné au domaine du transport en général, de l'aéronautique en particulier, et avantageusement pour des pièces de forte courbure, un bord d'attaque par exemple. Il peut également être utilisé pour le remplissage total ou partiel de corps creux dans le domaine spatial, mais également dans le domaine éolien pour des applications à des pales d'éoliennes par exemple. Moreover, this material offers advantages such as its open porosity which allows a certain ventilation or the ability to adapt to complex geometries. In terms of applicability, this material, because of its constituents, is multifunctional and can be used for applications where, for example, good fire resistance and electrical conductivity properties are sought. The core material according to the invention can be used in the manufacture of sandwich structure panels intended for the field of transport in general, and aeronautics in particular, and advantageously for parts of strong curvature, a leading edge by example. It can also be used for the total or partial filling of hollow bodies in the space field, but also in the wind field for applications to wind turbine blades for example.

Claims (10)

REVENDICATIONS1) Matériau d'âme (3) consistant en un matériau composite utilisé pour le remplissage total ou partiel de corps creux (1) ou comme âme dans une structure de type sandwich (10) en étant intercalé entre deux peaux (20), caractérisé en ce que ce matériau composite est constitué de fibres (7, 8), de billes (6) et de résine (5). 1) core material (3) consisting of a composite material used for the total or partial filling of hollow body (1) or as a core in a sandwich-type structure (10) being interposed between two skins (20), characterized in that this composite material consists of fibers (7, 8), beads (6) and resin (5). 2) Matériau d'âme (3) selon la revendication 1, caractérisé en ce qu'il comprend des éléments (4) constitués chacun d'une bille (6) à laquelle sont solidarisées des fibres (7), lesdits éléments (4) étant reliés les uns aux autres par un enchevêtrement de fibres (7, 8). 2) core material (3) according to claim 1, characterized in that it comprises elements (4) each consisting of a ball (6) to which are secured fibers (7), said elements (4) being connected to each other by an entanglement of fibers (7, 8). 3) Matériau d'âme (3) selon la revendication 1 ou la revendication 2, caractérisé en ce que les fibres (7) sont solidarisées aux billes (6) par soudage ou brasage, ou bien collées au moyen d'un liant tel qu'une résine (5). 3) core material (3) according to claim 1 or claim 2, characterized in that the fibers (7) are secured to the balls (6) by welding or soldering, or glued by means of a binder such as a resin (5). 4) Matériau d'âme selon l'une quelconque des revendications précédentes, caractérisé en ce que les billes (6) sont des sphères creuses. 4) core material according to any one of the preceding claims, characterized in that the balls (6) are hollow spheres. 5) Matériau d'âme (3) selon l'une quelconque des revendications précédentes, caractérisé en ce que les fibres (7, 8) et les billes ou sphères creuses (6) sont constituées de matériaux différents. 5) core material (3) according to any one of the preceding claims, characterized in that the fibers (7, 8) and the balls or hollow spheres (6) are made of different materials. 6) Matériau d'âme (3) selon l'une quelconque des revendications précédentes, caractérisé en ce que les fibres (7, 8) sont en carbone, en verre ou en matériau métallique, leur diamètre est inférieur à leur longueur, elles ont une section correspondant à un diamètre compris entre 5 et 200pm, et une longueur comprise entre 10 et 60mm. 6) core material (3) according to any one of the preceding claims, characterized in that the fibers (7, 8) are carbon, glass or metal material, their diameter is less than their length, they have a section corresponding to a diameter of between 5 and 200 μm, and a length of between 10 and 60 mm. 7) Matériau d'âme (3) selon l'une quelconque des revendications précédentes, caractérisé en ce que la concentration volumique des billes ou des sphères creuses (6) est comprise entre 20 et 70 %, et de manière préférentielle, elle est de l'ordre de 60%. 11 7) core material (3) according to any one of the preceding claims, characterized in that the volume concentration of the balls or hollow spheres (6) is between 20 and 70%, and preferably, it is of the order of 60%. 11 8) Panneau de structure sandwich (10) constitué de deux peaux (20) de faible épaisseur et une âme intercalée entre lesdites deux peaux (20), caractérisé en ce que l'âme est constituée d'un matériau d'âme (3) selon l'une quelconque des revendications précédentes. 8) sandwich structure panel (10) consisting of two skins (20) of small thickness and a core interposed between said two skins (20), characterized in that the core consists of a core material (3) according to any one of the preceding claims. 9) Utilisation du matériau d'âme (3) selon l'une quelconque des revendications 1 à 7, dans la fabrication de pièces (1; 9) Use of the core material (3) according to any one of claims 1 to 7, in the manufacture of parts (1; 10) dans le domaine aéronautique, dans le domaine spatial, ou dans le domaine éolien. 10) in the aeronautical field, in the space field, or in the wind field.
FR0858211A 2008-12-03 2008-12-03 MATERIAL OF AME. Expired - Fee Related FR2939077B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0858211A FR2939077B1 (en) 2008-12-03 2008-12-03 MATERIAL OF AME.
PCT/FR2009/052357 WO2010063941A1 (en) 2008-12-03 2009-12-01 Core material
EP09803799A EP2370249A1 (en) 2008-12-03 2009-12-01 Core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0858211A FR2939077B1 (en) 2008-12-03 2008-12-03 MATERIAL OF AME.

Publications (2)

Publication Number Publication Date
FR2939077A1 true FR2939077A1 (en) 2010-06-04
FR2939077B1 FR2939077B1 (en) 2013-01-11

Family

ID=40673971

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0858211A Expired - Fee Related FR2939077B1 (en) 2008-12-03 2008-12-03 MATERIAL OF AME.

Country Status (3)

Country Link
EP (1) EP2370249A1 (en)
FR (1) FR2939077B1 (en)
WO (1) WO2010063941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005600A1 (en) * 2013-05-20 2014-11-21 Nimitech Etudes COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102636A1 (en) * 2021-12-07 2023-06-15 Inca Renewable Technologies Inc. Balsa-like wood alternative products and methods for preparing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041054A2 (en) * 1980-05-21 1981-12-02 KemaNord AB A foam composite material impregnated with resin
EP0190788A1 (en) * 1985-01-29 1986-08-13 Lantor B.V. Process for making a non woven web provided with expanded micro-spheres
US5837739A (en) * 1995-06-07 1998-11-17 Mcdonnell Douglas Corporation Loaded syntactic foam-core material
US5846357A (en) * 1994-07-29 1998-12-08 Isorca, Inc. Method of making syntactic foam core material
US6068915A (en) * 1997-11-06 2000-05-30 Mcdonnell Douglas Corporation Thermosetting syntactic foams and their preparation
EP1010793A1 (en) * 1998-12-16 2000-06-21 Lantor B.V. A core material for closed mould systems
US6171688B1 (en) * 1999-02-08 2001-01-09 Board Of Trustees Operating Michigan State University Material and method for the preparation thereof
WO2004009681A2 (en) * 2002-07-22 2004-01-29 University Of Southern California Composite foam made from polymer microspheres reinforced with long fibers
US20050049329A1 (en) * 2003-08-25 2005-03-03 Faulkner Roger W. Wood-like polymer composites and production methods therefor
WO2005092961A2 (en) * 2004-03-22 2005-10-06 3M Innovative Properties Company Filled fiber reinforced thermoplastic composite
US20080014413A1 (en) * 2006-07-11 2008-01-17 Toyota Boshoku Kabushiki Kaisha Thermally expandable sheet, molded product for vehicle using the thermally expandable sheet, and method for manufacturing the sheet and product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585445B1 (en) * 1985-07-25 1988-03-11 Univ Toulouse PROCESS FOR MANUFACTURING A MODULAR COMPOSITE MATERIAL, MATERIAL MADE AND PART OBTAINED FROM SAID MATERIAL
DE19817959C1 (en) * 1998-04-22 1999-07-22 Paul Hunkemoeller Lightweight building panel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041054A2 (en) * 1980-05-21 1981-12-02 KemaNord AB A foam composite material impregnated with resin
EP0190788A1 (en) * 1985-01-29 1986-08-13 Lantor B.V. Process for making a non woven web provided with expanded micro-spheres
US5846357A (en) * 1994-07-29 1998-12-08 Isorca, Inc. Method of making syntactic foam core material
US5837739A (en) * 1995-06-07 1998-11-17 Mcdonnell Douglas Corporation Loaded syntactic foam-core material
US6068915A (en) * 1997-11-06 2000-05-30 Mcdonnell Douglas Corporation Thermosetting syntactic foams and their preparation
EP1010793A1 (en) * 1998-12-16 2000-06-21 Lantor B.V. A core material for closed mould systems
US6171688B1 (en) * 1999-02-08 2001-01-09 Board Of Trustees Operating Michigan State University Material and method for the preparation thereof
WO2004009681A2 (en) * 2002-07-22 2004-01-29 University Of Southern California Composite foam made from polymer microspheres reinforced with long fibers
US20050049329A1 (en) * 2003-08-25 2005-03-03 Faulkner Roger W. Wood-like polymer composites and production methods therefor
WO2005092961A2 (en) * 2004-03-22 2005-10-06 3M Innovative Properties Company Filled fiber reinforced thermoplastic composite
US20080014413A1 (en) * 2006-07-11 2008-01-17 Toyota Boshoku Kabushiki Kaisha Thermally expandable sheet, molded product for vehicle using the thermally expandable sheet, and method for manufacturing the sheet and product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005600A1 (en) * 2013-05-20 2014-11-21 Nimitech Etudes COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
EP2370249A1 (en) 2011-10-05
WO2010063941A1 (en) 2010-06-10
FR2939077B1 (en) 2013-01-11

Similar Documents

Publication Publication Date Title
CA2329832C (en) Procedure for producing an acoustically resistive layer, the resulting resistive layer, and wall using the layer
EP3174791B1 (en) Tube having a hybrid-type structure, in particular for an aircraft seat
EP3197569B1 (en) Racket for a ball game, and corresponding method
EP2200818A2 (en) Cellular-core structure for an acoustic panel
EP3325271A1 (en) Acousitc attenuation panel made from ceramic oxide material with a core made from an electrochemically converted metal material
FR2767411A1 (en) ACOUSTICALLY RESISTIVE LAYER, METHOD FOR MANUFACTURING THE SAME AND ACOUSTICALLY ABSORBING PANEL PROVIDED WITH AT LEAST ONE SUCH LAYER
WO2009138659A1 (en) Damping skin for protecting composite parts
FR2939077A1 (en) MATERIAL OF AME.
EP3297831A1 (en) Improved method for producing a sandwich metal part having a non-developable shape
EP0099294A2 (en) Rotor hub plates, manufacturing process and rotor craft hub embodying them
FR2948098A1 (en) ATTACK EDGE STRUCTURE, IN PARTICULAR FOR AN AIRCRAFT ENGINE NACELLE AIR INTAKE
FR2903961A1 (en) Structural element for airframe of rotocraft e.g. helicopter, has insert mounted in cavities of lower cross-member without clearance, where insert has deformation crack and rupture, which are distributed on substantial portion of insert
EP1321357A1 (en) Hollow gliding board with inertia weights
EP2032419B1 (en) Structure part obtained via butt-joining for motor vehicle
EP2572874B1 (en) Composites, method for preparing same and gliders comprising the same
CA2735953C (en) Reinforced composite sandwich panel
FR3076486A1 (en) INTEGRATED PANEL WITH HONEYCOMB STRUCTURE AND METHOD OF MANUFACTURING SAME, AND REAR FLOOR STRUCTURE OF VEHICLE HAVING AN INTEGRATED PANEL HAVING A BEELED STRUCTURE
EP2285561B1 (en) Method for preparing a cellular material based on hollow metal beads and cellular material
EP1940619A1 (en) Improved layered sandwich structure
EP2699322B1 (en) Next-generation wooden racket
EP2867015B1 (en) Skin of a structural part, in particular for a motor vehicle
FR3011505A1 (en) STRUCTURAL PANEL, IN PARTICULAR, FOR CARRYING OUT VEHICLES AND HABITATS
WO2023012420A1 (en) Method for manufacturing a diaphragm holder for an oleo-pneumatic shock absorber
FR3139315A1 (en) Catamaran with a self-supporting hull made of 3D veneer wood and laminated bamboo fabric in sandwich construction with maritime jet propulsion systems
FR3070644A1 (en) BUMPER ASSEMBLY FOR MOTOR VEHICLE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

ST Notification of lapse

Effective date: 20180831