FR2934689A1 - OPTICAL ARTICLE COMPRISING AN ANSTATIC LAYER LIMITING THE PERCEPTION OF FRINGES OF INTERFERENCE, HAVING EXCELLENT LIGHT TRANSMISSION AND METHOD OF MANUFACTURING THE SAME. - Google Patents

OPTICAL ARTICLE COMPRISING AN ANSTATIC LAYER LIMITING THE PERCEPTION OF FRINGES OF INTERFERENCE, HAVING EXCELLENT LIGHT TRANSMISSION AND METHOD OF MANUFACTURING THE SAME. Download PDF

Info

Publication number
FR2934689A1
FR2934689A1 FR0855401A FR0855401A FR2934689A1 FR 2934689 A1 FR2934689 A1 FR 2934689A1 FR 0855401 A FR0855401 A FR 0855401A FR 0855401 A FR0855401 A FR 0855401A FR 2934689 A1 FR2934689 A1 FR 2934689A1
Authority
FR
France
Prior art keywords
layer
intermediate layer
refractive index
optical article
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0855401A
Other languages
French (fr)
Other versions
FR2934689B1 (en
Inventor
Peggy Coue
Mathieu Feuillade
Elodie Wipf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR0855401A priority Critical patent/FR2934689B1/en
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Priority to US13/057,639 priority patent/US20110128664A1/en
Priority to AU2009278956A priority patent/AU2009278956C1/en
Priority to BRPI0916864A priority patent/BRPI0916864B1/en
Priority to CN2009801391391A priority patent/CN102171590A/en
Priority to JP2011521621A priority patent/JP5753492B2/en
Priority to PCT/FR2009/051557 priority patent/WO2010015780A2/en
Priority to EP09740434.7A priority patent/EP2310883B1/en
Priority to CA2733263A priority patent/CA2733263C/en
Priority to KR1020117002782A priority patent/KR101667661B1/en
Publication of FR2934689A1 publication Critical patent/FR2934689A1/en
Application granted granted Critical
Publication of FR2934689B1 publication Critical patent/FR2934689B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Abstract

L'invention concerne un article d'optique comprenant un substrat en verre organique ou minéral, une couche d'un matériau polymérique et une couche intermédiaire possédant des propriétés antistatiques en contact direct avec une face principale du substrat et la couche de matériau polymérique, la couche intermédiaire comprenant un mélange de particules colloïdales d'au moins un oxyde métallique colloïdal électriquement conducteur, de particules colloïdales d'au moins un oxyde minéral colloïdal ayant un indice de réfraction inférieur ou égal à 1,55 et optionnellement d'un liant, dans des proportions telles que la masse de particules d'oxydes métalliques colloïdaux électriquement conducteurs représente 50 à 97 % de la masse totale de particules colloïdales présents dans la couche intermédiaire, ladite couche intermédiaire étant une couche initialement poreuse dont la porosité a été comblée soit par du matériau de la couche de matériau polymérique soit par du matériau du substrat si celui-ci est en verre organique, de sorte que la couche intermédiaire, après comblement de sa porosité initiale constitue une couche quart d'onde ou quasi quart d'onde à la longueur d'onde de 550 nm.An optical article comprising an organic or inorganic glass substrate, a layer of a polymeric material and an intermediate layer having antistatic properties in direct contact with a major face of the substrate and the layer of polymeric material, the intermediate layer comprising a mixture of colloidal particles of at least one electrically conductive colloidal metal oxide, colloidal particles of at least one colloidal mineral oxide having a refractive index less than or equal to 1.55 and optionally a binder, in proportions such that the mass of electrically conductive colloidal metal oxide particles represents 50 to 97% of the total mass of colloidal particles present in the intermediate layer, said intermediate layer being an initially porous layer whose porosity has been filled either by material of the layer of polymeric material is by material of the substrate if it is organic glass, so that the intermediate layer, after filling its initial porosity is a quarter-wave or quasi-quarter wave at the wavelength of 550 nm.

Description

La présente invention concerne un article d'optique, par exemple une lentille ophtalmique, comprenant un substrat en résine synthétique ou en verre minéral, en particulier ayant un indice de réfraction élevé (1,5 ou plus, préférentiellement 1,55 ou plus), au moins un revêtement de nature polymère et, interposé entre le substrat et ledit revêtement de nature polymère, un revêtement antistatique possédant en outre la faculté de limiter la perception de franges d'interférence dues à la différence d'indice de réfraction entre le substrat et ce revêtement de nature polymère. Il est classique de former sur les faces principales d'un substrat transparent en résine synthétique ou en verre minéral, telle qu'une lentille ophtalmique, un ou plusieurs 1 o revêtements de nature polymère pour conférer à l'article diverses propriétés avantageuses telles que résistance au choc, résistance à l'abrasion, élimination des reflets, etc. Ainsi, on revêt généralement au moins une face du substrat soit directement avec une couche résistante à l'abrasion, soit avec une couche de primaire, généralement une couche améliorant la résistance au choc de la lentille, sur laquelle on peut déposer une 15 couche résistante à l'abrasion, la couche de primaire améliorant l'ancrage de cette couche résistante à l'abrasion sur la surface du substrat. Finalement, on peut encore déposer sur la couche résistante à l'abrasion d'autres revêtements tels qu'un revêtement antireflet. A l'heure actuelle, on utilise pour former les couches de primaire et de revêtement résistant à l'abrasion des vernis, c'est à dire des compositions conduisant à une matière en 20 grande partie organique par opposition à des couches de nature essentiellement minérales telles que couches d'oxydes métalliques et/ou d'oxyde de silicium. En général, le substrat et la couche résistante à l'abrasion ou la couche de primaire ont des indices de réfraction différents et souvent très éloignés et par suite, il apparaît des franges d'interférences dues à cette différence d'indice de réfraction à l'interface entre le 25 substrat et la couche résistante à l'abrasion ou la couche de primaire. Ce problème d'apparition de franges d'interférences peut être résolu en accordant l'indice de réfraction du substrat et de la couche de revêtement en contact avec lui, ce qui est assez contraignant. Il a également été proposé dans la demande WO 03/056366 au nom du déposant de 30 résoudre ce problème en interposant entre le substrat et la couche de nature polymère une couche quart d'onde initialement poreuse à base de particules d'oxydes minéraux colloïdaux, dont la porosité a été au moins en partie comblée, généralement totalement ou quasi-totalement comblée, par le matériau constituant la couche polymérique ou le matériau constituant le substrat, lorsque celui-ci est de nature polymère. Cette construction diminue 35 efficacement l'intensité des ranges d'interférences. Par ailleurs, il est bien connu que les articles d'optique, qui sont composés de matériaux essentiellement isolants, ont tendance à voir leur surface se charger facilement en électricité statique, particulièrement lorsqu'ils sont nettoyés en conditions sèches par frottement de leur surface au moyen d'un chiffon, d'un morceau de mousse synthétique ou de polyester (triboélectricité). Les charges présentes à leur surface créent un champ électrostatique capable d'attirer et de fixer les objets de très faible masse se trouvant à proximité (quelques centimètres), généralement des particules de faibles dimensions telles que des poussières, et ce durant tout le temps où la charge reste sur l'article. Afin de diminuer ou annuler l'attraction des particules, il est nécessaire de diminuer l'intensité du champ électrostatique, c'est-à-dire de diminuer le nombre de charges statiques présentes à la surface de l'article. Ceci peut être réalisé en rendant les charges mobiles, par exemple en introduisant une couche d'un matériau induisant une forte mobilité des "porteurs de charge", afin de les dissiper rapidement. Les matériaux induisant la plus forte mobilité sont les matériaux conducteurs. L'état de la technique révèle qu'un article d'optique peut acquérir des propriétés antistatiques grâce à l'incorporation à sa surface, dans l'empilement de revêtements fonctionnels, d'au moins une couche électriquement conductrice, dite "couche antistatique." Cette couche antistatique peut constituer la couche externe de l'empilement de revêtements fonctionnels, une couche intermédiaire (interne) ou être déposée directement sur le substrat de l'article d'optique. La présence d'une telle couche dans un empilement confère à l'article des propriétés antistatiques, même si le revêtement antistatique est intercalé entre deux revêtements ou substrats non antistatiques. Par "antistatique", on entend la propriété de ne pas retenir et/ou développer une charge électrostatique appréciable. Un article est généralement considéré comme ayant des propriétés antistatiques acceptables, lorsqu'il n'attire et ne fixe pas la poussière et les petites particules après que l'une de ses surfaces a été frottée au moyen d'un chiffon approprié. Il est capable de dissiper rapidement des charges électrostatiques accumulées, alors qu'un article statique qui vient d'être essuyé peut attirer les poussières environnantes pendant tout le temps nécessaire à sa décharge. La capacité d'un verre à évacuer une charge statique obtenue après frottement par un tissu ou par tout autre procédé de génération d'une charge électrostatique (charge appliquée par corona...) peut être quantifiée par une mesure du temps de dissipation de ladite charge. Ainsi, les verres antistatiques possèdent un temps de décharge de l'ordre de la centaine de millisecondes, alors qu'il est de l'ordre de plusieurs dizaines de secondes pour un verre statique, parfois même plusieurs minutes. Dans la présente demande, un article d'optique est considéré comme antistatique lorsque son temps de décharge est inférieur à quelques centaines de ms, typiquement < 200 ms, quelle que soit la quantité de charge appliquée (typiquement, pour un test, la charge peut varier de 20 à 50 nanocoulons, ce qui, en général, correspond aux quantités obtenues réellement par effet triboélectrique lors d'un frottement). Les revêtements antistatiques connus comprennent au moins un agent antistatique, qui est généralement un oxyde métallique (semi-)conducteur éventuellement dopé, tel que l'oxyde d'indium dopé à l'étain (ITO), l'oxyde d'étain dopé à l'antimoine, le pentoxyde de vanadium, ou bien un polymère conducteur à structure conjuguée. Le brevet US 6,852,406 décrit des articles d'optique, notamment des lentilles ophtalmiques, équipées d'un empilement antireflet de nature minérale comprenant une couche antistatique transparente de nature minérale déposée sous vide, à base d'oxyde 1 o d'étain-indium (ITO) ou d'oxyde d'étain. Cette réalisation est relativement contraignante car elle ne permet pas de disposer d'un article d'optique antistatique exempt de revêtement antireflet. Il est plus avantageux de disposer d'articles d'optique dans lesquels la couche antistatique est indépendante de l'empilement antireflet. 15 Un certain nombre de demandes de brevets (US 2004/0209007,,US 2002/0114960...) décrivent des articles munis d'une couche antistatique à base de polymères conducteurs déposée directement sur le substrat de l'article et indépendante du revêtement antireflet. La demande japonaise JP 2006-095997 décrit un article d'optique sur lequel sont 20 déposées, dans cet ordre, une couche antistatique de 30 nm à 1 micron d'épaisseur comprenant des particules conductrices de 50-60 nm de diamètre agglomérées en particules secondaires de taille 0,8-2 m (par exemple d'ITO) et une résine, puis une couche dure antiabrasion. Grâce à un contrôle de la taille des particules conductrices, il est possible d'éliminer les franges d'interférence créées par la différence d'indice de réfraction existant 25 entre la couche antistatique et le substrat. Ce document ne vise donc pas à résoudre le problème de l'apparition de franges d'interférences entre le substrat et le revêtement antiabrasion au moyen d'une couche intermédiaire quart d'onde. A ce jour, il n'a donc été décrit aucun revêtement disposant de propriétés antistatiques et simultanément capable d'éliminer les franges d'interférence en utilisant une 30 couche intermédiaire dont l'indice de réfraction est choisi par rapport aux indices de réfraction des matériaux de part et d'autre de ce revêtement, dans le but de réaliser une couche quart d'onde, en particulier en jouant sur le ratio entre un colloïde conducteur et un colloïde à bas indice de réfraction contenus dans la couche antistatique. La présente invention a donc pour objectif de fournir un article optique, telle qu'une 35 lentille ophtalmique, comprenant un substrat en verre organique ou minéral et au moins une couche de matériau polymère transparent, telle que, par exemple, une couche de primaire ou une couche de revêtement anti-abrasion dans lequel le phénomène de franges d'interférences lié à la différence d'indice de réfraction entre le substrat et la couche de matériau polymère soit notablement atténué, et qui dispose en même temps de propriétés antistatiques. Plus la différence d'indice (mesurée à 550 nm) entre le substrat et la couche de matériau polymère transparent sera élevée, typiquement d'au moins 0,01, de préférence, au moins 0,02, mieux au moins 0,05, et mieux encore au moins 0,1, plus le problème technique à résoudre sera important. L'invention a aussi comme objectif de fournir un article d'optique possédant des propriétés antistatiques et un excellent niveau de transmission de la lumière dans le spectre visible. L'introduction d'une couche antistatique induisant généralement une décroissance de la transmission en raison du pouvoir absorbant de celle-ci, il est effectivement particulièrement intéressant de contrebalancer cette perte de transmission en utilisant une couche quart d'onde antistatique. The present invention relates to an optical article, for example an ophthalmic lens, comprising a substrate made of synthetic resin or mineral glass, in particular having a high refractive index (1.5 or more, preferably 1.55 or more), at least one coating of a polymeric nature and, interposed between the substrate and said polymer-type coating, an antistatic coating furthermore having the ability to limit the perception of interference fringes due to the difference in refractive index between the substrate and this coating of a polymeric nature. It is conventional to form on the main faces of a transparent substrate made of synthetic resin or mineral glass, such as an ophthalmic lens, one or more coatings of a polymer nature to give the article various advantageous properties such as resistance. impact, resistance to abrasion, removal of glare, etc. Thus, at least one surface of the substrate is generally coated either directly with an abrasion-resistant layer or with a primer layer, generally a layer that improves the impact resistance of the lens, on which a resistant layer can be deposited. to abrasion, the primer layer improving the anchoring of this abrasion-resistant layer to the surface of the substrate. Finally, other coatings such as an antireflection coating can also be deposited on the abrasion-resistant layer. At present, the varnish-resistant primer and coating layers are used, ie compositions which lead to a largely organic material as opposed to essentially mineral-like layers. such as layers of metal oxides and / or silicon oxide. In general, the substrate and the abrasion-resistant layer or the primer layer have different refractive indices, and often very far apart, and consequently there are interference fringes due to this difference in refractive index. interface between the substrate and the abrasion resistant layer or the primer layer. This problem of appearance of interference fringes can be solved by matching the refractive index of the substrate and the coating layer in contact with it, which is quite restrictive. It has also been proposed in the application WO 03/056366 in the name of the applicant to solve this problem by interposing between the substrate and the polymer-like layer an initially porous quarter-wave layer based on particles of colloidal mineral oxides, whose porosity has been at least partially filled, generally completely or almost completely filled, by the material constituting the polymeric layer or the material constituting the substrate, when the latter is of a polymeric nature. This construction effectively decreases the intensity of the interference ranges. Furthermore, it is well known that optical articles, which are composed of substantially insulating materials, tend to have their surface load easily into static electricity, particularly when they are cleaned in dry conditions by rubbing their surface at the surface. using a cloth, a piece of synthetic foam or polyester (triboelectricity). The charges present on their surface create an electrostatic field capable of attracting and fixing objects of very low mass in the vicinity (a few centimeters), generally small particles such as dust, and during all the time the charge remains on the item. In order to reduce or cancel the attraction of the particles, it is necessary to reduce the intensity of the electrostatic field, that is to say to reduce the number of static charges present on the surface of the article. This can be done by making the charges mobile, for example by introducing a layer of a material inducing a high mobility of "charge carriers", in order to dissipate them quickly. The materials inducing the highest mobility are the conductive materials. The state of the art reveals that an optical article can acquire antistatic properties by incorporating into its surface, in the stack of functional coatings, at least one electrically conductive layer, called the "antistatic layer". " This antistatic layer may constitute the outer layer of the stack of functional coatings, an intermediate layer (internal) or be deposited directly on the substrate of the optical article. The presence of such a layer in a stack gives the article antistatic properties, even if the antistatic coating is interposed between two non-antistatic coatings or substrates. By "antistatic" is meant the property of not retaining and / or developing an appreciable electrostatic charge. An article is generally considered to have acceptable antistatic properties, when it does not attract and fix dust and small particles after one of its surfaces has been rubbed with a suitable cloth. It is able to quickly dissipate accumulated electrostatic charges, while a static item that has just been wiped may attract surrounding dust for as long as it is needed for discharge. The ability of a glass to evacuate a static charge obtained after friction by a fabric or by any other method of generating an electrostatic charge (charge applied by corona ...) can be quantified by measuring the dissipation time of said charge. Thus, antistatic glasses have a discharge time of the order of one hundred milliseconds, while it is of the order of several tens of seconds for a static glass, sometimes even several minutes. In the present application, an optical article is considered antistatic when its discharge time is less than a few hundred ms, typically <200 ms, regardless of the amount of charge applied (typically, for a test, the charge may vary from 20 to 50 nanocollons, which, in general, corresponds to the quantities actually obtained by triboelectric effect during a friction). Known antistatic coatings comprise at least one antistatic agent, which is generally an (optionally) doped (semi-) metal oxide, such as tin-doped indium oxide (ITO), tin oxide doped with antimony, vanadium pentoxide, or a conducting polymer with a conjugated structure. US Pat. No. 6,852,406 discloses optical articles, in particular ophthalmic lenses, equipped with a mineral-type antireflection stack comprising a transparent antistatic layer of a vacuum-deposited inorganic nature, based on tin-indium oxide ( ITO) or tin oxide. This embodiment is relatively restrictive because it does not allow to have an antistatic optical article without anti-reflective coating. It is more advantageous to have optical articles in which the antistatic layer is independent of the antireflection stack. A number of patent applications (US 2004/0209007, US 2002/0114960 ...) describe articles having an antistatic layer based on conductive polymers deposited directly on the substrate of the article and independent of the coating. anti reflection. Japanese application JP 2006-095997 discloses an optical article on which are deposited, in that order, an antistatic layer of 30 nm to 1 micron thick comprising conductive particles of 50-60 nm diameter agglomerated secondary particles of size 0.8-2 m (for example of ITO) and a resin, then a hard antiabrasion layer. By controlling the size of the conductive particles, it is possible to eliminate the interference fringes created by the difference in refractive index existing between the antistatic layer and the substrate. This document is therefore not intended to solve the problem of the appearance of interference fringes between the substrate and the anti-abrasion coating by means of a quarter-wave intermediate layer. To date, therefore, no coating having antistatic properties has been described and simultaneously capable of eliminating interference fringes by using an intermediate layer whose refractive index is chosen in relation to the refractive indices of the materials. on both sides of this coating, in order to achieve a quarter-wave layer, in particular by acting on the ratio between a conductive colloid and a low refractive index colloid contained in the antistatic layer. It is therefore an object of the present invention to provide an optical article, such as an ophthalmic lens, comprising an organic or inorganic glass substrate and at least one layer of transparent polymeric material, such as, for example, a primer layer or an anti-abrasion coating layer in which the phenomenon of interference fringes related to the difference in refractive index between the substrate and the layer of polymer material is substantially attenuated, and which has at the same time antistatic properties. The difference in index (measured at 550 nm) between the substrate and the transparent polymer material layer will be high, typically at least 0.01, preferably at least 0.02, more preferably at least 0.05, and more preferably at least 0.1, the larger the technical problem to be solved. The invention also aims to provide an optical article having antistatic properties and an excellent level of light transmission in the visible spectrum. The introduction of an antistatic layer generally inducing a decrease in the transmission due to the absorbency of the latter, it is indeed particularly advantageous to counterbalance this transmission loss using an antistatic quarter-wave layer.

L'invention a également pour objectif de fournir un article optique stable dans le temps et en particulier résistant à la photo-dégradation. La présente invention a encore pour objet un procédé de fabrication d'un article d'optique tel que défini ci-dessus qui s'intègre aisément dans le processus classique de fabrication et qui, en particulier, évite autant que possible la mise en oeuvre de dépôts sous vide ou de toute autre étape de traitement constituant une rupture dans le processus de fabrication de l'article d'optique. Les buts ci-dessus sont atteints selon l'invention par un article d'optique, par exemple une lentille ophtalmique et en particulier un verre de lunette, comprenant un substrat en verre organique ou minéral, une couche d'un matériau polymérique et une couche intermédiaire possédant des propriétés antistatiques en contact direct avec une face principale du substrat et la couche de matériau polymérique, la couche intermédiaire comprenant un mélange de particules colloïdales d'au moins un oxyde métallique colloïdal électriquement conducteur, de particules colloïdales ayant un indice de réfraction inférieur ou égal à 1,55 et optionnellement d'un liant, dans des proportions telles que la masse de particules d'oxydes métalliques colloïdaux électriquement conducteurs représente 50 à 97 %, de préférence 55 à 95%, mieux 60 à 95%, et mieux encore de 60 à 90% de la masse totale de particules colloïdales présentes dans la couche intermédiaire, ladite couche intermédiaire étant une couche initialement poreuse dont la porosité a été comblée soit par du matériau de la couche de matériau polymérique soit par du matériau du substrat si celui- ci est en verre organique, de sorte que la couche intermédiaire, après comblement de sa porosité initiale, vérifie les caractéristiques suivantes : 0,725 x - <_ e <_ 1,35 x - (1) 4n 4n 0,98 x V nsubstrat .n polymère n ~ 1,02 X 11 substrat .n polymère (2) où n est l'indice de réfraction de la couche intermédiaire, nsubstrat est l'indice de réfraction du substrat, npolymère est l'indice de réfraction de la couche de matériau polymérique directement en contact avec la couche intermédiaire, e est l'épaisseur de la couche intermédiaire et 2 est égal à 550 nm. The invention also aims to provide a stable optical article over time and in particular resistant to photo-degradation. The present invention also relates to a method of manufacturing an optical article as defined above which easily integrates into the conventional manufacturing process and which, in particular, avoids as much as possible the implementation of vacuum deposits or any other processing step constituting a break in the process of manufacturing the optical article. The above objects are achieved according to the invention by an optical article, for example an ophthalmic lens and in particular a spectacle lens, comprising an organic or inorganic glass substrate, a layer of a polymeric material and a layer intermediate having antistatic properties in direct contact with a main surface of the substrate and the layer of polymeric material, the intermediate layer comprising a mixture of colloidal particles of at least one electrically conductive colloidal metal oxide, colloidal particles having a lower refractive index or equal to 1.55 and optionally a binder, in proportions such that the mass of electrically conductive colloidal metal oxide particles represents 50 to 97%, preferably 55 to 95%, better 60 to 95%, and better still 60 to 90% of the total mass of colloidal particles present in the intermediate layer, said intermediate layer diaire being an initially porous layer whose porosity has been filled either by material of the layer of polymeric material or by material of the substrate if it is made of organic glass, so that the intermediate layer, after filling its initial porosity has the following characteristics: 0.725 x - <_ e <_ 1.35 x - (1) 4n 4n 0.98 x V nsubstrate .n polymer n ~ 1.02 X 11 polymer substrate (2) where n is the refractive index of the intermediate layer, nsubstrate is the refractive index of the substrate, npolymer is the refractive index of the polymeric material layer directly in contact with the intermediate layer, e is the thickness of the intermediate layer and 2 is 550 nm.

Dans la présente demande et sauf indication contraire, les indices de réfraction In this application and unless otherwise indicated, refractive indexes

s'entendent à 25°C et pour une longueur d'onde de 550 nm, qui est la longueur d'onde mean at 25 ° C and for a wavelength of 550 nm, which is the wavelength

correspondant à la sensibilité maximum de l'oeil humain, et à laquelle on souhaite donc principalement parvenir à une extinction des franges d'interférence. corresponding to the maximum sensitivity of the human eye, and to which we therefore mainly want to achieve an extinction of the interference fringes.

L'atténuation maximale de la perception des franges d'interférences peut se The maximum attenuation of the perception of the interference fringes can be

manifester à 550 nm, ou bien à une autre longueur d'onde dans le domaine du visible, manifest at 550 nm, or at another wavelength in the visible range,

suivant les valeurs de n et e retenues dans le calcul des équations (1) et (2) ci-dessus. following the values of n and e used in the calculation of equations (1) and (2) above.

Les inventeurs ont constaté que la perception des franges d'interférences était réduite dès lors que l'on utilisait les valeurs de n et e définies dans les équations (1) et (2). L'invention concerne également un procédé de fabrication d'un article d'optique tel The inventors have found that the perception of interference fringes was reduced when the values of n and e defined in equations (1) and (2) were used. The invention also relates to a method of manufacturing an optical article such as

que défini ci-dessus, comprenant : as defined above, comprising:

a) le dépôt d'une couche de composition de couche intermédiaire soit sur au moins une surface principale d'un substrat en verre organique ou minéral, soit sur une couche d'un matériau polymérique, ladite composition comprenant un mélange de particules colloïdales d'au moins un oxyde métallique colloïdal électriquement conducteur, de particules colloïdales ayant un indice de réfraction inférieur ou égal à 1,55 et optionnellement d'un liant ; b) le séchage de la composition de couche intermédiaire de façon à former une couche intermédiaire ayant une porosité initiale; a) depositing a layer of intermediate layer composition on at least one main surface of an organic or inorganic glass substrate, or on a layer of a polymeric material, said composition comprising a mixture of colloidal particles of at least one electrically conductive colloidal metal oxide, of colloidal particles having a refractive index less than or equal to 1.55 and optionally a binder; b) drying the interlayer composition to form an intermediate layer having an initial porosity;

c) la formation sur cette couche intermédiaire poreuse soit d'une couche d'un matériau polymérique, soit d'un substrat en verre organique, de façon à ce que la porosité initiale de la couche intermédiaire soit comblée soit par du matériau de la couche polymérique, soit par du matériau du substrat si celui-ci est en verre organique, et de sorte que la couche intermédiaire, après comblement de sa porosité initiale, vérifie les équations (1) et (2) ci-dessus, c) forming on this porous intermediate layer either a layer of a polymeric material or an organic glass substrate, so that the initial porosity of the intermediate layer is filled either by material of the layer; polymer, or by material of the substrate if it is made of organic glass, and so that the intermediate layer, after filling its initial porosity, verifies equations (1) and (2) above,

d) la récupération d'un article d'optique comprenant une couche intermédiaire possédant des propriétés antistatiques en contact direct avec une face principale du substrat et la couche de matériau polymérique, la masse de particules d'oxydes métalliques colloïdaux électriquement conducteurs représentant 50 à 97 % de la masse totale de particules colloïdales présentes dans la couche intermédiaire. d) recovering an optical article comprising an intermediate layer having antistatic properties in direct contact with a main surface of the substrate and the layer of polymeric material, the mass of electrically conductive colloidal metal oxide particles being 50 to 97 % of the total mass of colloidal particles present in the intermediate layer.

Connaissant les indices de réfraction du substrat de la couche de matériau polymérique, les équations (1) et (2) ci-dessus permettent de déterminer les gammes d'épaisseur e et d'indice de réfraction n de la couche intermédiaire selon l'invention. Knowing the refractive indices of the substrate of the polymeric material layer, the equations (1) and (2) above make it possible to determine the thicknesses e and refractive index n ranges of the intermediate layer according to the invention .

Comme déjà évoqué ci-dessus, les caractéristiques d'épaisseur et d'indice de réfraction d'une couche intermédiaire selon l'invention peuvent s'écarter des valeurs idéales théoriques d'une couche quart d'onde. On parlera alors dans la présente demande de couche quasi quart d'onde. As already mentioned above, the thickness and refractive index characteristics of an intermediate layer according to the invention can deviate from the theoretical ideal values of a quarter-wave layer. We will then speak in the present application of quasi-quarter-wave layer.

Lorsque les équations (1) et (2) ci-dessus sont vérifiées, un effet anti-franges d'interférences satisfaisant est obtenu. De préférence, la couche intermédiaire vérifie l'équation suivante : When equations (1) and (2) above are satisfied, a satisfactory interference-free fringe effect is obtained. Preferably, the intermediate layer satisfies the following equation:

0,8 x - <_ e 1,2 x (1'), et encore mieux : 0,85x- e 1,15 x 4n 4n 4n 4n (1"). 0.8 x - 1.2 x (1 '), and even better: 0.85x-e 1.15 x 4n 4n 4n 4n (1 ").

En pratique, l'épaisseur de la couche intermédiaire après comblement de sa porosité par le matériau polymère ou le matériau du substrat peut être difficile à mesurer. En première approximation, cette épaisseur peut être considérée comme égale à celle de la couche de particules colloïdales déposée et séchée, puisque son épaisseur varie peu du fait de la diffusion du matériau de remplissage de la couche poreuse. In practice, the thickness of the intermediate layer after filling of its porosity with the polymer material or the material of the substrate can be difficult to measure. As a first approximation, this thickness can be considered as being equal to that of the layer of colloidal particles deposited and dried, since its thickness varies little because of the diffusion of the filling material of the porous layer.

De préférence, la couche intermédiaire vérifie l'équation suivante : 0,985 x, Jnsubstrat .npolymère n 1,015 x Vnsubstrat .n polymère (2'), et encore mieux : 0,99 x Vn substrat .n polymère ≤ n ~ 1,01 X V n substrat n polymère (2") En pratique, l'indice de réfraction de la couche intermédiaire après comblement de sa porosité par le matériau polymère ou le matériau du substrat peut être difficile à mesurer. En première approximation, cet indice de réfraction peut être considéré comme égal à l'indice de réfraction théorique d'une couche intermédiaire dont la porosité aurait été entièrement comblée par le matériau de remplissage. Une méthode de calcul de cet indice de réfraction théorique est indiquée dans la partie expérimentale, où il est noté n3. Preferably, the intermediate layer satisfies the following equation: 0.985 x, substrate n = 1.015 x polymer nsubstrate (2 '), and most preferably: 0.99 x substrate n polymer n = 1.01 x In practice, the refractive index of the intermediate layer after filling of its porosity with the polymeric material or the material of the substrate may be difficult to measure As a first approximation, this refractive index may be considered to be equal to the theoretical refractive index of an intermediate layer whose porosity has been completely filled by the filling material.A method of calculating this theoretical refractive index is indicated in the experimental part, where it is noted n3. .

Une couche intermédiaire selon l'invention peut également constituer une couche quart d'onde proprement dite à la longueur d'onde de 550 nm. Il s'agit du mode de réalisation préféré. Dans ce cas, son indice de réfraction n et son épaisseur e sont égaux aux indice de réfraction et épaisseur théoriques d'une couche quart d'onde, c'est-à-dire vérifient les relations suivantes : À e = ù et 4nn = V n substrat .n polymère où 2ä nsubstrat et npolymère ont les mêmes significations que précédemment. En d'autres termes, l'indice de réfraction n de la lame quart d'onde est la moyenne géométrique des indices de réfraction des matériaux l'entourant. Selon la présente invention, le choix de l'indice de réfraction idéal et le choix de l'épaisseur idéale pour une couche intermédiaire devant être intercalée entre un substrat et une couche de polymère d'indices de réfraction prédéterminés ne sont donc pas des choix libres, ces deux paramètres étant fixés par les indices de réfraction du substrat et de la couche de polymère. En revanche, la nature des colloïdes constituant la couche est plus libre. Une couche intermédiaire selon l'invention, c'est-à-dire une couche possédant les 1 o caractéristiques d'indice de réfraction et d'épaisseur d'une couche quart d'onde ou proches de celles d'une couche quart d'onde et possédant en même temps des propriétés antistatiques suffisantes sera obtenue en choisissant de façon appropriée la nature du ou des colloïdes de particules conductrices et du ou des colloïdes de particules de bas indice de réfraction, ainsi que leurs proportions respectives. L'homme du métier est parfaitement 15 capable de parvenir à une formulation adéquate sans réaliser un nombre excessif d'expériences. Jusqu'à présent, seules des couches antistatiques minérales comprenant exclusivement des oxydes métalliques conducteurs tels que l'ITO et éventuellement un liant avaient été décrites. Des couches antistatiques comprenant en outre des particules d'oxydes 20 minéraux non conducteurs n'étaient pas connues. L'homme du métier peut aussi influer sur l'indice de réfraction de la couche intermédiaire en jouant sur la présence d'un liant et sur sa nature, sur le diamètre des particules colloïdales qui a un impact sur la porosité initiale de la couche intermédiaire, ou sur la nature du matériau de comblement de la porosité initiale de la couche intermédiaire de 25 colloïdes, qui peut être soit du matériau de la couche polymérique, soit du matériau du substrat. Ainsi, lorsque les propriétés antistatiques d'une couche quart d'onde ou quasi quart d'onde obtenue à partir d'un mélange donné de particules conductrices et de particules de bas indice de réfraction sont insuffisantes, l'homme du métier peut sans difficulté préparer 30 une couche ayant une épaisseur et un indice de réfraction similaires en augmentant la proportion de particules conductrices par rapport aux particules de bas indice de réfraction, sans modifier la nature des particules conductrices, mais en remplaçant les particules de bas indice de réfraction par d'autres particules possédant un indice de réfraction inférieur. Tout en restant dans la gamme d'épaisseur autorisée par l'invention, c'est-à-dire la 35 gamme de l'équation (1) encadrant l'épaisseur théorique d'une couche quart d'onde à 550 nm, il est également généralement possible d'augmenter l'épaisseur de la couche intermédiaire afin d'accroître ses propriétés antistatiques. An intermediate layer according to the invention may also constitute a quarter-wave layer proper at the wavelength of 550 nm. This is the preferred embodiment. In this case, its refractive index n and its thickness e are equal to the refractive index and theoretical thickness of a quarter-wave layer, that is to say verify the following relations: At e = ù and 4nn = A polymeric substrate wherein the substrate and the polymer have the same meanings as before. In other words, the refractive index n of the quarter-wave plate is the geometric mean of the refractive indices of the materials surrounding it. According to the present invention, the choice of the ideal refractive index and the choice of the ideal thickness for an intermediate layer to be interposed between a substrate and a polymer layer of predetermined refractive indices are therefore not free choices. these two parameters being fixed by the refractive indices of the substrate and of the polymer layer. On the other hand, the nature of the colloids constituting the layer is more free. An intermediate layer according to the invention, that is to say a layer having the refractive index and thickness characteristics of a quarter-wave layer or close to those of a quarter-layer. and having at the same time sufficient antistatic properties will be obtained by appropriately choosing the nature of the conductive particle colloid (s) and colloid (s) of low refractive index particles, as well as their respective proportions. Those skilled in the art are perfectly capable of achieving an adequate formulation without performing an excessive number of experiments. Until now, only mineral antistatic layers exclusively comprising conductive metal oxides such as ITO and possibly a binder have been described. Antistatic layers further comprising non-conductive inorganic oxide particles were not known. Those skilled in the art can also influence the refractive index of the intermediate layer by acting on the presence of a binder and on its nature, on the diameter of the colloidal particles which has an impact on the initial porosity of the intermediate layer. or on the nature of the filler material of the initial porosity of the colloid intermediate layer, which may be either the material of the polymeric layer or the material of the substrate. Thus, when the antistatic properties of a quarter-wave or quasi-quarter-wave layer obtained from a given mixture of conductive particles and particles of low refractive index are insufficient, the person skilled in the art can without difficulty preparing a layer having a similar thickness and refractive index by increasing the proportion of conductive particles to low refractive index particles without changing the nature of the conductive particles but replacing the low refractive index particles with other particles having a lower refractive index. While remaining within the thickness range permitted by the invention, i.e., the range of equation (1) framing the theoretical thickness of a quarter-wave layer at 550 nm, it It is also generally possible to increase the thickness of the interlayer to increase its antistatic properties.

Lorsque les propriétés antistatiques d'une couche obtenue à partir d'un mélange donné de particules conductrices et de particules de bas indice de réfraction sont satisfaisantes, mais que cette couche possède un indice de réfraction trop élevé pour exercer un effet anti-franges et entrer dans le cadre de l'invention, l'homme du métier peut préparer une couche quart d'onde ou quasi quart d'onde en remplaçant les particules de bas indice de réfraction par d'autres particules possédant un indice de réfraction inférieur. Il est en effet plus commode d'ajuster ou de réguler l'indice de réfraction de la couche intermédiaire en modifiant la nature des particules de bas indice de réfraction, les particules conductrices ayant généralement un indice de réfraction compris dans une gamme restreinte de l'ordre de 1,9 à 2. Il peut donc être avantageux dans certains cas d'utiliser des particules colloïdales, en particulier d'oxyde minéral colloïdal de bas indice de réfraction creuses, du type présentant une structure core/shell (coeur/écorce), le coeur de la particule étant vide de matière (empli d'air) ou poreuses, du type présentant un réseau de pores de faibles dimensions par rapport à la taille de la particule, qui offrent une large gamme de choix d'indice de réfraction puisque celui-ci peut généralement varier de 1,15 à 1,45. Ces particules ont un indice de réfraction plus faible que les mêmes particules non creuses ou non poreuses du fait que l'air contenu dans le volume creux ou dans les pores de ces particules a un indice de réfraction plus faible que le matériau les constituant. Elles seront décrites en détail plus tard. When the antistatic properties of a layer obtained from a given mixture of conductive particles and particles of low refractive index are satisfactory, but this layer has a refractive index too high to exert an anti-fringe effect and enter in the context of the invention, a person skilled in the art can prepare a quarter-wave or quasi-quarter-wave layer by replacing the particles of low refractive index with other particles having a lower refractive index. It is indeed more convenient to adjust or regulate the refractive index of the intermediate layer by modifying the nature of the low refractive index particles, the conductive particles generally having a refractive index within a limited range of the refractive index. 1.9 to 2. It may therefore be advantageous in some cases to use colloidal particles, in particular colloidal mineral oxide of low refractive index hollow, of the type having a core / shell structure (core / shell) the core of the particle being void of material (filled with air) or porous, of the type exhibiting a network of small pores with respect to the size of the particle, which offer a wide range of refractive index choices since it can generally vary from 1.15 to 1.45. These particles have a lower refractive index than the same non-hollow or non-porous particles because the air contained in the hollow volume or in the pores of these particles has a lower refractive index than the material constituting them. They will be described in detail later.

La couche intermédiaire peut être formée sur un substrat en verre organique ou minéral, de préférence en verre organique, telle qu'une lentille ophtalmique préformée. C'est alors un matériau polymérique qui assure le comblement de la porosité de la couche intermédiaire. Un tel procédé peut mettre en jeu le transfert ou l'application d'un ou plusieurs revêtements sur le substrat revêtu de la couche intermédiaire poreuse. The intermediate layer may be formed on an organic or inorganic glass substrate, preferably organic glass, such as a preformed ophthalmic lens. It is then a polymeric material which ensures the filling of the porosity of the intermediate layer. Such a method may involve the transfer or application of one or more coatings to the substrate coated with the porous interlayer.

Elle peut également être formée sur une partie de moule dont une surface principale de moulage est revêtue d'au moins un revêtement constituant la couche de matériau polymérique, de préférence optiquement transparent. Selon ce mode de réalisation, le substrat est en verre organique (c'est-à-dire de nature polymère) et peut être formé in situ lors du transfert par coulée d'une composition polymérisable liquide dans le moule comportant sur une de ses surfaces le revêtement constituant la couche de matériau polymérique revêtue de la couche intermédiaire poreuse, suivi d'une polymérisation. C'est alors le matériau du substrat qui assure le comblement de la porosité de la couche intermédiaire. Pour une description détaillée des différentes techniques permettant de préparer une couche intermédiaire conforme à l'invention par comblement de sa porosité initiale au moyen d'un matériau polymérique, on pourra se référer à la description de la demande WO 03/056366 au nom du déposant et à ses figures 5 à 7, qui est ici incorporée par référence. It may also be formed on a mold part of which a main molding surface is coated with at least one coating constituting the layer of polymeric material, preferably optically transparent. According to this embodiment, the substrate is made of organic glass (that is to say of polymer nature) and can be formed in situ during the transfer by casting of a liquid polymerizable composition in the mold having on one of its surfaces the coating constituting the layer of polymeric material coated with the porous intermediate layer, followed by polymerization. It is then the material of the substrate which ensures the filling of the porosity of the intermediate layer. For a detailed description of the different techniques for preparing an intermediate layer according to the invention by filling its initial porosity with a polymeric material, reference may be made to the description of the application WO 03/056366 in the name of the applicant. and Figs. 5 to 7, which is hereby incorporated by reference.

Les substrats convenant pour les articles selon la présente invention peuvent être tout substrat optiquement transparent en verre minéral ou organique, de préférence en verre organique. Parmi les matières plastiques convenant pour les substrats on peut citer les homo et copolymères de carbonate, (méth)acryliques, thio(méth)acryliques, de diéthylène glycol bisallylcarbonate tel que le matériau CR39 commercialisé par PPG, d'uréthane, de thiouréthane, d'époxyde, d'épisulfure et leur combinaisons. Les matériaux préférés pour les substrats sont les polycarbonates (PC), les polyuréthanes (PU), les polythiouréthanes, les polymères (méth)acryliques et thio(méth)acryliques. Généralement, les substrats ont un indice de réfraction variant de 1,55 à 1,80 et de préférence de 1,60 à 1,75. Lorsque la composition de couche intermédiaire doit être déposée sur un substrat déjà formé, la surface du substrat nu en verre organique ou minéral, par exemple une lentille ophtalmique, peut au préalable être traitée par trempage dans une solution de soude à 5 % à chaud, par exemple à 50°C (3 minutes), puis rincée à l'eau et à l'isopropanol. Selon l'invention, la couche intermédiaire est obtenue à partir d'une composition de couche intermédiaire comprenant des particules colloïdales d'au moins un oxyde minéral colloïdal ayant un indice de réfraction inférieur ou égal à 1,55, de particules colloïdales d'au moins un oxyde métallique colloïdal électriquement conducteur, et optionnellement un liant. L'utilisation d'une certaine quantité de particules colloïdales ayant un indice de réfraction inférieur ou égal à 1,55 est nécessaire, puisque l'indice de réfraction d'une couche composée uniquement de particules d'oxydes métalliques conducteurs, d'indice de réfraction proche de 2, dont la porosité a été comblée par un matériau, est nécessairement plus élevé que celui du matériau lui-même. Une telle couche ne pourrait donc pas être utilisée en tant que couche quart d'onde ou quasi quart d'onde. L'obtention de particules colloïdales utilise des techniques bien connues. Par colloïdes, on entend de fines particules dont le diamètre (ou la plus grande dimension) est inférieur à 1 m, de préférence inférieur à 150 nm, mieux inférieur à 100 nm, dispersées dans un milieu dispersant tel que l'eau, un alcool, une cétone, un ester ou leurs mélanges, de préférence un alcool tel que l'éthanol ou l'isopropanol. Des gammes de tailles de particules colloïdales préférées sont les gammes 10 à 80 nm, 30 à 80 nm et 30 à 60 nm. En particulier, les particules colloïdales, préférentiellement d'oxyde minéral colloïdal peuvent être constituées d'un mélange de particules de petite taille, par exemple de 10 à 15 nm et de particules de plus grande taille, par exemple de 30 à 80 nm. Les particules colloïdales peuvent également être des fluorures de bas indice de réfraction tels que MgF2, ZrF4, AIF3, chiolite (Na3[AI3F14]), cryolite (Na3[AIF6]). The substrates suitable for the articles according to the present invention may be any optically transparent substrate of mineral or organic glass, preferably of organic glass. Among the plastics suitable for the substrates include homo and copolymers of carbonate, (meth) acrylic, thio (meth) acrylic diethylene glycol bisallylcarbonate such as CR39 material marketed by PPG, urethane, thiouréthane, d epoxide, episulfide and their combinations. The preferred materials for the substrates are polycarbonates (PC), polyurethanes (PU), polythiourethanes, (meth) acrylic and thio (meth) acrylic polymers. Generally, the substrates have a refractive index ranging from 1.55 to 1.80 and preferably from 1.60 to 1.75. When the intermediate layer composition is to be deposited on a substrate already formed, the surface of the organic or inorganic glass bare substrate, for example an ophthalmic lens, may first be treated by dipping in a hot 5% sodium hydroxide solution, for example at 50 ° C (3 minutes), then rinsed with water and isopropanol. According to the invention, the intermediate layer is obtained from an intermediate layer composition comprising colloidal particles of at least one colloidal mineral oxide having a refractive index less than or equal to 1.55, of colloidal particles of less an electrically conductive colloidal metal oxide, and optionally a binder. The use of a certain quantity of colloidal particles having a refractive index less than or equal to 1.55 is necessary, since the refractive index of a layer composed solely of conductive metal oxide particles, with a refractive index of refraction close to 2, whose porosity has been filled by a material, is necessarily higher than that of the material itself. Such a layer could not therefore be used as a quarter-wave or quasi-quarter-wave layer. Obtaining colloidal particles uses well known techniques. By colloids is meant fine particles whose diameter (or greater dimension) is less than 1 m, preferably less than 150 nm, better still less than 100 nm, dispersed in a dispersing medium such as water, an alcohol a ketone, an ester or mixtures thereof, preferably an alcohol such as ethanol or isopropanol. Preferred colloidal particle size ranges are 10 to 80 nm, 30 to 80 nm and 30 to 60 nm ranges. In particular, the colloidal particles, preferably of colloidal mineral oxide may consist of a mixture of small particles, for example 10 to 15 nm and larger particles, for example 30 to 80 nm. The colloidal particles may also be fluorides of low refractive index such as MgF 2, ZrF 4, AlF 3, chiolite (Na 3 [Al 3 F 14]), cryolite (Na 3 [AlF 6]).

Dans le reste de la description, les particules colloïdales, en particulier les particules d'oxyde minéral colloïdal ayant un indice de réfraction inférieur ou égal à 1,55, de préférence inférieur ou égal à 1,50, seront couramment nommées, respectivement particules colloïdales de bas indice de réfraction et oxyde minéral colloïdal "de bas indice de réfraction." Leur indice de réfraction est de préférence supérieur ou égal à 1,15. Les particules colloïdales d'oxyde de bas indice de réfraction peuvent être, sans limitation, des particules de silice, de silice dopée avec de l'alumine, des particules d'oxyde minéral dites creuses ou poreuses, comme expliqué plus haut, ou leurs mélanges. Généralement, ce sont des particules non électriquement conductrices. 1 o Comme exemples de silices colloïdales utilisables, on peut citer les silices préparées par le procédé Stdber. Le procédé Stdber est un procédé simple et bien connu qui consiste en une hydrolyse et condensation du tétrasilicate d'éthyle Si(OC2H5)4 dans l'éthanol catalysée par de l'ammoniac. Le procédé permet d'obtenir une silice directement dans l'éthanol, une population de particules quasi monodisperses, une taille de particules réglable 15 et une surface de particules (SiO-NH4+). Des colloïdes de silice sont également commercialisés par Du Pont De Nemours sous le nom LUDOX . Les particules d'oxyde minéral dites creuses ou poreuses, leur utilisation en optique et leur mode de préparation ont été largement décrits dans la littérature, notamment dans les demandes de brevet WO 2006/095469, JP 2001-233611, WO 00/37359, JP2003-222703. 20 De telles particules sont également disponibles commercialement auprès de la société Catalysts & Chemicals Industries Co. (CCIC), par exemple sous la forme de sols de silice poreuse sous la référence THRULYA . Ces particules peuvent être modifiées par greffage d'un groupe organique, notamment sur un atome de silicium, ou bien peuvent être des particules composites de 25 plusieurs oxydes minéraux. Dans la présente invention, les particules d'oxyde minéral colloïdal de bas indice de réfraction préférées sont des particules creuses ou poreuses possédant de préférence un indice de réfraction allant de 1,15 à 1,40, mieux de 1,20 à 1,40, et un diamètre allant préférentiellement de 20 à 150 nm, mieux de 30 à 100 nm. Ce sont préférentiellement des 30 particules de silice creuses.. Par oxyde métallique électriquement conducteur, on entend un oxyde métallique conducteur ou semi-conducteur, éventuellement dopé. Les oxydes métalliques électriquement conducteurs possèdent généralement un haut indice de réfraction, de l'ordre de 1,9 à 2,0. 35 Des exemples non-limitatifs d'oxydes métalliques électriquement conducteurs sont l'oxyde d'indium dopé à l'étain (ITO), l'oxyde d'étain dopé à l'antimoine (ATO), l'oxyde de zinc dopé à l'aluminium, l'oxyde d'étain (SnO2), l'oxyde de zinc (ZnO), l'oxyde d'indium (In2O3), le pentoxyde de vanadium, l'oxyde d'antimoine, l'oxyde de cérium, l'antimonate de zinc, l'antimonate d'indium. Ces deux derniers composés et leur procédé d'obtention sont décrits dans le brevet US 6,211,274. L'oxyde d'indium dopé à l'étain et l'oxyde d'étain sont préférés. Selon un mode de réalisation optimal, la couche intermédiaire ne comprend qu'un seul oxyde métallique électriquement conducteur, l'oxyde d'indium dopé à l'étain (ITO). La composition de couche intermédiaire peut comprendre d'autres catégories de particules colloïdales, notamment des particules non électriquement conductrices d'indice de réfraction supérieur à 1,55, à condition que leur présence n'empêche pas l'obtention de 1 o propriétés antistatiques et de l'effet anti-franges d'interférences. Des exemples non limitatifs de telles particules sont TiO2, ZrO2, Sb2O3, AI2O3, Y2O3, Ta2O5 et leurs mélanges. Des composites tels que SiO2/TiO2, SiO2/ZrO2, SiO2/TiO2/ZrO2, ou TiO2/SiO2/ZrO2/SnO2 peuvent également être employés. De préférence, la composition de couche intermédiaire comprend un mélange binaire 15 d'un oxyde de bas indice de réfraction et d'un oxyde électriquement conducteur. Selon la présente invention, la masse de particules d'oxydes métalliques colloïdaux électriquement conducteurs représente de 50 à 97 %, de préférence 55 à 95%, mieux de 60 à 95% et mieux encore de 60 à 90% de la masse totale de particules colloïdales, préférentiellement d'oxydes colloïdaux présents dans la couche intermédiaire. De 20 préférence, ces proportions sont également vérifiées par la composition de couche intermédiaire. De telles teneurs en particules électriquement conductrices sont destinées à assurer des propriétés antistatiques suffisantes à la couche intermédiaire, qui doit atteindre le seuil de conductivité. La composition de couche intermédiaire peut éventuellement contenir au moins un 25 liant, en une quantité telle qu'avant comblement de la porosité initiale de la couche de colloïdes déposée et séchée, cette couche poreuse comprend préférentiellement de 1 à 30 0/0 en masse de liants par rapport à la masse totale (sèche) de particules colloïdales présentes dans cette couche, mieux de 10 à 25 % et encore mieux 10 à 20 %. Le liant est généralement un matériau polymère qui ne nuit pas aux propriétés 30 optiques de la couche intermédiaire finale et qui accroît la cohésion et l'adhérence des particules d'oxydes à la surface du substrat. Il peut être formé à partir d'un matériau thermoplastique ou thermodurcissable, éventuellement réticulable par polycondensation, polyaddition ou hydrolyse. Des mélanges de liants appartenant à différentes catégories peuvent également être employés. 35 Des exemples de liants utilisables sont donnés dans la demande WO 2008/015364, au nom du déposant. Parmi ceux-ci, on peut citer plus précisément les résines polyurethane, époxy, mélamine, polyoléfine, urethane acrylate, époxyacrylate, et ceux obtenus à partir de monomères tels que les monomères méthacrylate, acrylate, époxy, et vinyl. Les liants préférés sont de nature organique, notamment les latex de polyuréthane et les latex (méth)acryliques, tout particulièrement les latex de polyuréthane. Selon un mode de réalisation particulier de l'invention, la composition de revêtement intermédiaire ne comprend pas de liant. De préférence, la masse de l'extrait sec de la composition de couche intermédiaire représente moins de 15 % de la masse totale de cette composition, mieux moins de 10 % et encore mieux moins de 5 %. L'épaisseur d'une couche intermédiaire selon l'invention varie généralement de 50 à 130 nm, de préférence de 60 à 130 nm, mieux de 75 à 110 nm, et mieux encore de 80 à 100 nm, cette épaisseur devant bien entendu être en accord avec la gamme de l'équation (1) et permettre l'obtention de propriétés antistatiques. Cette épaisseur est l'épaisseur obtenue après comblement de la porosité initiale de la couche intermédiaire, et est généralement pratiquement identique à l'épaisseur avant comblement. In the remainder of the description, the colloidal particles, in particular the colloidal mineral oxide particles having a refractive index less than or equal to 1.55, preferably less than or equal to 1.50, will be commonly called colloidal particles, respectively. of low refractive index and colloidal mineral oxide "of low refractive index." Their refractive index is preferably greater than or equal to 1.15. The colloidal particles of low refractive index oxide may be, without limitation, particles of silica, silica doped with alumina, so-called hollow or porous mineral oxide particles, as explained above, or their mixtures . Generally, these are non-electrically conductive particles. Examples of colloidal silicas that can be used include silicas prepared by the Stdber process. The Stdber process is a simple and well-known method which consists of hydrolysis and condensation of ethyl tetrasilicate Si (OC 2 H 5) 4 in ethanol catalyzed by ammonia. The method provides a silica directly in ethanol, a population of near-monodisperse particles, an adjustable particle size and a particle surface (SiO-NH4 +). Silica colloids are also marketed by Du Pont De Nemours under the name LUDOX. The so-called hollow or porous mineral oxide particles, their use in optics and their method of preparation have been widely described in the literature, in particular in patent applications WO 2006/095469, JP 2001-233611, WO 00/37359, JP2003. -222,703. Such particles are also commercially available from Catalysts & Chemicals Industries Co. (CCIC), for example in the form of porous silica sols under the reference THRULYA. These particles may be modified by grafting an organic group, in particular on a silicon atom, or they may be composite particles of several inorganic oxides. In the present invention, the preferred low refractive index colloidal inorganic oxide particles are hollow or porous particles preferably having a refractive index ranging from 1.15 to 1.40, more preferably from 1.20 to 1.40. and a diameter preferably ranging from 20 to 150 nm, more preferably from 30 to 100 nm. These are preferably hollow silica particles. An electrically conductive metal oxide is understood to mean a conductive or semiconductor metal oxide, optionally doped. Electrically conductive metal oxides generally have a high refractive index, in the range of 1.9 to 2.0. Non-limiting examples of electrically conductive metal oxides are tin doped indium oxide (ITO), antimony doped tin oxide (ATO), zinc oxide doped with aluminum, tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3), vanadium pentoxide, antimony oxide, cerium oxide , zinc antimonate, indium antimonate. These last two compounds and their method of production are described in US Pat. No. 6,211,274. Indium tin doped oxide and tin oxide are preferred. According to an optimal embodiment, the intermediate layer comprises only one electrically conductive metal oxide, indium oxide doped with tin (ITO). The interlayer composition may comprise other classes of colloidal particles, in particular non-electrically conductive particles having a refractive index greater than 1.55, provided that their presence does not prevent the obtaining of antistatic properties. the anti-fringe effect of interference. Non-limiting examples of such particles are TiO 2, ZrO 2, Sb 2 O 3, Al 2 O 3, Y 2 O 3, Ta 2 O 5 and mixtures thereof. Composites such as SiO 2 / TiO 2, SiO 2 / ZrO 2, SiO 2 / TiO 2 / ZrO 2, or TiO 2 / SiO 2 / ZrO 2 / SnO 2 can also be employed. Preferably, the interlayer composition comprises a binary mixture of a low refractive index oxide and an electrically conductive oxide. According to the present invention, the mass of electrically conductive colloidal metal oxide particles is 50 to 97%, preferably 55 to 95%, more preferably 60 to 95% and more preferably 60 to 90% of the total mass of particles. colloidal, preferably colloidal oxides present in the intermediate layer. Preferably, these proportions are also verified by the interlayer composition. Such levels of electrically conductive particles are intended to provide sufficient antistatic properties to the intermediate layer, which must reach the conductivity threshold. The intermediate layer composition may optionally contain at least one binder, in an amount such that, before filling the initial porosity of the deposited and dried colloid layer, this porous layer preferably comprises from 1 to 30% by weight of binders relative to the total mass (dry) of colloidal particles present in this layer, better from 10 to 25% and more preferably 10 to 20%. The binder is generally a polymeric material that does not adversely affect the optical properties of the final interlayer and enhances the cohesion and adhesion of the oxide particles to the substrate surface. It can be formed from a thermoplastic or thermosetting material, optionally crosslinkable by polycondensation, polyaddition or hydrolysis. Binder mixtures belonging to different categories can also be used. Examples of usable binders are given in WO 2008/015364, in the name of the applicant. Among these, there may be mentioned more specifically polyurethane resins, epoxy, melamine, polyolefin, urethane acrylate, epoxy acrylate, and those obtained from monomers such as methacrylate, acrylate, epoxy, and vinyl monomers. Preferred binders are organic in nature, especially polyurethane latices and (meth) acrylic latices, especially polyurethane latices. According to a particular embodiment of the invention, the intermediate coating composition does not comprise a binder. Preferably, the mass of the dry extract of the intermediate layer composition represents less than 15% of the total mass of this composition, better less than 10% and more preferably less than 5%. The thickness of an intermediate layer according to the invention generally varies from 50 to 130 nm, preferably from 60 to 130 nm, better still from 75 to 110 nm, and more preferably from 80 to 100 nm, this thickness obviously having to be in accordance with the range of equation (1) and to obtain antistatic properties. This thickness is the thickness obtained after filling the initial porosity of the intermediate layer, and is generally substantially identical to the thickness before filling.

Généralement, une augmentation de l'épaisseur de la couche intermédiaire, c'est-à-dire une augmentation de la quantité de particules conductrices déposées, accroit ses propriétés antistatiques. Bien entendu, l'épaisseur d'une couche intermédiaire doit être aussi proche que possible de l'épaisseur théorique d'une lame quart d'onde, compte tenu des matériaux utilisés pour l'article d'optique, pour un résultat optimal d'atténuation des franges d'interférence. Généralement, la porosité initiale de la couche intermédiaire, en l'absence de liant, est d'au moins 20 % en volume, par rapport au volume total de la couche intermédiaire, et de préférence d'au moins 30 % en volume, mieux d'au moins 40 % en volume. Cette porosité (avant comblement) correspond à la porosité obtenue après dépôt et séchage de la composition de couche intermédiaire. Par porosité initiale, on entend la porosité générée de façon inhérente par l'empilement des particules colloïdales d'oxydes de la couche de composition intermédiaire déposée et séchée. Cette porosité initiale est une porosité ouverte, accessible, qui est la seule à pouvoir être comblée par le matériau polymérique ou le matériau du substrat. Dans le cas où des oxydes colloïdaux creux sont employés dans la composition de couche intermédiaire, la porosité initiale ne comprend donc pas les pores de ces oxydes creux, inaccessibles au matériau polymérique ou au matériau du substrat. Lorsque la couche intermédiaire comprend un liant, la porosité initiale de cette couche est la porosité restante en tenant compte du volume occupé par le liant, mais avant comblement par le matériau de remplissage constitué par le matériau de la couche ultérieure ou du substrat. Elle est de préférence d'au moins 20 %, mieux d'au moins 30 % en volume par rapport au volume total de la couche intermédiaire. La composition de couche intermédiaire colloïdale est de préférence déposée sur le substrat ou, selon le cas, sur la couche de matériau polymérique, par trempage. Elle peut aussi être déposée par centrifugation. Typiquement, le support sur lequel est réalisé le dépôt est trempé dans la composition de couche intermédiaire liquide, l'épaisseur déposée étant fonction de la teneur en matière sèche du sol, de la taille des particules et de la vitesse de démouillage (Loi de Landau-Levich). Ainsi, connaissant la composition de revêtement, la taille des particules, les indices 1 o de réfraction du substrat et du revêtement de nature polymérique, on peut déterminer l'épaisseur voulue pour la couche intermédiaire et la vitesse de démouillage convenant pour l'obtention de l'épaisseur voulue. Après séchage de la couche déposée, on obtient une couche d'oxydes colloïdaux poreuse d'épaisseur voulue. Le séchage de la couche peut être effectué à une température 15 variant de 20 à 130°C, préférentiellement 20°C-120°C, mieux à température ambiante (20- 25°C). La couche de matériau polymérique utilisée dans la présente invention a de préférence une énergie de surface supérieure ou égale à 20 milliJoules/m2, mieux supérieure ou égale à 25 milliJoules/m2 et encore mieux supérieure ou égale à 30 milliJoules/m2. 20 L'énergie de surface est calculée selon la méthode Owens-Wendt décrite dans la référence suivante : Estimation of the surface force energy of polymers Owens D.K., Wendt R.G. (1969), J. APPL. POLYM. SCI., 13, 1741-1747. Le matériau polymérique est principalement décrit dans le cadre du mode de réalisation dans lequel il est utilisé en tant que matériau de comblement de la porosité de la 25 couche intermédiaire. Toutefois, la description qui suit vaut également dans le cas où le matériau du substrat est utilisé en tant que matériau de comblement. La composition conduisant au matériau polymérique de comblement comprend majoritairement un (ou des) composé(s) non fluoré(s). De préférence, la composition conduisant au matériau polymérique de comblement 30 comprend au moins 80 % en masse de composés non fluorés par rapport à la masse totale des composés formant l'extrait sec de ladite composition, mieux au moins 90 % en masse, encore mieux au moins 95 % en masse et tout préférentiellement 100 % en masse. Par extrait sec, on entend selon la présente invention les matières solides restantes après évaporation des solvants sous vide jusqu'à 100°C. 35 Typiquement, le taux de fluor dans le matériau polymérique de comblement est inférieur à 5 % en masse, de préférence inférieur à 1% en masse et mieux de 0 % en masse. Generally, an increase in the thickness of the intermediate layer, i.e., an increase in the amount of deposited conductive particles, increases its antistatic properties. Of course, the thickness of an intermediate layer should be as close as possible to the theoretical thickness of a quarter-wave plate, given the materials used for the optical article, for an optimal result of attenuation of the interference fringes. Generally, the initial porosity of the intermediate layer, in the absence of a binder, is at least 20% by volume, relative to the total volume of the intermediate layer, and preferably at least 30% by volume, better at least 40% by volume. This porosity (before filling) corresponds to the porosity obtained after deposition and drying of the intermediate layer composition. By initial porosity is meant the porosity inherently generated by the stacking of the colloidal oxide particles of the deposited and dried intermediate composition layer. This initial porosity is an open, accessible porosity, which is the only one that can be filled by the polymeric material or the material of the substrate. In the case where hollow colloidal oxides are used in the intermediate layer composition, the initial porosity therefore does not include the pores of these hollow oxides, inaccessible to the polymeric material or the substrate material. When the intermediate layer comprises a binder, the initial porosity of this layer is the remaining porosity, taking into account the volume occupied by the binder, but before filling by the filling material constituted by the material of the subsequent layer or of the substrate. It is preferably at least 20%, more preferably at least 30% by volume relative to the total volume of the intermediate layer. The colloidal interlayer composition is preferably deposited on the substrate or, as the case may be, on the layer of polymeric material, by dipping. It can also be deposited by centrifugation. Typically, the support on which the deposit is made is soaked in the liquid intermediate layer composition, the deposited thickness being a function of the solids content of the soil, the particle size and the dewetting speed (Landau's law). -Levich). Thus, knowing the coating composition, the particle size, the refractive indices of the substrate and the polymeric coating, it is possible to determine the desired thickness for the intermediate layer and the dewetting speed suitable for obtaining the desired thickness. After drying of the deposited layer, a porous colloidal oxide layer of desired thickness is obtained. The drying of the layer may be carried out at a temperature ranging from 20 to 130 ° C, preferably 20 ° C to 120 ° C, more preferably at room temperature (20-25 ° C). The layer of polymeric material used in the present invention preferably has a surface energy greater than or equal to 20 milliJoules / m2, more preferably greater than or equal to 25 milliJoules / m2 and more preferably greater than or equal to 30 milliJoules / m2. The surface energy is calculated according to the Owens-Wendt method described in the following reference: Owens D.K., Wendt R.G. (1969) J. Appl. POLYMER. SCI., 13, 1741-1747. The polymeric material is mainly described in the context of the embodiment in which it is used as a material for filling the porosity of the intermediate layer. However, the following description also applies in the case where the material of the substrate is used as filler material. The composition leading to the polymeric filler material mainly comprises a non-fluorinated compound (s). Preferably, the composition leading to the polymeric filler material comprises at least 80% by weight of non-fluorinated compounds relative to the total mass of the compounds forming the solids content of said composition, better still at least 90% by mass, and even better at least 95% by weight and most preferably 100% by weight. By dry extract is meant according to the present invention the solids remaining after evaporation of solvents under vacuum up to 100 ° C. Typically, the fluorine content in the polymeric filler material is less than 5% by weight, preferably less than 1% by weight and more preferably 0% by weight.

La porosité (en volume) de la couche intermédiaire après comblement est préférentiellement inférieure à l'une des valeurs suivantes : 20 %, 10 %, 5 %, 3 %, et encore mieux, est nulle (0 %). Comme pour la porosité initiale définie plus haut, la porosité après comblement ne tient par exemple pas compte de la porosité "fermée" des particules colloïdales creuses d'oxydes éventuellement employées. Ainsi, une couche intermédiaire dont la porosité initiale a été entièrement comblée possèdera au sens de l'invention une porosité nulle, même si elle comprend des particules creuses d'oxydes colloïdaux. Le matériau de comblement utilisé dans la présente demande peut être sous forme de monomères, d'oligomères, de polymères ou de leurs mélanges. 1 o Après comblement, le matériau de comblement vient en contact avec la surface du substrat (lorsque le matériau de comblement n'est pas celui du substrat mais celui d'une autre couche telle qu'une couche de primaire ou une couche anti-abrasion) et permet d'obtenir l'adhérence de la couche intermédiaire sur le substrat. La couche de matériau polymérique assurant le comblement de la porosité initiale de 15 la couche intermédiaire est généralement formée par dépôt au trempé ou par centrifugation, de préférence par trempé. La couche de matériau polymérique en contact direct avec la couche intermédiaire est préférentiellement une couche de matériau transparent. Il peut s'agir d'une couche d'un matériau fonctionnel, par exemple une couche d'un revêtement de primaire d'adhésion et/ou 20 antichoc, une couche d'un revêtement anti-abrasion et/ou anti-rayure ou une couche d'un revêtement antireflet. Il peut également s'agir d'une couche de composition adhésive. La couche de matériau polymérique selon l'invention est préférentiellement une couche de primaire. Cette couche de primaire peut être toute couche de primaire classiquement utilisé 25 dans le domaine optique et en particulier ophtalmique. Typiquement, ces primaires, en particulier les primaires antichoc, sont des revêtements à base de polymère (méth)acryliques, de polyuréthanes, de polyester, ou encore à base de copolymères époxy/(méth)acrylate. Les revêtements antichoc à base de polymère (méth)acrylique sont, entre autres, 30 décrits dans les brevets US 5,015,523 et US 5,619,288, cependant que des revêtements à base de résines de polyuréthane thermoplastiques et réticulées sont décrits, entre autres, dans les brevets japonais 63-1411001 et 63-87223, le brevet européen EP-040411 et le brevet US-5,316,791. En particulier, le revêtement de primaire résistant au choc de l'invention peut être 35 réalisé à partir d'un latex poly(méth)acrylique, y compris de type coque-noyau (core-shell) tel que décrit, par exemple, dans la demande de brevet français FR 2.790.317, d'un latex de polyuréthane ou d'un latex de polyester. The porosity (by volume) of the intermediate layer after filling is preferably less than one of the following values: 20%, 10%, 5%, 3%, and even better, is zero (0%). As for the initial porosity defined above, the porosity after filling does not take into account, for example, the "closed" porosity of the hollow colloidal oxide particles that may be employed. Thus, an intermediate layer whose initial porosity has been completely filled will have within the meaning of the invention a zero porosity, even if it comprises hollow particles of colloidal oxides. The filler material used in the present application may be in the form of monomers, oligomers, polymers or mixtures thereof. After filling, the filling material comes into contact with the surface of the substrate (when the filling material is not that of the substrate but that of another layer such as a primer layer or an abrasion-resistant layer ) and makes it possible to obtain the adhesion of the intermediate layer on the substrate. The layer of polymeric material which fills the initial porosity of the intermediate layer is generally formed by dipping or centrifugation, preferably quenching. The layer of polymeric material in direct contact with the intermediate layer is preferably a layer of transparent material. It may be a layer of a functional material, for example a layer of an adhesion primer and / or shockproof coating, a layer of an anti-abrasion and / or anti-scratch coating or a layer of an antireflection coating. It may also be a layer of adhesive composition. The layer of polymeric material according to the invention is preferably a primer layer. This primer layer may be any primer layer conventionally used in the optical field and in particular ophthalmic. Typically, these primers, in particular the anti-shock primers, are coatings based on (meth) acrylic polymer, polyurethanes, polyester, or based on epoxy / (meth) acrylate copolymers. Anti-shock coatings based on (meth) acrylic polymer are, inter alia, described in US Pat. No. 5,015,523 and US Pat. No. 5,619,288, while coatings based on thermoplastic and crosslinked polyurethane resins are described, inter alia, in Japanese patents. 63-1411001 and 63-87223, European Patent EP-040411 and US Patent 5,316,791. In particular, the impact-resistant primer coating of the invention can be made from a poly (meth) acrylic latex, including core-shell type as described, for example, in French Patent Application FR 2,790,317, a polyurethane latex or a polyester latex.

Parmi les compositions de revêtement de primaire antichoc particulièrement préférées, on peut citer le latex acrylique commercialisé sous la dénomination A-639 par Zeneca et les latex de polyuréthane commercialisés sous les dénominations W-240 et W-234 par la Société Baxenden. Among the particularly preferred anti-shock primer coating compositions, mention may be made of the acrylic latex marketed under the name A-639 by Zeneca and the polyurethane latices sold under the names W-240 and W-234 by the company Baxenden.

On choisira de préférence des latex ayant une taille de particule 50 nm et mieux 20nm. Généralement, après durcissement, la couche de primaire résistant au choc a une épaisseur de 0,05 à 20 m, de préférence de 0,5 à 10 m et mieux encore de 0,6 à 6 m. L'épaisseur optimale est généralement de 0,5 à 2 m. 1 o Le revêtement anti-abrasion utilisable dans la présente invention peut être tout revêtement anti-abrasion classiquement utilisé dans le domaine de l'optique et en particulier de l'optique ophtalmique. Par définition, un revêtement anti-abrasion est un revêtement qui améliore la résistance à l'abrasion de l'article d'optique fini comparé au même article ne comportant pas 15 le revêtement anti-abrasion. Les revêtements anti-abrasion préférés sont ceux obtenus par durcissement d'une composition renfermant un ou plusieurs alcoxysilane(s) (préférentiellement un ou plusieurs époxyalcoxysilane(s)) ou un hydrolysat de ceux-ci, et préférentiellement une charge colloïdale minérale, telle qu'une charge d'oxyde colloïdal. 20 Selon un aspect particulier, les revêtements anti-abrasion préférés sont ceux obtenus par durcissement d'une composition incluant un ou plusieurs époxyalcoxysilanes ou un hydrolysat de ceux-ci, de la silice et un catalyseur de durcissement. Des exemples de telles compositions sont décrits dans la demande internationale WO 94/10230 et les brevets US 4,211,823, 5,015,523, ainsi que le brevet européen EP 614957. 25 Les compositions de revêtement anti-abrasion particulièrement préférés sont celles comprenant comme constituants principaux un époxyalcoxysilane tel que, par exemple, le yglycidoxypropyltriméthoxysilane (GLYMO), un dialkyldialcoxysilane tel que, par exemple, le diméthyldiéthoxysilane (DMDES), de la silice colloïdale et une quantité catalytique d'un catalyseur de durcissement tel que l'acétylacétonate d'aluminium ou un hydrolysat de ces 30 constituants, le reste de la composition étant essentiellement constitué de solvants classiquement utilisés pour formuler ces compositions et éventuellement d'un ou plusieurs agents tensio-actifs. Pour améliorer l'adhérence du revêtement anti-abrasion, la composition de revêtement anti-abrasion peut éventuellement comporter une quantité effective d'un agent 35 de couplage, en particulier lorsque le substrat revêtu est fabriqué par la technique de coulée dans le moule (In Mold Casting ou IMC). Latexes having a particle size of 50 nm and preferably 20 nm will preferably be chosen. Generally, after curing, the impact-resistant primer layer has a thickness of 0.05 to 20 m, preferably 0.5 to 10 m, and more preferably 0.6 to 6 m. The optimum thickness is usually 0.5 to 2 m. The anti-abrasion coating that can be used in the present invention may be any anti-abrasion coating conventionally used in the field of optics and in particular ophthalmic optics. By definition, an abrasion-resistant coating is one that improves the abrasion resistance of the finished optical article compared to the same article without the abrasion-resistant coating. The preferred anti-abrasion coatings are those obtained by curing a composition containing one or more alkoxysilanes (preferentially one or more epoxyalkoxysilanes) or a hydrolyzate thereof, and preferably a mineral colloidal filler, such as a colloidal oxide charge. In a particular aspect, the preferred anti-abrasion coatings are those obtained by curing a composition including one or more epoxyalkoxysilanes or a hydrolyzate thereof, silica and a curing catalyst. Examples of such compositions are described in International Application WO 94/10230 and US Patents 4,211,823, 5,015,523 and European Patent EP 614,957. Particularly preferred anti-abrasion coating compositions are those comprising as main constituents an epoxyalkoxysilane such as that, for example, yglycidoxypropyltrimethoxysilane (GLYMO), a dialkyldialkoxysilane such as, for example, dimethyldiethoxysilane (DMDES), colloidal silica and a catalytic amount of a curing catalyst such as aluminum acetylacetonate or a hydrolyzate of these 30 constituents, the remainder of the composition consisting essentially of solvents conventionally used to formulate these compositions and optionally of one or more surface-active agents. To improve the adhesion of the abrasion-resistant coating, the abrasion-resistant coating composition may optionally comprise an effective amount of a coupling agent, particularly when the coated substrate is manufactured by the in-mold casting technique. Mold Casting or IMC).

Cet agent de couplage est typiquement une solution pré-condensée d'un époxyalcoxysilane et d'un alcoxysilane insaturé, de préférence comprenant une double liaison éthylénique terminale. Ces composés sont décrits en détail dans la demande WO 03/056366 au nom du déposant. Typiquement, la quantité d'agent de couplage introduite dans la composition de revêtement anti-abrasion représente 0,1 à 15 % par rapport à la masse totale de la composition, de préférence 1 à 10 % en masse. L'épaisseur du revêtement anti-abrasion, après durcissement, est habituellement de 1 à 15 m, de préférence de 2 à 6 m. Les compositions de matériau polymérique telles que les compositions de primaire 1 o antichoc et de revêtement anti-abrasion peuvent être durcies thermiquement et/ou par irradiation, de préférence thermiquement. Bien évidemment comme indiqué précédemment, le matériau de la couche de primaire ou de la couche de revêtement anti-abrasion doit pénétrer et combler au moins partiellement la porosité de la couche intermédiaire, lorsque ce matériau est utilisé en tant 15 que matériau de comblement. L'article d'optique selon l'invention peut comporter éventuellement un revêtement antireflet formé de préférence sur la couche de revêtement anti-abrasion. Le revêtement antireflet peut être tout revêtement antireflet classiquement utilisé dans le domaine de l'optique, en particulier de l'optique ophtalmique. 20 A titre d'exemple, le revêtement antireflet peut être constitué d'un film mono- ou multicouche, de matériaux diélectriques tels que SiO, SiO2, Si3N4, TiO2, ZrO2, AI2O3, MgF2 ou Ta2O5i ou leurs mélanges. Il devient ainsi possible d'empêcher l'apparition d'une réflexion à l'interface lentille-air. Ce revêtement antireflet est appliqué généralement par dépôt sous vide, notamment 25 par évaporation, éventuellement assistée par faisceau ionique, par pulvérisation par faisceau d'ion, par pulvérisation cathodique ou par dépôt chimique en phase vapeur assistée par plasma. Outre le dépôt sous vide, on peut aussi envisager un dépôt d'une couche minérale par voie humide, par exemple par voie sol-gel en utilisant une composition liquide contenant 30 un hydrolysat de silanes et des matériaux colloïdaux de haut (> 1,55) ou de bas (s 1,55) indice de réfraction. Un tel revêtement dont les couches comprennent une matrice hybride organique/inorganique à base de silanes dans laquelle sont dispersés des matériaux colloïdaux permettant d'ajuster l'indice de réfraction de chaque couche sont décrits par exemple dans le brevet FR 2858420. Cette catégorie de composition peut être employée 35 pour former la couche de matériau polymérique au sens de l'invention, et notamment en tant que matériau de comblement de la porosité initiale de la couche intermédiaire. This coupling agent is typically a pre-condensed solution of an epoxyalkoxysilane and an unsaturated alkoxysilane, preferably comprising a terminal ethylenic double bond. These compounds are described in detail in application WO 03/056366 in the name of the applicant. Typically, the amount of coupling agent introduced into the anti-abrasion coating composition is 0.1 to 15% based on the total weight of the composition, preferably 1 to 10% by weight. The thickness of the abrasion-resistant coating after curing is usually 1 to 15 m, preferably 2 to 6 m. Compositions of polymeric material such as anti-shock primer and anti-abrasion coating compositions may be thermally cured and / or irradiated, preferably thermally. Of course, as indicated above, the material of the primer layer or the abrasion-resistant coating layer must penetrate and at least partially fill the porosity of the intermediate layer, when this material is used as filler material. The optical article according to the invention may optionally comprise an antireflection coating preferably formed on the anti-abrasion coating layer. The antireflection coating may be any antireflection coating conventionally used in the field of optics, in particular ophthalmic optics. By way of example, the antireflection coating may consist of a mono- or multilayer film, of dielectric materials such as SiO, SiO2, Si3N4, TiO2, ZrO2, Al2O3, MgF2 or Ta2O5i or mixtures thereof. It thus becomes possible to prevent the appearance of reflection at the lens-air interface. This antireflection coating is generally applied by vacuum deposition, in particular by evaporation, possibly assisted by ion beam, ion beam sputtering, cathodic sputtering or plasma enhanced chemical vapor deposition. In addition to the vacuum deposition, it is also possible to envisage deposition of a mineral layer by wet process, for example by sol-gel using a liquid composition containing a hydrolyzate of silanes and colloidal materials of high (> 1.55 ) or low (s 1.55) refractive index. Such a coating whose layers comprise an organic / inorganic hybrid matrix based on silanes in which colloidal materials for adjusting the refractive index of each layer are dispersed are described for example in patent FR 2858420. This composition category may be used to form the layer of polymeric material within the meaning of the invention, and especially as a filler material of the initial porosity of the intermediate layer.

Dans le cas où le revêtement antireflet comprend une seule couche, son épaisseur optique est de préférence égale à À/4 (À est une longueur d'onde comprise entre 450 et 650 nm). Dans le cas d'un film multicouche comportant trois couches, on peut utiliser une combinaison correspondant à des épaisseurs optiques respectives À/4, À/2, À/4 ou À/4, À/4, À/4. On peut en outre utiliser un film équivalent formé par plus de couches, à la place d'un nombre quelconque des couches faisant partie des trois couches précitées. Quelques modes de réalisation particuliers du procédé selon l'invention vont maintenant être décrits. 1 o La couche de matériau polymérique venant combler la porosité initiale de la couche intermédiaire peut être une couche de composition adhésive. Ce mode de réalisation, qui est décrit en détail dans la demande WO 03/056366 au nom du déposant, en particulier sur la figure 6 de cette demande, peut être adapté à la présente invention. Il sera simplement résumé ici. 15 Selon ce mode de réalisation, un article d'optique comportant une couche antistatique et anti-franges d'interférences est obtenu par transfert d'un revêtement ou d'un empilement de revêtements sur une préforme ou un substrat revêtu d'une couche colloïdale poreuse séchée conforme à l'invention, qui contient éventuellement un liant. Sur une surface d'un moule (ou support) préférentiellement flexible, on forme un 20 empilement monocouche ou multicouche, par exemple, dans cet ordre, un revêtement antireflet, une couche de revêtement dur anti-abrasion et/ou anti-rayures, et une couche de primaire. De préférence, les couches de revêtement antireflet, anti-abrasion et/ou antirayures et de primaire sont séchées et/ou durcies, au moins partiellement. On place alors une quantité adéquate d'un matériau adhésif, soit sur la couche 25 intermédiaire poreuse, soit sur la surface externe de l'empilement multicouche, c'est à dire la couche de primaire dans l'exemple ci-dessus, mais de préférence sur la couche intermédiaire poreuse, puis on presse le substrat portant la couche intermédiaire poreuse contre l'ensemble du revêtement monocouche ou multicouche porté par le moule. L'adhésif peut aussi être injecté entre la couche intermédiaire et l'empilement porté par le moule. 30 Après durcissement de l'adhésif, on retire le moule pour obtenir un article d'optique selon l'invention. Dans ce mode de réalisation, la porosité initiale de la couche intermédiaire est comblée par la composition adhésive qui constitue la couche de matériau polymérique en contact direct avec la couche intermédiaire. Cette couche d'adhésif assure l'adhérence de 35 l'empilement monocouche ou multicouche avec la couche intermédiaire, elle-même en liaison avec le substrat. In the case where the antireflection coating comprises a single layer, its optical thickness is preferably equal to λ / 4 (λ is a wavelength between 450 and 650 nm). In the case of a multilayer film having three layers, it is possible to use a combination corresponding to respective optical thicknesses λ / 4, λ / 2, λ / 4 or λ / 4, λ / 4, λ / 4. It is also possible to use an equivalent film formed by more layers, in place of any number of the layers forming part of the three aforementioned layers. Some particular embodiments of the method according to the invention will now be described. The layer of polymeric material which fills the initial porosity of the intermediate layer may be a layer of adhesive composition. This embodiment, which is described in detail in the application WO 03/056366 in the name of the applicant, in particular in Figure 6 of this application, can be adapted to the present invention. It will simply be summarized here. According to this embodiment, an optical article having an anti-static and anti-interference fringe layer is obtained by transferring a coating or a stack of coatings onto a preform or substrate coated with a colloidal layer. dried porous according to the invention, which optionally contains a binder. On a surface of a mold (or support) which is preferably flexible, a monolayer or multilayer stack is formed, for example, in this order, an antireflection coating, an anti-abrasion and / or anti-scratch hard coating layer, and a layer of primer. Preferably, the antireflection, anti-abrasion and / or anti-scratch and primer coating layers are at least partially dried and / or cured. A suitable quantity of an adhesive material is then placed either on the porous intermediate layer or on the outer surface of the multilayer stack, ie the primer layer in the example above, but preferably on the porous intermediate layer, and then press the substrate carrying the porous intermediate layer against the entire monolayer or multilayer coating carried by the mold. The adhesive may also be injected between the intermediate layer and the stack carried by the mold. After curing the adhesive, the mold is removed to obtain an optical article according to the invention. In this embodiment, the initial porosity of the intermediate layer is filled by the adhesive composition which constitutes the layer of polymeric material in direct contact with the intermediate layer. This adhesive layer ensures the adhesion of the monolayer or multilayer stack with the intermediate layer, itself in connection with the substrate.

De préférence, l'adhésif est un matériau organique durcissable par irradiation, par exemple par irradiation avec un rayonnement UV. Il peut éventuellement présenter des propriétés antichoc. Des exemples de tels matériaux sont décrits dans le brevet US 5,619,288 La couche intermédiaire selon l'invention ainsi formée limite ou élimine les franges d'interférence, tout particulièrement lorsque la différence d'indice de réfraction entre le substrat et le matériau constituant l'adhésif est élevée. Selon un autre mode de réalisation de l'invention, le comblement de la porosité initiale de la couche intermédiaire est assuré par le matériau du substrat. Ce mode de 1 o réalisation, qui est décrit en détail dans la demande WO 03/056366 au nom du déposant, en particulier sur la figure 7 de cette demande, peut être adapté à la présente invention. Il sera simplement résumé ici et fait préférentiellement intervenir un procédé de type ln Mold Coating (IMC). Sur une surface appropriée d'une première partie de moule d'un moule en deux 15 parties classique pour la fabrication d'une lentille ophtalmique, on forme un empilement monocouche ou multicouche, par exemple, dans cet ordre, un revêtement antisalissure, un revêtement antireflet, une couche de revêtement dur anti-abrasion et/ou anti-rayures, et une couche de primaire. Puis, sur la surface externe de l'empilement multicouche, c'est à dire la couche de primaire dans l'exemple ci-dessus, on forme de préférence par dépôt par 20 centrifugation ou au trempé, une couche intermédiaire d'oxydes colloïdaux d'épaisseur et de porosité requises conforme à l'invention. Après assemblage des deux parties du moule au moyen d'un joint adhésif, on injecte dans la cavité du moule une composition de monomères liquides qui, après durcissement, formera le substrat. Un article d'optique selon l'invention est obtenu après démoulage. 25 Préférentiellement, l'article d'optique de l'invention n'absorbe pas dans le visible ou absorbe peu dans le visible, ce qui signifie, au sens de la présente demande, que son facteur relatif de transmission de la lumière dans le visible (Tv) est supérieur à 85 %, mieux supérieur à 90 % et encore mieux supérieur à 91 %. La partie expérimentale montre que cette caractéristique de transparence est obtenue en dépit de la présence de particules 30 métalliques conductrices dans la couche intermédiaire, en choisissant une épaisseur et une teneur en ces particules adéquates. Le facteur Tv répond à une définition internationale normalisée (norme ISO13666 : 1998) et est mesuré conformément à la norme ISO8980-3. Il est défini dans la gamme de longueur d'onde allant de 380 à 780 nm. 35 Les exemples suivants illustrent l'invention de façon plus détaillée mais non limitative. Preferably, the adhesive is an organic material curable by irradiation, for example by irradiation with UV radiation. It may possibly have shockproof properties. Examples of such materials are described in US Pat. No. 5,619,288. The intermediate layer according to the invention thus formed limits or eliminates the interference fringes, especially when the difference in refractive index between the substrate and the material constituting the adhesive is high. According to another embodiment of the invention, the filling of the initial porosity of the intermediate layer is ensured by the material of the substrate. This embodiment, which is described in detail in the application WO 03/056366 in the name of the applicant, in particular in Figure 7 of this application, can be adapted to the present invention. It will simply be summarized here and preferably involves a Mold Molding (IMC) type process. On a suitable surface of a first mold part of a conventional two part mold for the manufacture of an ophthalmic lens, a monolayer or multilayer stack is formed, for example, in this order, an anti-fouling coating, a coating. antireflection coating, a hard anti-abrasion and / or anti-scratch coating, and a primer layer. Then, on the outer surface of the multilayer stack, ie the primer layer in the above example, an intermediate layer of colloidal oxides is preferably deposited by centrifugation or dipping. thickness and porosity required according to the invention. After assembling the two mold parts by means of an adhesive seal, a liquid monomer composition is injected into the mold cavity which, after curing, will form the substrate. An optical article according to the invention is obtained after demolding. Preferably, the optical article of the invention does not absorb in the visible or absorbs little in the visible, which means, within the meaning of the present application, that its relative light transmission factor in the visible (Tg) is greater than 85%, better than 90%, and even more preferably greater than 91%. The experimental part shows that this transparency characteristic is obtained despite the presence of conductive metal particles in the intermediate layer, by choosing a suitable thickness and content of these particles. The Tv factor meets a standardized international definition (ISO13666: 1998) and is measured in accordance with ISO8980-3. It is defined in the wavelength range from 380 to 780 nm. The following examples illustrate the invention in more detail but without limitation.

Partie expérimentale ) Méthodes a) Evaluation du temps de décharge Les temps de décharge des articles d'optique ont été mesurés à température ambiante (25 °C) au moyen d'un appareil de mesure de temps de décharge JCI 155 (John Chubb Instrumentation) en suivant les spécifications du constructeur, après avoir soumis lesdits articles d'optique à une décharge corona de -9000 volts pendant 30 ms. Au cours de ces expériences de mesure de la charge et de la décharge de la surface d'un verre soumis à une décharge corona, les deux paramètres suivants ont été déterminés : la tension maximale mesurée à la surface du verre, notée Umax, et le temps pour atteindre 1/e = 36,7% de la tension maximale, qui correspond au temps de décharge. La puissance des verres utilisés doit être rigoureusement la même afin de pouvoir comparer la performance des différents verres, car les valeurs mesurées par l'appareil dépendent de la géométrie des verres. Experimental part) Methods a) Evaluation of the discharge time The discharge times of optical articles were measured at room temperature (25 ° C) using a JCI 155 discharge time measuring instrument (John Chubb Instrumentation) following the manufacturer's specifications, after subjecting said optical items to a corona discharge of -9000 volts for 30 ms. During these experiments to measure the charge and discharge of the surface of a glass subjected to a corona discharge, the following two parameters were determined: the maximum voltage measured at the surface of the glass, denoted Umax, and the time to reach 1 / e = 36.7% of the maximum voltage, which corresponds to the discharge time. The power of the glasses used must be strictly the same in order to be able to compare the performance of the different glasses, because the values measured by the apparatus depend on the geometry of the glasses.

Dans le cadre de cette demande de brevet, par définition, un verre est considéré comme antistatique si son temps de décharge est inférieur à 200 millisecondes. b) Evaluation du niveau de franges L'évaluation du niveau de franges d'interférence est visuelle. In the context of this patent application, by definition, a glass is considered antistatic if its discharge time is less than 200 milliseconds. b) Evaluation of the level of fringes The evaluation of the level of interference fringes is visual.

Les lentilles ophtalmiques sont typiquement de puissance -4.00 . L'observation des lentilles ophtalmiques est réalisée en réflexion sous éclairage Waldman. Les lentilles doivent être orientées de telle façon que les franges soient perpendiculaires au tube fluorescent. La comparaison est effectuée avec comme lentille de référence, une lentille identique excepté que la lentille ne comporte pas de couche anti-franges selon l'invention. (Voir table 4). Ophthalmic lenses are typically of -4.00 power. The observation of ophthalmic lenses is carried out in reflection under Waldman lighting. The lenses should be oriented such that the fringes are perpendicular to the fluorescent tube. The comparison is made with a reference lens, an identical lens except that the lens has no anti-fringe layer according to the invention. (See table 4).

c) Réflexion Des mesures de réflexion Rm et Rv définis dans les normes ISO 13666- 98 et mesurés conformément à la norme ISO8980-4 ont été réalisés sur la face convexe des lentilles -4,00 (mesure sur une seule face). Pour chaque épaisseur de couche antistatique, les mesures sont effectuées sur trois lentilles. Sur chaque lentille, deux mesures sont effectuées à 15 mm du bord de la lentille. Les résultats sont la moyenne de ces mesures. 2) Matériaux utilisés 19 Les colloïdes utilisés sont les suivants : a) Colloïde d'ITO fourni par CCIC : ELCOM NE-1001 ITV (20 % massique). Les particules d'ITO ont un indice de réfraction de 1,95 et une densité de 8,7. b) Colloïde de silice fourni par DUPONT de NEMOURS : LUDOX CL-P (40 % massique). c) Reflection Rm and Rv reflection measurements defined in ISO 13666-98 standards and measured in accordance with ISO8980-4 were performed on the convex side of the -4.00 lenses (single-sided measurement). For each antistatic layer thickness, measurements are made on three lenses. On each lens, two measurements are made 15 mm from the edge of the lens. The results are the average of these measurements. 2) Materials used The colloids used are as follows: a) ITO colloid supplied by CCIC: ELCOM NE-1001 ITV (20% by mass). The ITO particles have a refractive index of 1.95 and a density of 8.7. b) silica colloid supplied by DUPONT de NEMOURS: LUDOX CL-P (40% by mass).

Les particules de silice ont un indice de réfraction de 1,48 et une densité de 2,4. c) Colloïde de SiO2 creuse fourni par CCIC : Thrulya-200W (20 % massique). Cette suspension est de préférence filtrée à 5 microns avant utilisation. Les particules de silice creuse ont un indice de réfraction de 1,35 et une densité de 1,2. 3) Préparation des compositions de couche intermédiaire The silica particles have a refractive index of 1.48 and a density of 2.4. c) SiO2 hollow colloid supplied by CCIC: Thrulya-200W (20% by mass). This suspension is preferably filtered at 5 microns before use. The hollow silica particles have a refractive index of 1.35 and a density of 1.2. 3) Preparation of intermediate layer compositions

Les trois compositions de couche intermédiaire suivantes ont été préparées : Constituant Composition 1 Composition 2 Composition 3 Colloïde SiO2 14,4 g 19,2 g - Colloïde SiO2 creuse - - 14,4 g Colloïde ITO 67,2 q 57,6 q 67,2 q Ethanol 518,4 g 523,2 g 518,4 g Total 600 g 600 g 600 g Extrait sec (teneur massique) 3,2 % 3,2 % 2,8 0/0 Ratio massique ITO / SiO2 (*) 70/30 60/40 82/18 (*) Particules sèches. The following three interlayer compositions were prepared: Component Composition 1 Composition 2 Composition 3 Colloid SiO2 14.4 g 19.2 g - Colloid SiO2 hollow - - 14.4 g Colloid ITO 67.2 q 57.6 q 67, 2 q Ethanol 518.4 g 523.2 g 518.4 g Total 600 g 600 g 600 g Dry extract (mass content) 3.2% 3.2% 2.8 0/0 ITO / SiO2 mass ratio (*) 70/30 60/40 82/18 (*) Dry particles.

Tout d'abord, le colloïde de silice ou de silice creuse a été mélangé à une partie de l'éthanol durant 20 minutes, puis le colloïde d'ITO a été ajouté ainsi que la quantité restante d'éthanol. Le mélange a été de nouveau agité pendant 20 minutes. Les compositions obtenues n'ont pas été filtrées et sont conservées au réfrigérateur. Les différents constituants ont été mélangés alors qu'ils étaient à la même température. 4) Mode opératoire général de préparation des verres antistatiques et anti-franges First, the silica or silica colloid was mixed with a portion of the ethanol for 20 minutes, then the ITO colloid was added along with the remaining amount of ethanol. The mixture was stirred again for 20 minutes. The compositions obtained have not been filtered and are stored in a refrigerator. The different constituents were mixed while they were at the same temperature. 4) General procedure for preparing antistatic and anti-fringed glasses

Il est préférable de réaliser le dépôt des compositions de couche intermédiaire après leur préparation. Lorsque celles-ci sont stockées, une séparation de phases peut se produire. Dans ce cas, avant de procéder au dépôt, il est nécessaire d'agiter les compositions durant 30 minutes afin de retrouver l'homogénéité. Afin d'obtenir un dépôt de meilleure qualité, il est recommandé de travailler dans un environnement dont le taux d'humidité est régulé. Les trois compositions de couche intermédiaire ont été déposées par trempage à 30 différentes vitesses, allant de 4,7cm/mn jusqu'à une vitesse maximale de 28,5 cm/mn. Pour une même composition de couche intermédiaire, une vitesse de dépôt élevée conduit à une couche plus épaisse et plus poreuse. Sans vouloir donner d'interprétation limitative à l'invention, les inventeurs pensent qu'une vitesse de démouillage lente engendre un empilement de colloïdes plus compact, ceux-ci disposant de plus de temps pour s'empiler avant l'évaporation du solvant. It is preferable to deposit the intermediate layer compositions after their preparation. When these are stored, phase separation may occur. In this case, before proceeding with the deposition, it is necessary to shake the compositions for 30 minutes in order to regain homogeneity. In order to obtain a better quality deposit, it is recommended to work in an environment where the humidity level is regulated. The three interlayer compositions were dipped at various speeds, ranging from 4.7 cm / min to a maximum speed of 28.5 cm / min. For the same interlayer composition, a high deposition rate results in a thicker and more porous layer. Without wishing to give a limiting interpretation to the invention, the inventors believe that a slow dewetting speed gives rise to a more compact stack of colloids, these having more time to be stacked before the evaporation of the solvent.

Les dépôts ont été effectués sur la face convexe et sur la face concave par trempé de substrats (lentilles ophtalmiques) de polythiouréthane thermodurcissable, matériau commercialisé par MITSUI ayant un indice de réfraction de 1,6 (exemple 3) ou 1,67 (exemples 1, 2), préalablement lavés. Chaque dépôt a été réalisé sur une série de 6 lentilles (3 lentilles +4,00 et 3 lentilles -4,00). 1 o Les lentilles ont ensuite été séchées à l'air ambiant et à température ambiante pendant 4 minutes. L'épaisseur et l'indice de réfraction de la couche de colloïdes déposée et séchée (couche poreuse) ont été déterminés au SMR (Système de Mesure de Réflexion) et les valeurs mesurées sont consignées dans les tableaux ci-dessous. Après refroidissement et séchage, la couche de colloïdes est revêtue par trempé 15 d'une couche de primaire antichoc à base d'un latex polyuréthane contenant des motifs polyester (Witcobond 234 de BAXENDEN CHEMICALS). Ladite couche est pré-polymérisée 15 min à 75°C, conduisant à un revêtement d'indice de réfraction égal à 1,50. Bien qu'un léger gonflement de la couche intermédiaire à base de colloïdes puisse se produire, il a été observé que son épaisseur variait peu du fait de la diffusion du latex 20 Witcobond 234. Enfin, le revêtement anti-abrasion et anti-rayures (hard coat) divulgué dans l'exemple 3 du brevet EP 0614957 (d'indice de réfraction égal à 1,50), à base d'un hydrolysat de GLYMO et DMDES, de silice colloïdale et d'acétylacétonate d'aluminium, est déposé par trempé sur le revêtement de primaire, puis prépolymérisé à 75°C pendant 15 minutes. Enfin, 25 l'empilement complet subit une polymérisation pendant 3 heures à 100 °C. Le temps de décharge de la face convexe revêtue et la transmission de l'article d'optique final ont été mesurés. Les résultats sont consignés dans les tableaux ci-dessous, les articles non-conformes à l'invention étant signalés par des lignes grisées. The deposits were made on the convex face and on the concave face by dipping of thermosetting polythiourethane substrates (ophthalmic lenses), a material marketed by MITSUI having a refractive index of 1.6 (example 3) or 1.67 (examples 1). , 2), previously washed. Each deposit was made on a series of 6 lenses (3 lenses + 4.00 and 3 lenses -4.00). The lenses were then dried in ambient air and at room temperature for 4 minutes. The thickness and the refractive index of the deposited and dried colloid layer (porous layer) were determined at the SMR (Reflection Measurement System) and the measured values are recorded in the tables below. After cooling and drying, the colloid layer is coated by dipping with a layer of impact-resistant primer based on a polyurethane latex containing polyester units (Witcobond 234 from BAXENDEN CHEMICALS). Said layer is prepolymerized for 15 min at 75 ° C, resulting in a coating of refractive index equal to 1.50. Although slight swelling of the colloid-based interlayer may occur, it has been observed that its thickness varies little because of the diffusion of Witcobond 234 latex. Finally, the anti-abrasion and anti-scratch coating ( hard coat) disclosed in example 3 of patent EP 0614957 (refractive index equal to 1.50), based on a hydrolyzate of GLYMO and DMDES, colloidal silica and aluminum acetylacetonate, is deposited by soaking on the primer coating, and then prepolymerized at 75 ° C for 15 minutes. Finally, the complete stack undergoes polymerization for 3 hours at 100 ° C. The discharge time of the coated convex face and the transmission of the final optical article were measured. The results are recorded in the tables below, the articles not in accordance with the invention being indicated by shaded lines.

30 30

5) Exemples 1 et 2 5) Examples 1 and 2

35 La couche intermédiaire est formée entre un substrat d'indice de réfraction égal à 1,67 et un revêtement de primaire d'indice de réfraction égal à 1,50. Les caractéristiques théoriques d'une couche quart d'onde sont donc les suivantes : n = 11,67 x 1,5 =1,5827 ; e = 550 = 86,9nm 4 x 1,5847 Résultats de l'exemple 1 (composition de couche intermédiaire 1) Tableau 1 Couche de colloïdes séchée, Couche Propriétés de l'article d'optique avant diffusion du latex intermédiaire (après comblement de la porosité par le primaire) Epaisseur Indice de Porosité Indice de Transmission Rv/Rm Temps Niveau (nm) réfraction calculée réfraction (0/0) (1 face) de franges n, théorique (%) décharge (ms) 60,4 1,49 0,26 1,62 91,1 3,85/3,88 9010 NE 63,9 1,409 0,38 1,60 91,2 3,80/3,84 151 NE 78,8 1,365 0,45 1,59 91,2 3,39/3,40 25 - - 92,4 1,35 0,47 1,58 91,6 3,60/3,63 28 û 106 1,344 0,48 1,58 91,2 3,40/3,43 29 û niveau faible par rapport à la référence (Ref2) 10 niveau très faible par rapport à la référence (Ref2) NE : non évalué The intermediate layer is formed between a refractive index substrate equal to 1.67 and a refractive index primer coating equal to 1.50. The theoretical characteristics of a quarter-wave layer are therefore the following: n = 11.67 × 1.5 = 1.5827; e = 550 = 86.9 nm 4 x 1.5847 Results of Example 1 (Composition of Intermediate Layer 1) Table 1 Dried Colloid Layer, Layer Properties of the Optical Article before Diffusion of the Intermediate Latex (After Filling the porosity by the primer) Thickness Porosity index Transmission index Rv / Rm Time Level (nm) refraction calculated refraction (0/0) (1 face) fringes n, theoretical (%) discharge (ms) 60.4 1, 49 0.26 1.62 91.1 3.85 / 3.88 9010 NE 63.9 1.409 0.38 1.60 91.2 3.80 / 3.84 151 NE 78.8 1.365 0.45 1, 59 91.2 3.39 / 3.40 25 - - 92.4 1.35 0.47 1.58 91.6 3.60 / 3.63 28.0 106 1.344 0.48 1.58 91.2 3 , 40 / 3.43 29 û low level compared to reference (Ref2) 10 very low level compared to reference (Ref2) NE: not evaluated

La porosité initiale p de la couche de colloïdes séchée qui apparaît dans les tableaux 1-3 a été calculée à partir de la valeur de l'indice de réfraction de cette couche poreuse (n,, 15 valeur mesurée avec le SMR) et de l'indice de réfraction moyen du squelette de cette couche (n2, valeur calculée pour un matériau supposé dense, c'est-à-dire sans porosité accessible) au moyen de la formule suivante (approximation linéaire) : nl =p+n2x(1ùp) L'indice de réfraction moyen n2 du squelette de la couche de colloïdes poreuse est 20 calculé au moyen de la formule suivante, valable dans le cas d'un squelette binaire SiO2/ITO :5 dans laquelle Xmsio2 représente la proportion massique de particules de silice par rapport à la masse totale de particules de la couche poreuse, XmITO la proportion massique de particules d'ITO par rapport à la masse totale de particules de la couche poreuse (ici )002 + XmITO 1), psio2 la densité des particules de silice, p1T0 la densité des particules d'ITO, nsi02 l'indice de réfraction des particules de silice, n1TO l'indice de réfraction des particules d'ITO. L'indice de réfraction théorique n3 de la couche intermédiaire correspond à l'indice de 1 o réfraction de cette couche en supposant que sa porosité a été entièrement comblée par le matériau de la composition de primaire antichoc. Il est calculé au moyen de la formule suivante (approximation linéaire) : n3 = pxnprimaire +n2x(1ùp) où p (porosité avant comblement) et n2 ont la même signification que précédemment et 15 nprimaire est l'indice de réfraction de la couche de primaire (1,5). Dans ce calcul, on considère que le comblement ne s'effectue pas dans les colloïdes creux ou poreux (porosité des colloïdes non accessible au matériau de comblement). The initial porosity p of the dried colloid layer which appears in Tables 1-3 was calculated from the value of the refractive index of this porous layer (n, measured with SMR) and the average refractive index of the backbone of this layer (n2, value calculated for a material supposed to be dense, that is to say without accessible porosity) by means of the following formula (linear approximation): nl = p + n2x (1μp The average refractive index n2 of the backbone of the porous colloid layer is calculated using the following formula, valid in the case of a SiO 2 / ITO 5 binary backbone in which X msio 2 represents the mass proportion of silica with respect to the total mass of particles of the porous layer, XmITO the mass proportion of ITO particles relative to the total mass of particles of the porous layer (here) 002 + XmITO 1), psio2 the density of particles of silica, p1T0 the density of the ITO particles, nsi02 the refractive index of the silica particles, n1TO the refractive index of the ITO particles. The theoretical refractive index n3 of the intermediate layer corresponds to the refractive index 1 o of this layer, assuming that its porosity has been completely filled by the material of the antishock primer composition. It is calculated using the following formula (linear approximation): n3 = pxnprimaire + n2x (1μp) where p (porosity before filling) and n2 have the same meaning as before and nprimary is the refractive index of the coating layer. primary (1,5). In this calculation, it is considered that the filling does not take place in the hollow or porous colloids (porosity of the colloids not accessible to the filling material).

Résultats de l'exemple 2 (composition de couche intermédiaire 2) 20 25 Results of Example 2 (Intermediate Layer Composition 2)

Tableau 2 Couche de colloïdes séchée, avant diffusion du latex Couche intermédiaire (après comblement de Propriétés de l'article d'optique SiOZ ITO Xm X ~0 X nsi0, ITO SiOZ n Xm X~0 XnITO 2 = pSIO2 + XmiO2 X (DITO _ pSiO2) + pITO + XmITO x (pSiO2 _ pITO ) la porosité par le primaire) Epaisseur Indice de Porosité Indice de Transmission Rv/Rm Temps Niveau (nm) réfraction calculée réfraction (%) (0/0)(1 face) de franges n, théorique décharge (ms) 52 1,493 0,20 1,594 91,6 3,88/3,9 27250 NE 61 1,403 0,35 1,577 91,2 3,82/3 ,84 7255 NE 75 1,383 0,38 1,573 91,6 3,78/3,8 164 111,5 1,34 0,45 1,565 91,6 3,82/3,88 175 NE 115,2 1,344 0,44 1,565 91,1 4,0/4,0 112 niveau faible par rapport à la référence (Ref2) niveau très faible par rapport à la référence (Ref2) NE : non évalué 6) Exemple 3 La couche intermédiaire est formée entre un substrat d'indice de réfraction égal à 1,6 et un revêtement de primaire d'indice de réfraction égal à 1,50. Les caractéristiques 1 o théoriques d'une couche quart d'onde sont donc les suivantes : n = V1,6 x l,5 = 1,5492 ; e = 550 = 88,76nm 4 x l,5492 Résultats de l'exemple 3 (composition de couche intermédiaire 3) 15 Tableau 3 Couche de colloïdes séchée, Couche Propriétés de l'article d'optique avant diffusion du latex intermédiaire (après comblement de la porosité par le primaire) Epaisseur Indice de Porosité Indice de Transmission Rv/Rm Temps Niveau (nm) réfraction calculée réfraction (0/0) (%) de franges n, théorique (1face) décharge (ms) 52,2 1,484 0,17 1,570 92 3,86/3,88 24500 52,9 1,465 0,20 1,567 92,3 3,91/3,93 2809 NE 65 1,45 0,23 1,565 92,2 3,81/3,83 27 -- 97,6 1,364 0,38 1,553 91,8 3,82/3,88 24 -- 100 1,371 0,37 1,554 92,2 4,0/4,0 64 NE : niveau faible par rapport à la référence (Ref1) : niveau très faible par rapport à la référence (Ref1) NE : non évalué Table 2 Dried colloid layer, before diffusion of the latex Intermediate layer (after filling of the optical article SiO 2 ITO Xm X ~ 0 X nsi0, ITO SiOZ n Xm X ~ 0 XnITO 2 = pSIO 2 + XmiO 2 X (DITO pSiO2) + pITO + XmITO x (pSiO2 _ pITO) porosity by the primer) Thickness Porosity index Transmission Index Rv / Rm Time Level (nm) refraction calculated refraction (%) (0/0) (1 face) of fringes n, theoretical discharge (ms) 52 1.493 0.20 1.594 91.6 3.88 / 3.9 27250 NE 61 1.403 0.35 1.577 91.2 3.82 / 3, 84 7255 NE 75 1.383 0.38 1.573 91.6 3.78 / 3.8 164 111.5 1.34 0.45 1.565 91.6 3.82 / 3.88 175 NE 115.2 1.344 0.44 1.565 91.1 4.0 / 4, 0 112 low level compared to reference (Ref2) very low level compared to reference (Ref2) NE: not evaluated 6) Example 3 The intermediate layer is formed between a substrate of refractive index equal to 1.6 and a primer coating of refractive index equal to 1.50. The theoretical characteristics of a quarter-wave layer are therefore the following: n = V1.6 x 1.5 = 1.5492; e = 550 = 88.76 nm 4 × 1, 5492 Results of Example 3 (Intermediate Layer Composition 3) Table 3 Dried Colloid Layer, Layer Properties of the Optical Article Prior to Diffusion of the Intermediate Latex (After Filling) the porosity by the primer) Thickness Porosity index Transmission index Rv / Rm Time Level (nm) refraction calculated refraction (0/0) (%) fringes n, theoretical (1face) discharge (ms) 52,2 1,484 0, 17 1,570 92 3.86 / 3.88 24500 52.9 1.465 0.20 1.567 92.3 3.91 / 3.93 2809 NE 65 1.45 0.23 1.565 92.2 3.81 / 3.83 27 - 97.6 1.364 0.38 1.553 91.8 3.82 / 3.88 24 - 100 1.371 0.37 1.554 92.2 4.0 / 4.0 64 NE: low level compared to reference ( Ref1): very low level compared to reference (Ref1) NE: not evaluated

7) Exemples comparatifs 7) Comparative examples

1 o Les propriétés de verres identiques à ceux préparés dans les exemples 1-3 mais dépourvus de couche intermédiaire entre le substrat et le revêtement de primaire ont également été évaluées. Deux séries ont été préparées, selon l'indice de réfraction du substrat (1,67 : exemple comparatif 1 ; 1,6 : exemple comparatif 2). The properties of glasses identical to those prepared in Examples 1-3 but devoid of an intermediate layer between the substrate and the primer coating were also evaluated. Two series were prepared according to the refractive index of the substrate (1.67: Comparative Example 1; 1.6: Comparative Example 2).

15 Résultats des exemples comparatifs (pas de couche intermédiaire) Tableau 4 Réflexion Rm Temps de décharge Niveau des franges (par face) (%) (ms) Lentille Ref1 (telle que 4,5 >30000 Très élevé préparé en 4)) Substrat d'indice 1,6 +primaire d'indice 1,5 +vernis hard coat d'indice 1,5 Lentille Ref2 telle que 4 >30000 Très elevé préparée en 4) (substrat d'indice 1,67 + primaire d'indice 1,5+ vernis hard coat d'indice 1,5.) Commentaire des résultats obtenus Les tableaux 1 à 3 fournissent plusieurs exemples d'articles d'optique possédant une couche intermédiaire présentant en même temps des propriétés antistatiques (temps de décharge inférieur à 200 ms) et permettant de limiter de façon nette la perception des franges d'interférences. Une comparaison avec les essais comparatifs, qui mettent en jeu des empilements 1 o dépourvus de couche intermédiaire selon l'invention, révèle que l'intensité des franges d'interférences est significativement réduite grâce à la présence de cette couche. Dans les tableaux 1-3, les essais conduisant au niveau de franges minimal sont signalés en gras. Il apparaît logiquement que les meilleurs résultats en termes de diminution de la perception des franges d'interférence sont obtenus pour les couches intermédiaires 15 présentant les caractéristiques d'épaisseur et d'indice de réfraction les plus proches des caractéristiques théoriques d'une couche quart d'onde. Les transmissions obtenues sont systématiquement supérieures à 91 %, et en moyenne supérieures à 91,5 %. Pour des lentilles d'indice de réfraction de 1, 6 à 1, 67, avec un revêtement d'indice 20 de réfraction de l'ordre de 1,50, les niveaux de réflexion Rm des lentilles selon l'invention peuvent diminuer d'une valeur maximale d'environ 0,6 % par face, soit une amélioration (diminution) de la réflexion d'environ 1,2% pour les deux faces, permettant un gain en transmission de près de 1,2% par rapport à la même lentille ne possédant pas la couche quart d'onde.Comparative Example Results (No Interlayer) Table 4 Reflection Rm Discharge Time Fringe Level (per side) (%) (ms) Ref1 Lens (such as 4.5> 30000 Very High prepared in 4)) Substrate d 1.6 + primary index index 1.5 + hard coat varnish index 1,5 Ref2 lens such as 4> 30000 Very high prepared in 4) (substrate index 1.67 + primary index 1 , 5 + hard coat varnish of index 1.5.) Comment on the results obtained Tables 1 to 3 provide several examples of optical articles having an intermediate layer having at the same time antistatic properties (discharge time less than 200 ms) and to clearly limit the perception of interference fringes. A comparison with the comparative tests, which involve stacks 1 o devoid of intermediate layer according to the invention, reveals that the intensity of the interference fringes is significantly reduced thanks to the presence of this layer. In Tables 1-3, the tests leading to the minimum fringe level are indicated in bold. It logically appears that the best results in terms of decreasing the perception of the interference fringes are obtained for the intermediate layers having the thickness and refractive index characteristics closest to the theoretical characteristics of a quarter-layer. 'wave. The transmissions obtained are systematically higher than 91%, and on average greater than 91.5%. For lenses having a refractive index of 1.6 to 1.67, with a refractive index coating of the order of 1.50, the reflection levels Rm of the lenses according to the invention can decrease by a maximum value of about 0.6% per side, an improvement (decrease) in reflection of about 1.2% for both sides, allowing a transmission gain of nearly 1.2% compared to the same lens not possessing the quarter-wave layer.

25 Il est à noter qu'une couche intermédiaire antistatique quart d'onde ou quasi quart d'onde ne peut pas être obtenue dans le cas du système de l'exemple 3 (substrat d'indice de réfraction 1,6 / primaire d'indice de réfraction 1,5) en utilisant un mélange SiO2/ITO. En effet, les couches quart d'onde ou quasi quart d'onde résultant de l'utilisation de ce système de colloïdes ne possèdent pas de propriétés antistatiques suffisantes, au contraire des couches 30 quart d'onde ou quasi quart d'onde résultant de l'utilisation du système de colloïdes SiO2 creuse/ITO. Enfin, les essais effectués révèlent que pour une composition de couche intermédiaire donnée, les temps de décharges peuvent être divisés par 1000 lorsque l'épaisseur de la couche intermédiaire est multipliée par 2 et que dans le même temps la porosité de la couche est également multipliée par 2 (cf. Tableau 3). Un calcul permet de montrer que la quantité de particules d'ITO effectivement déposée a été augmentée d'environ 50 % entre le premier et le dernier essai du Tableau 3. 26 It should be noted that a quarter-wave or quasi-quarter-wave antistatic intermediate layer can not be obtained in the case of the system of Example 3 (1.6 refractive index substrate). refractive index 1.5) using an SiO 2 / ITO mixture. In fact, the quarter-wave or quasi-quarter-wave layers resulting from the use of this colloid system do not have sufficient antistatic properties, unlike the quarter-wave or quasi-quarter-wave layers resulting from the use of the SiO2 colloid system / ITO. Finally, the tests carried out reveal that for a given intermediate layer composition, the discharge times can be divided by 1000 when the thickness of the intermediate layer is multiplied by 2 and that at the same time the porosity of the layer is also multiplied by 2 (see Table 3). A calculation makes it possible to show that the quantity of ITO particles actually deposited has been increased by approximately 50% between the first and the last test of Table 3.

Claims (18)

REVENDICATIONS1. Article d'optique comprenant un substrat en verre organique ou minéral et une couche d'un matériau polymérique, caractérisé en ce qu'il comprend une couche intermédiaire possédant des propriétés antistatiques en contact direct avec une face principale du substrat et la couche de matériau polymérique, la couche intermédiaire comprenant un mélange de particules colloïdales d'au moins un oxyde métallique colloïdal électriquement conducteur, de particules colloïdales ayant un indice de réfraction inférieur ou égal à 1,55 et optionnellement d'un liant, dans des proportions telles que la masse de particules d'oxydes métalliques colloïdaux électriquement conducteurs représente 50 à 97 % de la masse totale de particules colloïdales présentes dans la couche intermédiaire, ladite 1 o couche intermédiaire étant une couche initialement poreuse dont la porosité a été comblée soit par du matériau de la couche de matériau polymérique soit par du matériau du substrat si celui-ci est en verre organique, de sorte que la couche intermédiaire, après comblement de sa porosité initiale, vérifie les caractéristiques suivantes : 0725xù e 1,35 xù (1) 4n 4n 15 0,98 x V n substrat n polymère ≤ n ≤ 1,02 X V n substrat n polymère (2) où n est l'indice de réfraction de la couche intermédiaire, nsubstrat est l'indice de réfraction du substrat, npolymère est l'indice de réfraction de la couche de matériau polymérique directement en contact avec la couche intermédiaire, e est l'épaisseur de la couche intermédiaire et 2 est égal à 550 nm. 20 REVENDICATIONS1. Optical article comprising an organic or inorganic glass substrate and a layer of a polymeric material, characterized in that it comprises an intermediate layer having antistatic properties in direct contact with a main surface of the substrate and the layer of polymeric material the intermediate layer comprising a mixture of colloidal particles of at least one electrically conductive colloidal metal oxide, colloidal particles having a refractive index less than or equal to 1.55 and optionally a binder, in such proportions that the mass electrically conductive colloidal metal oxide particles account for 50 to 97% of the total mass of colloidal particles present in the intermediate layer, said intermediate layer being an initially porous layer whose porosity has been filled either by layer material of polymeric material or by material of the sub strat if it is organic glass, so that the intermediate layer, after filling its initial porosity, verifies the following characteristics: 0725xv e 1.35 x (1) 4n 4n 15 0.98 x V n n polymer substrate ≤ n ≤ 1,02 XV n n polymer substrate (2) where n is the refractive index of the intermediate layer, nsubstrate is the refractive index of the substrate, npolymer is the refractive index of the polymeric material layer directly in contact with the intermediate layer, e is the thickness of the intermediate layer and 2 is equal to 550 nm. 20 2. Article d'optique selon la revendication 1, caractérisé en ce que la masse de particules d'oxydes métalliques colloïdaux électriquement conducteurs représente 50 à 95 %, mieux 60 à 95%, et mieux encore 60 à 90% de la masse totale de particules colloïdales présentes dans la couche intermédiaire. 2. An optical article according to claim 1, characterized in that the mass of colloidal metal oxide electrically conductive particles is 50 to 95%, better 60 to 95%, and more preferably 60 to 90% of the total mass of colloidal particles present in the intermediate layer. 3. Article d'optique selon la revendication 1 ou 2, caractérisé en ce qu'il comprend 25 une couche intermédiaire vérifiant l'équation : 0,8 xù e≤ 1,2xù (1') 4n 4n 3. An optical article according to claim 1 or 2, characterized in that it comprises an intermediate layer satisfying the equation: 0.8 x ≤ 1.2 x (1 ') 4n 4n 4. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une couche intermédiaire vérifiant l'équation : 0,985 x . Jn substrat .n polymère ≤ n ≤ 1,015 X V n substrat .n polymère (2') 30 4. Optical article according to any one of the preceding claims, characterized in that it comprises an intermediate layer verifying the equation: 0.985 x. A polymer substrate ≤ n ≤ 1,015 X V n polymer substrate (2 ') 30 5. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une couche intermédiaire ayant une porosité inférieure à 20 0/0 en volume, de préférence inférieure à 10 % en volume, mieux inférieure à 5 % en volume. Optical article according to any one of the preceding claims, characterized in that it comprises an intermediate layer having a porosity of less than 20% by volume, preferably less than 10% by volume, better still less than 5% by volume. % in volume. 6. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une couche intermédiaire dont l'épaisseur varie de 60 à 130 nm, de préférence de 75 à 110 nm, mieux de 80 à 100 nm. Optical article according to any one of the preceding claims, characterized in that it comprises an intermediate layer whose thickness varies from 60 to 130 nm, preferably from 75 to 110 nm, better still from 80 to 100 nm. . 7. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce que la taille des particules colloïdales varie de 10 à 80 nm, de préférence de 30 à 80 nm, mieux de 30 à 60 nm. 7. Optical article according to any one of the preceding claims, characterized in that the size of the colloidal particles ranges from 10 to 80 nm, preferably from 30 to 80 nm, more preferably from 30 to 60 nm. 8. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oxyde métallique colloïdal électriquement conducteur est choisi parmi l'oxyde d'indium dopé à l'étain, l'oxyde d'étain dopé à l'antimoine, l'oxyde d'étain, l'oxyde de 1 o zinc, l'oxyde d'indium, le pentoxyde de vanadium, l'oxyde de zinc dopé à l'aluminium, l'oxyde de cérium, l'antimonate de zinc, l'antimonate d'indium et l'oxyde d'antimoine. 8. An optical article according to any one of the preceding claims, characterized in that the electrically conductive colloidal metal oxide is selected from indium oxide doped with tin, tin oxide doped with antimony, tin oxide, zinc oxide, indium oxide, vanadium pentoxide, aluminum doped zinc oxide, cerium oxide, antimonate zinc, indium antimonate and antimony oxide. 9. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce que les particules colloïdales ayant un indice de réfraction inférieur ou égal à 1, 55 comprennent au moins un oxyde minéral colloïdal ayant un indice de réfraction 15 inférieur ou égal à 1,55. Optical article according to any one of the preceding claims, characterized in that the colloidal particles having a refractive index less than or equal to 1.55 comprise at least one colloidal mineral oxide having a refractive index of less than or equal to at 1.55. 10. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oxyde minéral colloïdal ayant un indice de réfraction inférieur ou égal à 1,55 est choisi parmi la silice, la silice dopée à l'alumine et les oxydes minéraux poreux ou creux. 20 10. Optical article according to any one of the preceding claims, characterized in that the colloidal mineral oxide having a refractive index less than or equal to 1.55 is selected from silica, alumina doped silica and porous or hollow mineral oxides. 20 11. Article d'optique selon la revendication 10, caractérisé en ce que l'oxyde minéral colloïdal ayant un indice de réfraction inférieur ou égal à 1,55 est un oxyde minéral poreux ou creux ayant un indice de réfraction allant de 1,15 à 1,40. Optical article according to claim 10, characterized in that the colloidal mineral oxide having a refractive index less than or equal to 1.55 is a porous or hollow mineral oxide having a refractive index ranging from 1.15 to 1.40. 12. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il possède un facteur relatif de transmission de la lumière dans le visible 25 (Tv) supérieur à 85 %, mieux supérieur à 90 % et encore mieux supérieur à 91 %. 12. An optical article according to any one of the preceding claims, characterized in that it has a relative light transmittance factor in the visible (Tv) greater than 85%, better over 90% and even better greater than 91%. 13. Article d'optique selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche de matériau polymérique en contact direct avec la couche intermédiaire est choisie parmi une couche d'un revêtement de primaire d'adhésion et/ou antichoc, une couche d'un revêtement anti-abrasion et/ou anti-rayure, une couche d'un 30 revêtement antireflet et une couche de composition adhésive. An optical article as claimed in any one of the preceding claims, characterized in that the layer of polymeric material in direct contact with the intermediate layer is selected from a layer of an adhesion and / or anti-shock primer coating, a layer of an anti-abrasion and / or anti-scratch coating, a layer of an anti-reflective coating and a layer of adhesive composition. 14. Article d'optique selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la porosité de la couche intermédiaire est comblée par le matériau polymérique d'une couche d'un revêtement de primaire d'adhésion et/ou antichoc 14. An optical article according to any one of claims 1 to 12, characterized in that the porosity of the intermediate layer is filled by the polymeric material of a layer of a primer coating adhesion and / or shockproof 15. Article d'optique selon l'une quelconque des revendications précédentes, 35 caractérisé en ce que le substrat est une lentille ophtalmique. Optical article according to one of the preceding claims, characterized in that the substrate is an ophthalmic lens. 16. Procédé de fabrication d'un article d'optique selon la revendication 1, comprenant : a) le dépôt d'une couche de composition de couche intermédiaire soit sur au moins une surface principale d'un substrat en verre organique ou minéral, soit sur une couche d'un matériau polymérique, ladite composition comprenant un mélange de particules colloïdales d'au moins un oxyde métallique colloïdal électriquement conducteur, de particules colloïdales ayant un indice de réfraction inférieur ou égal à 1,55 et optionnellement d'un liant ; b) le séchage de la composition de couche intermédiaire de façon à former une couche intermédiaire initialement poreuse ; c) la formation sur cette couche intermédiaire poreuse soit d'une couche d'un 1 o matériau polymérique, soit d'un substrat en verre organique, de façon à ce que la porosité initiale de la couche intermédiaire soit comblée soit par du matériau de la couche polymérique, soit par du matériau du substrat si celui-ci est en verre organique, et de sorte que la couche intermédiaire, après comblement de sa porosité initiale, vérifie les équations (1) et (2) de la revendication 1, 15 d) la récupération d'un article d'optique comprenant une couche intermédiaire possédant des propriétés antistatiques en contact direct avec une face principale du substrat et la couche de matériau polymérique, la masse de particules d'oxydes métalliques colloïdaux électriquement conducteurs représentant 50 à 97 % de la masse totale de particules colloïdales présentes dans la couche 20 intermédiaire. The method of manufacturing an optical article according to claim 1, comprising: a) depositing a layer of interlayer composition on at least one major surface of an organic or inorganic glass substrate, or on a layer of a polymeric material, said composition comprising a mixture of colloidal particles of at least one electrically conductive colloidal metal oxide, colloidal particles having a refractive index less than or equal to 1.55 and optionally a binder; b) drying the interlayer composition to form an initially porous intermediate layer; c) forming on said porous intermediate layer either a layer of a polymeric material or an organic glass substrate, so that the initial porosity of the intermediate layer is filled with either the polymeric layer, or by material of the substrate if it is made of organic glass, and so that the intermediate layer, after filling of its initial porosity, satisfies the equations (1) and (2) of claim 1, 15 d) recovering an optical article comprising an intermediate layer having antistatic properties in direct contact with a main surface of the substrate and the layer of polymeric material, the mass of electrically conductive colloidal metal oxide particles being 50 to 97 % of the total mass of colloidal particles present in the intermediate layer. 17. Procédé selon la revendication 16, caractérisé en ce que la couche obtenue à l'étape b) possède une porosité d'au moins 20 % en volume, de préférence d'au moins 30 0/0 en volume. 17. The method of claim 16, characterized in that the layer obtained in step b) has a porosity of at least 20% by volume, preferably at least 30% by volume. 18. Procédé selon l'une quelconque des revendications 16 ou 17, caractérisé en ce 25 que la couche de composition de couche intermédiaire est déposée sur au moins une surface principale d'un substrat en verre organique ou minéral au cours de l'étape a) et en ce qu'une couche d'un matériau polymérique est formée sur la couche intermédiaire poreuse par dépôt au trempé ou par centrifugation au cours de l'étape c). 18. A method according to any one of claims 16 or 17, characterized in that the intermediate layer composition layer is deposited on at least one major surface of an organic or inorganic glass substrate during step a and in that a layer of a polymeric material is formed on the porous intermediate layer by dip coating or by centrifugation in step c).
FR0855401A 2008-08-04 2008-08-04 OPTICAL ARTICLE COMPRISING AN ANSTATIC LAYER LIMITING PERCEPTION OF FRINGES OF INTERFERENCE, HAVING EXCELLENT LIGHT TRANSMISSION AND METHOD OF MANUFACTURING THE SAME. Expired - Fee Related FR2934689B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
FR0855401A FR2934689B1 (en) 2008-08-04 2008-08-04 OPTICAL ARTICLE COMPRISING AN ANSTATIC LAYER LIMITING PERCEPTION OF FRINGES OF INTERFERENCE, HAVING EXCELLENT LIGHT TRANSMISSION AND METHOD OF MANUFACTURING THE SAME.
CA2733263A CA2733263C (en) 2008-08-04 2009-08-04 Optical article that includes an antistatic layer limiting the perception of interference fringes, having excellent light transmission, and method of manufacturing it
BRPI0916864A BRPI0916864B1 (en) 2008-08-04 2009-08-04 optical article comprising an organic or mineral glass substrate and a layer of a polymeric material and process for manufacturing an optical article
CN2009801391391A CN102171590A (en) 2008-08-04 2009-08-04 Optical article that includes an antistatic layer limiting the perception of interference fringes, having excellent light transmission, and method of manufacturing it
JP2011521621A JP5753492B2 (en) 2008-08-04 2009-08-04 Optical article comprising antistatic layer having good light transmittance and limiting recognition of interference fringes and method for producing the same
PCT/FR2009/051557 WO2010015780A2 (en) 2008-08-04 2009-08-04 Optical article that includes an antistatic layer limiting the perception of interference fringes, having excellent light transmission, and method of manufacturing it
US13/057,639 US20110128664A1 (en) 2008-08-04 2009-08-04 Optical Article that Includes an Antistatic Layer Limiting the Perception of Interference Fringes, Having Excellent Light Transmission, and Method of Manufacturing It
AU2009278956A AU2009278956C1 (en) 2008-08-04 2009-08-04 Optical article that includes an antistatic layer limiting the perception of interference fringes, having excellent light transmission, and method of manufacturing it
KR1020117002782A KR101667661B1 (en) 2008-08-04 2009-08-04 Optical Article That Includes an Antistatic Layer Limiting The Perception Of Interference Fringes, Having Excellent Light Transmission And Method of Manufacturing it
EP09740434.7A EP2310883B1 (en) 2008-08-04 2009-08-04 Optical article that includes an antistatic layer limiting the perception of interference fringes, having excellent light transmission, and method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0855401A FR2934689B1 (en) 2008-08-04 2008-08-04 OPTICAL ARTICLE COMPRISING AN ANSTATIC LAYER LIMITING PERCEPTION OF FRINGES OF INTERFERENCE, HAVING EXCELLENT LIGHT TRANSMISSION AND METHOD OF MANUFACTURING THE SAME.

Publications (2)

Publication Number Publication Date
FR2934689A1 true FR2934689A1 (en) 2010-02-05
FR2934689B1 FR2934689B1 (en) 2010-09-17

Family

ID=40445741

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0855401A Expired - Fee Related FR2934689B1 (en) 2008-08-04 2008-08-04 OPTICAL ARTICLE COMPRISING AN ANSTATIC LAYER LIMITING PERCEPTION OF FRINGES OF INTERFERENCE, HAVING EXCELLENT LIGHT TRANSMISSION AND METHOD OF MANUFACTURING THE SAME.

Country Status (10)

Country Link
US (1) US20110128664A1 (en)
EP (1) EP2310883B1 (en)
JP (1) JP5753492B2 (en)
KR (1) KR101667661B1 (en)
CN (1) CN102171590A (en)
AU (1) AU2009278956C1 (en)
BR (1) BRPI0916864B1 (en)
CA (1) CA2733263C (en)
FR (1) FR2934689B1 (en)
WO (1) WO2010015780A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150410A1 (en) * 2011-05-05 2012-11-08 Saint-Gobain Glass France Transparent substrate clad with a stack of mineral layers one of which is porous and covered

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6386700B2 (en) 2012-07-04 2018-09-05 キヤノン株式会社 Structure, optical member, antireflection film, water repellent film, substrate for mass spectrometry, phase plate, method for producing structure, and method for producing antireflection film
US9772429B2 (en) 2013-05-14 2017-09-26 Essilor International (Compagnie Generale D'optique) Fluorine-doped stannic oxide colloids and method for preparing same
FR3024554B1 (en) * 2014-07-30 2016-09-09 Essilor Int OPHTHALMIC LENS COMPRISING A COATING THAT MINIMIZES ULTRAVIOLET REFLECTIONS AND METHOD OF MANUFACTURING SUCH LENS
CN104483760A (en) * 2014-12-09 2015-04-01 镇江市高等专科学校 Electric shock protection early warning spectacles and early warning method
CN107555805A (en) * 2017-09-22 2018-01-09 太仓卡斯特姆新材料有限公司 A kind of antireflective plated film complex sol and preparation method thereof
TWI821234B (en) 2018-01-09 2023-11-11 美商康寧公司 Coated articles with light-altering features and methods for the production thereof
KR101939076B1 (en) * 2018-04-25 2019-01-17 (주)필스톤 Composition and Method for Hard Coating Film With High Transmitting Ratio, High Heat Resistance and Antistatic Function
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing
US11564839B2 (en) 2019-04-05 2023-01-31 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
CN110982325B (en) * 2019-12-31 2021-09-14 宁波特粒科技有限公司 Antireflection, antistatic and super-hydrophilic coating composition, coating and product
US20220011477A1 (en) 2020-07-09 2022-01-13 Corning Incorporated Textured region to reduce specular reflectance including a low refractive index substrate with higher elevated surfaces and lower elevated surfaces and a high refractive index material disposed on the lower elevated surfaces
CN114933820B (en) * 2022-04-12 2023-05-09 东莞南玻太阳能玻璃有限公司 High-weather-resistance coating film and preparation method and application thereof
CN115857081A (en) * 2022-12-01 2023-03-28 广州鑫铂颜料科技有限公司 Interference filter containing curved surface interlayer light reflection color change

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211274B1 (en) * 1998-06-05 2001-04-03 Nissan Chemical Industries, Ltd. Organic-inorganic composite conductive SOL and process for producing the same
WO2003056366A1 (en) * 2001-12-27 2003-07-10 Essilor International Compagnie Generale D'optique Optical article comprising a quarter-wave plate and method for making same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178009B2 (en) * 1991-07-05 2001-06-18 株式会社日立製作所 Anti-reflection body and its utilization device
MXPA02007162A (en) * 2000-01-26 2003-09-22 Sola Int Holdings Anti static, anti reflection coating.
JP2001255403A (en) * 2000-03-13 2001-09-21 Fuji Photo Film Co Ltd Antistatic reflection preventing film and cathode ray tube display device using the same
JP4459513B2 (en) * 2002-09-02 2010-04-28 凸版印刷株式会社 Antistatic hard coat film and display member using the same
JP2005290230A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Antireflection film with antistatic layer and coating composition for forming antistatic layer
KR100953230B1 (en) * 2005-03-11 2010-04-16 세이코 엡슨 가부시키가이샤 Plastic lens and method for producing plastic lens
JP2008122837A (en) * 2006-11-15 2008-05-29 Asahi Kasei Corp Antiglare antireflection film
US20080274352A1 (en) * 2007-05-04 2008-11-06 3M Innovative Properties Company Optical film comprising antistatic primer and antistatic compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211274B1 (en) * 1998-06-05 2001-04-03 Nissan Chemical Industries, Ltd. Organic-inorganic composite conductive SOL and process for producing the same
WO2003056366A1 (en) * 2001-12-27 2003-07-10 Essilor International Compagnie Generale D'optique Optical article comprising a quarter-wave plate and method for making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150410A1 (en) * 2011-05-05 2012-11-08 Saint-Gobain Glass France Transparent substrate clad with a stack of mineral layers one of which is porous and covered
FR2974800A1 (en) * 2011-05-05 2012-11-09 Saint Gobain TRANSPARENT SUBSTRATE COATED WITH A STACK OF MINERAL LAYERS INCLUDING A COVERED POROUS
CN103502848A (en) * 2011-05-05 2014-01-08 法国圣戈班玻璃厂 Transparent substrate clad with a stack of mineral layers one of which is porous and covered
US20140141222A1 (en) * 2011-05-05 2014-05-22 Saint-Gobain Glass France Transparent substrate clad with a stack of mineral layers one of which is porous and covered
CN103502848B (en) * 2011-05-05 2015-11-25 法国圣戈班玻璃厂 Be porous with an one layer and the transparent base of capped inorganic layer stacked body coating
EA028716B1 (en) * 2011-05-05 2017-12-29 Сэн-Гобэн Гласс Франс Transparent substrate clad with a stack of mineral layers one of which is porous and covered

Also Published As

Publication number Publication date
WO2010015780A3 (en) 2010-04-01
AU2009278956C1 (en) 2015-10-01
KR20110039324A (en) 2011-04-15
WO2010015780A2 (en) 2010-02-11
AU2009278956B2 (en) 2015-04-30
CA2733263C (en) 2017-07-18
US20110128664A1 (en) 2011-06-02
JP2011530095A (en) 2011-12-15
AU2009278956A1 (en) 2010-02-11
KR101667661B1 (en) 2016-10-19
FR2934689B1 (en) 2010-09-17
EP2310883B1 (en) 2016-03-16
EP2310883A2 (en) 2011-04-20
BRPI0916864A2 (en) 2016-02-10
CA2733263A1 (en) 2010-02-11
CN102171590A (en) 2011-08-31
BRPI0916864B1 (en) 2019-08-27
JP5753492B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
EP2310883B1 (en) Optical article that includes an antistatic layer limiting the perception of interference fringes, having excellent light transmission, and method of manufacturing it
CA2433930C (en) Optical article comprising a quarter-wave plate and method for making same
EP3190436B1 (en) Optical article coated with an antireflection or reflective coating comprising an electrically conductive film based on tin oxide, and production method
EP2033021B1 (en) Optical article coated with an underlayer and with a temperature-resistant multi-layer anti-reflection coating, and manufacturing method
EP2167997B1 (en) Optical article coated with an antireflection coating comprising a sublayer partially formed under ion assistance and manufacturing process
EP2122392B1 (en) Process for manufacturing an optical article coated with an antireflection or reflective coating having improved adhesion and abrasion-resistance properties
EP2047303A1 (en) Optical article with antistatic and antiabrasive properties, and method for producing same
FR2954833A1 (en) OPTICAL ARTICLE COMPRISING A TEMPORARY ANTIBUID COATING WITH IMPROVED DURABILITY
WO2013004954A1 (en) Optical article including an antireflection coating having improved crack-resistance properties under mechanical stress

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

TP Transmission of property

Owner name: ESSILOR INTERNATIONAL, FR

Effective date: 20180601

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

ST Notification of lapse

Effective date: 20210405