ES2677269B1 - Two-phase thermal transmission system - Google Patents

Two-phase thermal transmission system Download PDF

Info

Publication number
ES2677269B1
ES2677269B1 ES201730102A ES201730102A ES2677269B1 ES 2677269 B1 ES2677269 B1 ES 2677269B1 ES 201730102 A ES201730102 A ES 201730102A ES 201730102 A ES201730102 A ES 201730102A ES 2677269 B1 ES2677269 B1 ES 2677269B1
Authority
ES
Spain
Prior art keywords
heat
transmission system
fluid
receiver
thermal transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES201730102A
Other languages
Spanish (es)
Other versions
ES2677269A1 (en
Inventor
Puerto Jesus Lucas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to ES201730102A priority Critical patent/ES2677269B1/en
Publication of ES2677269A1 publication Critical patent/ES2677269A1/en
Application granted granted Critical
Publication of ES2677269B1 publication Critical patent/ES2677269B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

DESCRIPCIONDESCRIPTION

SISTEMA DE TRANSMISION TERMICA BIFASICATHREE-PHASE THERMAL TRANSMISSION SYSTEM

SECTOR DE LA TECNICATECHNICAL SECTOR

Este invento se encuadra dentro de los sistemas de transmision termica mediante fluidos caloportantes distanciados a traves de una red de conductos, para su aprovechamiento que comprende industrias tales como la termo-solar, refrigeracion y/o calentamiento de motores y/o elementos que precisen de transmision termica mas alla de la transmision local asi como climatizacion, calefaccion, generation de agua caliente y/o vapor de agua.This invention is framed within thermal transmission systems by means of heat-dislodged fluids separated through a network of conduits, for their use, which includes industries such as thermo-solar, cooling and / or heating of motors and / or elements that require thermal transmission beyond the local transmission as well as air conditioning, heating, hot water generation and / or water vapor.

ANTECEDENTES DE LA INVENCIONBACKGROUND OF THE INVENTION

El fuerte crecimiento y demanda de energia de las ultimas decadas unida a la limitation de los recursos, su continuo encarecimiento y a su vez la incorporation de relativamente nuevos conceptos como huella ecologica y el efecto invernado, vienen desarrollando los sistemas de transmision termica cada vez en un paso mas alla en la frontera de la eficiencia, eficacia y sostenibilidad energetica.The strong growth and energy demand of the last decades together with the limitation of resources, its continuous increase in price and at the same time the incorporation of relatively new concepts such as ecological footprint and the overwinter effect, have been developing the thermal transmission systems every time in a step beyond the frontier of efficiency, effectiveness and energy sustainability.

Se han registrado grandes cambios en materia de mejora de los aislantes, materiales, fluidos, accesorios y diseno, si bien se han registrado pocos cambios en los sistemas de transferencia termica, que tienen origen principalmente en dos conceptos. Por un lado las entidades de certification y la legislation aplicable en las instalaciones termicas comprenden un ambito muy concreto de funcionamiento en las mismas, en ellas sus sistemas de transmision. Por otro, los desarrolladores del producto de instalacion termica invierten en la evolution de sus productos conforme a la legislacion aplicable, quedando por tanto el sistema de transferencia y su evolucion en un segundo plano inalterable, si bien, toda una nueva gama de productos pueden desarrollarse a partir de un desarrollo del mismo.There have been major changes in terms of improvement of insulators, materials, fluids, accessories and design, although there have been few changes in thermal transfer systems, which are mainly based on two concepts. On the one hand, the certification bodies and the applicable legislation in thermal installations comprise a very specific area of operation in them, in them their transmission systems. On the other hand, the developers of the thermal installation product invest in the evolution of their products in accordance with the applicable legislation, leaving the transfer system and its evolution in an unalterable second plane, although a whole new range of products can be developed from a development of it.

Los sistemas de transmision termica actuales estan divididos principalmente en dos grupos, aquellos que su ciclo de intercambio termico se desarrolla con un fluido caloportador en un solo estado (monofasicos), generalmente como liquidos y aquellos en los que su fluido caloportador se presenta en dos estados (bifasico) generalmente como liquido-vapor.The current thermal transmission systems are divided mainly into two groups, those whose thermal exchange cycle is developed with a heat transfer fluid in a single state (monofasics), generally as liquids and those in which its heat transfer fluid is presented in two states (biphasic), usually as liquid-vapor.

Los sistemas bifasicos, basicamente lo componen actualmente dos sistemas, aquellos basados generalmente en calderas o intercambiadores de evaporacion continua de agua desmineralizada y aquellos que comprimen-descomprimen un vapor-liquido mediante un motor (compresor). Los primeros como se expone anteriormente, disponen de calderas o intercambiadores de evaporacion continua de agua desmineralizada a 100°C unida a un sobrecalentador del vapor cuya temperatura final se adapta a las necesidades, con presiones siempre superiores a la atmosferica, transfiriendose por alta presion y temperatura el vapor/gas a los puntos de uso-intercambio y posteriormente desechada al ambiente o es retornada al punto de generacion, en un ciclo semi-cerrado o abierto dependiendo de la instalacion, transfiriendose energia calonfica y mecanica en algunos casos en todo el proceso. En estos sistemas radica la desventaja de estar obligado a mantener temperaturas altas, superiores a 120°C para evitar la saturacion en el circuito, aunque no exista demanda o esta sea baja, siendo muy ineficientes en este estado debido a que las diversas perdidas tienden a mantenerse lineales por hora de funcionamiento del sistema. El segundo grupo, aquellos que comprimen-descomprimen un vapor, usan generalmente fluidos caloportantes denominados como fluidos refrigerantes, gaseosos a temperatura y presion ambientes, en un circuito hermetico cerrado, donde, bajo la accion mecanica de un elemento compresor son comprimidos y licuados, cediendo calor al sistema de referencia 1, y posteriormente conducidos y expandidos de nuevo absorbiendo calor del sistema de referencia 2, su rango de temperaturas primarias de intercambio estan limitadas a rangos aproximados de -40°C a 60°C, consumen gran energia durante el proceso debido al gran trabajo mecanico del compresor, tienen ademas perdidas termicas por rozamiento en el mismo y las debidas a la conversion de la energia electrica en mecanica por su motor.The biphasic systems, basically, currently consist of two systems, those usually based on boilers or exchangers of continuous evaporation of demineralized water and those that compress-decompress a vapor-liquid by means of a motor (compressor). The former, as explained above, have boilers or exchangers for the continuous evaporation of demineralized water at 100 ° C together with a steam superheater whose final temperature is adapted to the needs, with pressures always higher than the atmospheric one, transferring by high pressure and temperature the steam / gas to the points of use-exchange and later discarded to the environment or is returned to the point of generation, in a semi-closed or open cycle depending on the installation, transferring mechanical and mechanical energy in some cases throughout the process . In these systems lies the disadvantage of being forced to maintain high temperatures, above 120 ° C to avoid saturation in the circuit, although there is no demand or this is low, being very inefficient in this state because the various losses tend to stay linear by hour of system operation. The second group, those that compress-decompress a vapor, generally use heat-bearing fluids called refrigerant fluids, gaseous at room temperature and pressure, in a closed hermetic circuit, where, under the mechanical action of a compressor element, they are compressed and liquefied, yielding heat to reference system 1, and subsequently conducted and expanded again by absorbing heat from reference system 2, its range of primary exchange temperatures are limited to approximate ranges of -40 ° C to 60 ° C, it consumes great energy during the process due to the great mechanical work of the compressor, they also have thermal losses due to friction in the compressor and those due to the conversion of the electrical energy into mechanics by its motor.

El otro grupo, el mas comun y mas usado con diferencia son aquellos sistemas que trabajan con un fluido caloportador o mezcla de fluidos en estado liquido y presiones superiores a la atmosferica. De forma generalizada se basan en la circulation semicerrrada de agua desmineralizada aditivada, que siendo enfriada o calentada a temperaturas mmimas y maximas entre 3°C y 90°C en un dispositivo enfriador o caldera respectivamente, se hace circular, cediendo por tanto energia calonfica a todos aquellos puntos de uso-intercambio. Este sistema presenta las desventajas de precisar elementos de aceleracion permanente del fluido para que fluya a los puntos de uso, tales como bombas circuladoras, y dado que la viscosidad cinematica del agua Kquida es relativamente alta, se producen grandes perdidas en la circulation forzada del fluido asociada al trabajo mecanico de la bomba circuladora, ademas de un gran dimensionamiento de las conducciones en relation a ese mismo fenomeno, si bien ademas precisa en la instalacion de elementos que permitan la expansion de caracter incompresible de los liquidos conforme a las variaciones de temperatura del mismo. Tambien se utilizan en algunos casos la gravedad y los cambios de densidad del liquido acorde a su temperatura (efecto termosifon), si bien no precisan de un elemento mecanico acelerador del fluido, la viscosidad cinematica del liquido unida a la pequena variation de la densidad del mismo por cada grado de temperatura, hace de este sistema una mala alternativa cuando eficacia y eficiencia sean requisitos a tener en cuenta, ya que exigen altos gradientes de temperatura emisor-receptor y por tanto, altas perdidas termicas en el emisor.The other group, the most common and most widely used are those systems that work with a fluid coolant or fluid mixture in liquid state and pressures above atmospheric. They are generally based on the semi-closed circulation of additivated demineralized water, which, being cooled or heated to minimum and maximum temperatures between 3 ° C and 90 ° C in a cooling device or boiler respectively, is circulated, yielding therefore calonfica energy to all those points of use-exchange. This system has the disadvantages of requiring elements of permanent acceleration of the fluid to flow to points of use, such as circulating pumps, and since the kinematic viscosity of the liquid water is relatively high, large losses occur in the forced circulation of the fluid associated with the mechanical work of the circulating pump, in addition to a large dimensioning of the conduits in relation to that same phenomenon, although it also requires in the installation of elements that allow the expansion of incompressible character of the liquids according to the temperature variations thereof. In some cases, gravity and changes in the density of the liquid according to its temperature (thermosyphon effect) are also used, although they do not require a mechanical fluid accelerator element, the kinematic viscosity of the liquid added to the small variation of the density of the liquid. The same for each degree of temperature, makes this system a bad alternative when efficiency and effectiveness are requirements to be taken into account, since they require high gradients of emitter-receiver temperature and therefore, high thermal losses in the emitter.

Como puede observarse un sistema de transmision termica monofase (liquida) si bien conceptualmente su funcionamiento teorico es sencillo, no es asi su instalacion y servicio continuado ya que precisa de diversos elementos que disminuyen su eficiencia, eficacia, fiabilidad, durabilidad y seguridad intrinseca.As can be seen a single-phase (liquid) thermal transmission system, although conceptually its theoretical operation is simple, its installation and continuous service is not necessary because it requires various elements that reduce its efficiency, effectiveness, reliability, durability and intrinsic safety.

Por lo tanto, es objeto de la presente invention desarrollar un sistema de transmision termico que supere los inconvenientes apuntados, desarrollando un sistema como el que a continuation se describe y queda recogido en su esencialidad en la revindication primera.Therefore, it is the object of the present invention to develop a thermal transmission system that overcomes the aforementioned drawbacks, developing a system such as the one described below and is included in its essentiality in the first revindication.

EXPLICACION DE LA INVENCIONEXPLANATION OF THE INVENTION

Expuesto lo anterior y teniendo en cuenta entre otras las dificultades presentadas en la tecnica actual, la invencion constituye un sistema de transmision termico bifasico con caracteristicas mejoradas a las anteriores, basandose en la tecnica de aprovechamiento termico de la tendencia al equilibrio termodinamico de los fluidos y su presion de vapor.Having explained the above and taking into account, among others, the difficulties presented in the current technique, the invention constitutes a biphasic thermal transmission system with improved characteristics to the previous ones, based on the technique of thermal utilization of the tendency to thermodynamic equilibrium of fluids and its vapor pressure.

Considerando en primer punto, que todo liquido/vapor absorbe/cede una gran cantidad de energia en forma de calor en base a un cambio de estado liquido a vapor o vapor a liquido, en proceso que se cuantifica con el concepto ffsico de calor latente de un fluido en base a su entalpia de cambio de estado , y que ademas este diseno aprovecha no solo la energia en forma de calor en base a su cambio de estado de su fluido sino tambien su calor especifico en ambos estados. Siendo por tanto un sistema hibrido de los anteriores que posee caracteristicas aventajadas entre ambos sistemas de transferencia termica gaseosa-vapor y liquido a la vez.Considering in the first point, that all liquid / vapor absorbs / gives a large amount of energy in the form of heat based on a change of liquid state to steam or steam to liquid, in process that is quantified with the physical concept of latent heat of a fluid based on its enthalpy of change of state, and that this design also takes advantage of not only the energy in the form of heat based on its change of state of its fluid but also its specific heat in both states. Being therefore a hybrid system of the previous ones that has advantaged characteristics between both systems of gaseous-vapor and liquid thermal transfer at the same time.

Considerando que cualquier liquido es susceptible de ser evaporado en el vado absoluto desde el conocido como punto triple, que existen infinitos grupos moleculares tanto puros como en mezcla que son Kquidos estables y seguros con capacidades calorificas, sirviendo como ejemplo, el agua liquida, que pese a que parezca llamativo, posee una temperatura de ebullicion en el vado de 1°C. Por otra parte, los fluidos en estado liquido confinados en un volumen constante, pueden mantener su estado liquido a temperaturas muy altas ya que su propio vapor equilibra la presion a un punto estable o lo que se conoce como equilibrio termodinamico de presion de vapor, si bien este efecto tiene un limite en un punto conocido como el punto critico, donde el vapor-liquido no pueden coexistir como elementos claramente diferenciados, en caso del agua este punto esta a partir de 22 Mpa. de presion y 374°C. Por lo tanto, se puede utilizar el agua pura, como ejemplo en este sistema de transferencia termica bifasica con un rango de temperaturas operacionales de 1 - 374°C.Considering that any liquid is capable of being evaporated at the absolute ford from the so-called triple point, that there are infinite molecular groups both pure and in mixture that are liquid stable and safe with calorific capacities, serving as an example, the liquid water, which weighs To look striking, it has a boiling temperature at the ford of 1 ° C. On the other hand, fluids in a liquid state confined in a constant volume can maintain their liquid state at very high temperatures since their own vapor balances the pressure to a stable point or what is known as thermodynamic equilibrium of vapor pressure, if well this effect has a limit at a point known as the critical point, where the vapor-liquid can not coexist as clearly differentiated elements, in the case of water this point is from 22 MPa. pressure and 374 ° C. Therefore, pure water can be used, as an example in this biphasic thermal transfer system with a range of operational temperatures of 1 - 374 ° C.

Unidos en conjunto estos conceptos, y considerando un unico volumen constante igual la suma de varios volumenes distanciados en el espacio, pero conectados entre ellos por medio de tuberias, se describe lo que a continuacion compone la innovacion inventiva con aplicacion industrial como sistema de transferencia termica.Together these concepts, and considering a single constant volume equal the sum of several volumes spaced in space, but connected between them by means of pipes, what is described below is what is described as inventive innovation with industrial application as a thermal transfer system .

Componentes basicos del sistema:Basic components of the system:

- Un fluido caloportador con capacidad de existir en el rango de temperaturas y presiones de servicio en dos estados (liquido y vapor).- A heat transfer fluid capable of existing in the range of temperatures and operating pressures in two states (liquid and vapor).

- Un emisor de calor con capacidad de transferencia termica al fluido (vapor) ( radiador, intercambiador, serpentm, fan-coil, split, etc).- A heat emitter with thermal transfer capacity to the fluid (steam) (radiator, exchanger, serpentm, fan-coil, split, etc).

- Un receptor de calor con capacidad de transferencia termica a un fluido (liquido) dentro de un sistema cerrado (captador solar, caldera, resistencia electrica encapsulada, motor, dispositivo a refrigerar).- A heat receiver with thermal transfer capacity to a fluid (liquid) within a closed system (solar collector, boiler, encapsulated electrical resistance, motor, device to be cooled).

- Tuberias de interconexion de ida y retorno.- Roundtrip interconnection pipes.

- Valvula de carga/servicio.- Load / service valve.

- La aceleracion del fluido en estado liquido en direccion hacia el receptor por la accion gravitatoria u otro dispositivo que la sustituya. - The acceleration of the liquid fluid in the direction towards the receiver by the gravitational action or other device that replaces it.

La explication funcional de la invention parte por considerar unidos los elementos ffsicos que constituyen el volumen total de la instalacion de transmision termica, tal y como se expone en las figuras y segun lo reivindicado, por tanto el receptor, emisor, tubena de ida, tuberia de retorno y valvula de carga en position cerrada, forman un unico volumen cerrado y hermetico. Unidos estos, habria que entender el fluido caloportante como un fluido que pueda existir dentro del rango de operation, como fluido en estado liquido y vapor (bifasico), por tanto, libre de ocupar la totalidad del volumen de la instalacion en su forma liquida y gaseosa, lo que en la practica se consigue haciendo el vacio al sistema y su posterior integration mediante la valvula de carga/servicio, o bien integrando el fluido previamente, y llevarlo a una temperatura en la que su presion de vapor sea superior a la atmosferica y purgar el aire contenido por accesorios anadidos a tal efecto, como purgadores.The functional explanation of the invention starts by considering together the physical elements that constitute the total volume of the thermal transmission installation, as shown in the figures and as claimed, therefore the receiver, emitter, pipeline, pipeline of return and valve of load in closed position, form a unique closed and hermetic volume. Together these, the heat transfer fluid should be understood as a fluid that can exist within the range of operation, as fluid in liquid and vapor state (biphasic), therefore, free to occupy the entire volume of the installation in its liquid form and gaseous, which in practice is achieved by emptying the system and its subsequent integration through the load / service valve, or integrating the fluid previously, and take it to a temperature in which its vapor pressure is higher than atmospheric and purging the air contained by accessories added for this purpose, such as purgers.

Una vez la instalacion reune los elementos basicos segun lo reivindicado de tal manera, que se calcule que la capacidad volumetrica del receptor de calor sea ocupada del fluido en estado liquido y con libre salida de vapor, por tanto dejando el resto de la instalacion ocupada por el vapor del fluido, este tendera por si solo constantemente a equilibrar su estado termodinamico de presion y temperatura, en adelante P-T, siempre y cuando en el receptor se cumpla T>P con respecto a su curva caracteristica de saturation P-T de equilibrio termodinamico, considerando como fluido caloportante el fluido puro, o aquellas mezclas azeotropicas y zeotropicas.Once the installation gathers the basic elements as claimed in such a way, it is calculated that the volumetric capacity of the heat receiver is occupied by the fluid in liquid state and with free steam output, therefore leaving the rest of the installation occupied by the steam of the fluid, this tendera alone constantly to balance its thermodynamic state of pressure and temperature, henceforth PT, as long as in the receiver T> P with respect to its characteristic curve of saturation PT of thermodynamic equilibrium, considering The pure fluid, or those azeotropic and zeotropic mixtures, as a heat transfer fluid.

Teniendo en cuenta lo anterior y a partir del mismo, el circuito obedece a tres diferentes posibilidades de funcionamiento:Taking into account the above and from it, the circuit obeys to three different possibilities of operation:

- Funcionamiento 1, temperatura del receptor de calor igual a la del emisor de calor:- Operation 1, heat receiver temperature equal to that of the heat emitter:

El fluido en el receptor se encuentra a la misma temperatura que el emisor, siendo en ambos coincidente a la presion de vapor de equilibrio para una temperatura dada, no existe intercambio termico y el sistema permanece en equilibrio termodinamico con su propio vapor.The fluid in the receiver is at the same temperature as the emitter, being in both coinciding with the equilibrium vapor pressure for a given temperature, there is no thermal exchange and the system remains in thermodynamic equilibrium with its own vapor.

- Funcionamiento 2, el receptor de calor se encuentra a mayor temperatura que el emisor de calor: - Operation 2, the heat receiver is at a higher temperature than the heat emitter:

En este caso, el fluido contenido en receptor recibe energia en forma de calor aumentando su temperatura y presion conforme a su diagrama P-T caracteristico, pero debido a que el vapor es libre de circular hacia el emisor de calor con menor presion y temperatura, cumpliendose el desequilibrio termodinamico en el receptor T>P, esta desviacion termodinamica del fluido en el receptor es compensada mediante la evaporation del fluido, cuyas moleculas con mas energia se vaporizan y se trasladan como vapor saturado o vapor sobrecalentado por diferencia de presiones a traves de las tuberias de ida al emisor/es, transportando ene^a calorifica igual a la entalpia de vaporization caracteristica del fluido mas el calor especifico del vapor sobrecalentado.In this case, the fluid contained in the receiver receives energy in the form of heat increasing its temperature and pressure according to its characteristic PT diagram, but because the steam is free to circulate towards the heat emitter with lower pressure and temperature, fulfilling the thermodynamic imbalance in the receiver T> P, this thermodynamic deviation of the fluid in the receiver is compensated by the evaporation of the fluid, whose molecules with more energy vaporize and move as saturated steam or superheated steam by pressure difference through the pipes to the emitter / is, transporting the heat equal to the enthalpy of vaporization characteristic of the fluid plus the specific heat of the superheated steam.

Una vez el vapor ha llegado al emisor, sucede el fenomeno termodinamico inverso al receptor (T<P de equilibrio termodinamico), las moleculas de vapor en contacto con la superficie del emisor ceden energia calorifica, se condensan, disminuye por tanto su volumen y se crea una depresion que es compensada con la llegada de mas vapor desde el receptor (dclicamente), por tanto en el emisor se entrega energia calorifica en base a su entalpia de condensation, calor especifico fase vapor y calor especifico en fase liquida.Once the steam has reached the emitter, the thermodynamic phenomenon inverse to the receiver happens (T <P of thermodynamic equilibrium), the vapor molecules in contact with the surface of the emitter yield heat energy, they condense, therefore decreasing their volume and it creates a depression that is compensated with the arrival of more vapor from the receiver (specifically), therefore in the emitter heat energy is delivered based on its enthalpy of condensation, specific heat, vapor phase and specific heat in the liquid phase.

Al licuarse, existir un aporte de vapor desde el receptor, una gran diferencia de densidades vapor-liquido, y una diferencia de altura entre ambos, el diseno del circuito unida a la action de la gravedad ( u otro dispositivo que la sustituya) , el fluido retorna al receptor donde el ciclo se repite hasta que alcance el estado de equilibrio termodinamico P-T o la temperatura del receptor se cumpla T<P de equilibrio.When liquefied, there is a contribution of vapor from the receiver, a large difference of vapor-liquid densities, and a height difference between both, the design of the circuit linked to the action of gravity (or another device that replaces it), the fluid returns to the receiver where the cycle is repeated until it reaches the state of thermodynamic equilibrium PT or the temperature of the receiver is reached equilibrium T <P.

- Funcionamiento 3, el receptor de calor se encuentra a menor temperatura que el emisor de calor:- Operation 3, the heat sink is at a lower temperature than the heat emitter:

En este caso, considerando que en el emisor se cumple el desequilibrio termodinamico T>P, el fenomeno inverso no se produce debido a que no existen moleculas del fluido en estado liquido que vaporizar y desempenar el ciclo, existe una diferencia de densidades en la fase vapor emisor-receptor, pero la circulation en base a esa diferencia esta bloqueada por la misma densidad del liquido en su tuberia de retorno que no permite que el vapor fluya hacia el receptor, por lo que el intercambio termico inverso emisor a receptor es nulo. In this case, considering that the thermodynamic imbalance T> P is fulfilled in the emitter, the inverse phenomenon does not occur because there are no liquid molecules in the liquid state that vaporize and perform the cycle, there is a density difference in the phase emitter-receiver vapor, but the circulation based on this difference is blocked by the same density of the liquid in its return pipe that does not allow the steam to flow to the receiver, so that the inverse heat exchange emitter to receiver is zero.

Gracias a las caracteristicas descritas se consigue un sistema de transmision termico que innova ampliamente la actual tecnica, poseyendo una ampliada aplicabilidad industrial con las siguientes caracteristicas que entre otras comprende:Thanks to the described characteristics, a thermal transmission system is achieved that widely innovates the current technique, possessing an extended industrial applicability with the following characteristics that among others include:

- Esta exento en su forma basica de partes moviles rotativas permanentes y/o bombas de circulation, por lo tanto, posee mayor fiabilidad y eficiencia que los sistemas en fase liquida con tales elementos.- It is exempt in its basic form of permanent rotating moving parts and / or circulation pumps, therefore, it has greater reliability and efficiency than liquid phase systems with such elements.

- Muy bajo mantenimiento, sin perdidas o reposition de fluido, menos accesorios a mantener.- Very low maintenance, no loss or reposition of fluid, less accessories to maintain.

- Adaptabilidad a ciertas instalaciones que previamente estaban disenadas para funcionar con sistemas de transmision termica en estado liquido.- Adaptability to certain facilities that were previously designed to work with thermal transmission systems in a liquid state.

- Altas tasas de transferencia termica debidas a la baja viscosidad cinematica del vapor caloportante, bajos gradientes termicos entre emisor-receptor incluso en largas distancias >25m.- High thermal transfer rates due to the low kinematic viscosity of the heat-carrying vapor, low thermal gradients between emitter-receiver even over long distances> 25m.

- Amplios rangos de temperatura y presion de funcionamiento asi como aplicabilidad para infinidad de fluidos caloportantes puros y mezclas (Agua, metanol, butano, hexano, etilenglicol...) No precisa de dispositivos de expansion adicionales, pues el vapor contenido es un fluido compresible ante la expansion liquida.- Wide ranges of temperature and operating pressure as well as applicability for infinity of pure caloportantes fluids and mixtures (Water, methanol, butane, hexane, ethylene glycol ...) Does not require additional expansion devices, because the contained vapor is a compressible fluid before the liquid expansion.

- Hermetico.- Hermetic.

- Capacidad de funcionamiento a presiones tanto superiores como inferiores a la atmosferica.- Ability to operate at both higher and lower atmospheric pressures.

- Los diametros de las tuberias de transferencia necesarios son de inferior tamano comparando una misma capacidad de transporte termico de los sistemas tradicionales de fase liquida debida a la baja viscosidad cinematica del vapor caloportador de este sistema.- The diameters of the necessary transfer pipes are of smaller size, comparing the same thermal transport capacity of the traditional liquid phase systems due to the low kinematic viscosity of the heat transfer vapor of this system.

- Presentan una eficiencia y eficacia superior en la transmision termica por kg de fluido transmitido comparado a sistemas circulados forzados asi como por convection termica (termosifon)- They have a higher efficiency and efficiency in thermal transmission per kg of fluid transmitted compared to forced circulation systems as well as thermal convection (thermosiphon)

- Irreversibilidad del transporte termico entre emisor de calor a receptor sin necesidad de accesorios.- Irreversibility of heat transport between heat emitter to receiver without accessories.

- Aplicabilidad tanto para emisores, como receptores de calor multiples instalados en paralelo y serie.- Applicability for both emitters and multiple heat receivers installed in parallel and series.

- Mayor homogeneidad en la distribution termica en diferentes emisores termicos afectados de grandes diferencias de alturas-distancias hasta el receptor de calor. - Greater homogeneity in the thermal distribution in different heat emitters affected by large differences in height-distances to the heat sink.

Salvo que se indique lo contrario, todos los elementos tecnicos y cienrificos usados en la presente memoria poseen el significado que habitualmente entiende un experto normal en la tecnica a la que pertenece esta invencion. En la practica de la presente invencion se pueden usar procedimientos y materiales similares o equivalentes a los descritos en la memoria.Unless otherwise indicated, all technical and scientific elements used herein have the meaning usually understood by one of ordinary skill in the art to which this invention pertains. In the practice of the present invention, methods and materials similar or equivalent to those described in the specification can be used.

A lo largo de la descripcion y de las reivindicaciones la palabra “comprende” y sus variantes no pretenden excluir otras caracteristicas tecnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y caracteristicas de la invencion se desprenderan en parte de la descripcion y en parte de la practica de la invencion.Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be apparent in part from the description and in part from the practice of the invention.

BREVE DESCRIPCION DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS

Para complementar la descripcion que se esta realizando y con objeto de ayudar a una mejor comprension de las caracteristicas de la invencion, de acuerdo con un ejemplo preferente de realization practica de la misma, se acompana como parte integrante de dicha descripcion, un juego de dibujos en donde con caracter ilustrativo y no limitativo, se ha representado lo siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical realization thereof, a set of drawings is included as an integral part of said description. where with illustrative and non-limiting character, the following has been represented:

- La figura 1, muestra un diagrama basico del sistema con funcionamiento por gravedad.- Figure 1 shows a basic diagram of the system with gravity operation.

- La figura 2, muestra un diagrama del sistema exponiendo su funcionamiento con varios emisores y receptores tanto en serie como en paralelo por gravedad.- Figure 2 shows a diagram of the system exposing its operation with several transmitters and receivers both in series and in parallel by gravity.

- La figura 3, muestra un diagrama del sistema exponiendo su funcionamiento con varios emisores y receptores tanto en serie como en paralelo donde se implementa un conjunto colector de condensados mas bomba impulsora para dar libertad de position a los receptores de calor respecto a la altura de los emisores de calor.- Figure 3 shows a diagram of the system exposing its operation with several transmitters and receivers both in series and in parallel, where a condensate collector assembly plus impulse pump is implemented to give the heat receivers the freedom of position with respect to the height of the the heat emitters.

- La figura 4, muestra un diagrama del sistema exponiendo su funcionamiento con varios emisores y receptores tanto en serie como en paralelo donde se implementa un conjunto colector de condensados mas bomba impulsora para dar libertad de posicion a los receptores de calor respecto a la altura de los emisores de calor, asi como en concepto de emisor en serie se ejemplifica un sobrecalentador de vapor. - Figure 4 shows a diagram of the system exposing its operation with several transmitters and receivers both in series and in parallel where a condensate collector assembly plus a booster pump is implemented to give the heat receivers the freedom of positioning with respect to the height of the The heat emitters, as well as the series emitter concept, exemplify a steam superheater.

A continuation se proporciona una lista de los distintos elementos representados en las figuras que comprende la invention:A list of the different elements represented in the figures comprising the invention is provided below:

1= Receptor de calor, que comprende: captador solar, caldera, resistencia electrica encapsulada, motor, dispositivo a refrigerar...1 = Heat receiver, comprising: solar collector, boiler, encapsulated electrical resistance, motor, device to be cooled ...

2= Emisor de calor, que comprende: radiador, intercambiador, serpentm, fan-coil, split...2 = Emitter of heat, which includes: radiator, exchanger, serpentm, fan-coil, split ...

3= Valvula de carga o dispositivo analogo.3 = Load valve or analog device.

4= Tuberia de retorno (liquido).4 = Return pipe (liquid).

5= Tuberia de ida (vapor).5 = One-way pipe (steam).

6= La aceleracion de la gravedad6 = Acceleration of gravity

7= Un conjunto colector de condensados mas bomba impulsora, o dispositivo analogo. 8= Un sobrecalentador de vapor o dispositivo analogo.7 = A condensate collector set plus booster pump, or analog device. 8 = A steam superheater or analog device.

REALIZACION PREFERENTE DE LA INVENCIONPREFERRED EMBODIMENT OF THE INVENTION

A la vista de las figuras se describe seguidamente un modo de realization preferente de la invencion propuesta segun figura 1:In view of the figures, a preferred embodiment of the proposed invention according to FIG. 1 is described below:

Teniendo en cuenta que este sistema comprende multitud de dispositivos asumibles como receptor de calor (1) emisor de calor (2) y fluido caloportador, y que presentar esta realizacion preferente de la invencion conforme a este amplio concepto no resulta factible en su objetivo de mejorar la comprension de la invencion junto a su puesta en practica, se propondra como ejemplo una instalacion termo-solar compuesta de un captador solar plano como receptor del calor (1) y un serpentm intercambiador de calor dentro de un acumulador de agua como emisor de calor (2) y con metanol puro como fluido caloportador.Bearing in mind that this system comprises a multitude of assumable devices as heat receiver (1) heat emitter (2) and heat transfer fluid, and that presenting this preferred embodiment of the invention in accordance with this broad concept is not feasible in its objective of improving the understanding of the invention together with its implementation, will be proposed as an example a thermo-solar installation composed of a flat solar collector as heat receiver (1) and a heat exchanger serpentm inside a water accumulator as a heat emitter (2) and with pure methanol as a heat transfer fluid.

Partiendo de una estructura conforme a especificaciones que nos proporcione diferencia de alturas asumibles segun figura, se instalara en su parte inferior con un angulo coherente a la radiation solar un panel plano de captation solar (1), asimismo en la estructura en su parte superior, y por encima del nivel mas alto del captador se dispondra de un conjunto acumulador con 300l. de agua en el que esta integrado un intercambiador de tipo serpentm (2), donde cuya entrada superior al serpentm (2) es unida mediante tuberia de cobre (5) a la salida superior del captador (1), se instalara a continuacion la una tuberia de cobre (4) partiendo de la salida inferior del serpentm (2), hacia la entrada inferior del captador (1) asimismo se instala una valvula de carga/servicio(3) en la tuberia de retorno (4).Starting from a structure conforming to specifications that provide us with a difference of acceptable heights according to the figure, a flat solar collector panel (1) will be installed in its lower part with a coherent angle to the solar radiation, also in the structure at the top, and above the highest level of the collector will be an accumulator set with 300l. of water in which a serpentm-type exchanger (2) is integrated, where the upper entrance to the serpentm (2) is joined by copper pipe (5) to the upper outlet of the collector (1), then install a copper pipe (4) starting from the lower outlet of the serpentm (2), to the lower entrance of the collector (1) as well install a load / service valve (3) on the return pipe (4).

Se procedera a la puesta en vado del sistema con una herramienta usualmente conocida como bomba de vado, conociendo previamente los datos de volumen del captador y de la tuberia instalada, tras el vado el sistema se integra el fluido caloportador, siendo elegido el metanol (-50°C « 68 pa. y 136.7°C « 1Mpa.), en una cantidad aproximada al 80% del volumen del captador mas el volumen del nivel equivalente en la tuberia de retorno, quedando el resto ocupado por metanol en estado vapor.The system will be put in ford with a tool usually known as a ford pump, knowing previously the volume data of the collector and of the installed pipeline, after the ford the system integrates the heat transfer fluid, with methanol being chosen (- 50 ° C «68 pa. And 136.7 ° C« 1Mpa.), In an amount of approximately 80% of the volume of the collector plus the volume of the equivalent level in the return pipeline, the rest being occupied by methanol in the vapor state.

Teniendo en cuenta que la instalacion es solar, de haber radiacion solar incidente, inmediatamente el ciclo se pondra en marcha, captando calor el fluido en toda la superficie en el captador (1), evaporandose en la parte superior transportandose el calor rapidamente por la tuberia de ida (5) en forma de vapor, llegando al serpentm (2) cediendo calor a traves de este al agua, como calor latente y especifico de ambas fases, condensandose y por accion de la gravedad (6), volvera por la tuberia de retorno (4) en su forma liquida para entrar de nuevo en el capador y asi sucesivamente, hasta que haya un equilibrio termico entre ambos o deje de haber sol en este caso.Taking into account that the installation is solar, if there is incident solar radiation, immediately the cycle will start, capturing heat the fluid in the whole surface in the collector (1), evaporating in the upper part, transporting the heat quickly through the pipeline one way (5) in the form of vapor, reaching the serpentm (2) yielding heat through it to the water, as latent and specific heat of both phases, condensing and by action of gravity (6), it will return through the return (4) in its liquid form to enter again in the capador and so on, until there is a thermal equilibrium between the two or there is no sun in this case.

Se comprueba ademas que esta realizacion preferente es igualmente realizable en multiples receptores y emisores en paralelo segun figura 2, y que es factible la implementacion de una bomba de condensados descrita en la figura 3 y que asimismo es posible implementar un sobrecalentador de vapor en serie u otro dispositivo analogo segun figura 4.It is further verified that this preferred embodiment is also feasible in multiple receivers and transmitters in parallel according to FIG. 2, and that the implementation of a condensate pump described in FIG. 3 is feasible and that it is also possible to implement a steam superheater in series or another analogous device according to figure 4.

Descrita suficientemente la naturaleza de la presente invencion, asi como la manera de ponerla en practica, se hace constar que, dentro de su esencialidad, podra ser llevada a la practica en otras formas de realizacion que difieran en detalle de la indicada a ritulo de ejemplo, y a las cuales alcanzara igualmente la proteccion que se recaba, siempre que no altere, cambie o modifique su principio fundamental. Having sufficiently described the nature of the present invention, as well as the way of putting it into practice, it is stated that, within its essentiality, it could be carried out in other forms of realization that differ in detail from that indicated at an example rate. , and which will also reach the protection that is collected, provided that it does not alter, change or modify its fundamental principle.

Claims (7)

REIVINDICACIONES 1.- Sistema de transmision termico bifasico caracterizado que comprende:1.- Two-phase thermal transmission system characterized comprising: - Un fluido puro o mezcla de dos o mas fluidos en forma bifasica (liquido y vapor), integrado dentro de un circuito cerrado y hermetico, sin otro elemento, impureza y/o presion en el circuito mas que la proveniente de su propia presion de vapor caracteristica. Con disposition y nivel tal, que al menos un receptor de calor (1), se encuentre con fluido disponible en estado liquido que absorba calor y por tanto sea evaporado, en disposicion tal, que se permita el paso del vapor por una tuberia de ida (5) hacia al menos un emisor de calor (2), donde ceda calor y sea condensado en el emisor de calor (2),siendo dirigido como liquido por una tuberia de retorno (4) hacia el receptor de calor (1) por una aceleracion gravitatoria y/o mecanica, alcanzando un nivel tal, que permita a la parte liquida absorber de nuevo energia calorifica.- A pure fluid or mixture of two or more fluids in biphasic form (liquid and vapor), integrated within a closed and hermetic circuit, without other element, impurity and / or pressure in the circuit more than the one coming from its own pressure. steam characteristic. With disposition and level such that at least one heat sink (1), is found with fluid available in a liquid state that absorbs heat and is therefore evaporated, in such a way that the passage of steam through a pipeline is allowed (5) towards at least one heat emitter (2), where heat gives off and is condensed in the heat emitter (2), being directed as liquid by a return pipe (4) to the heat receiver (1) by a gravitational and / or mechanical acceleration, reaching a level such that it allows the liquid part to absorb again heat energy. 2. - Sistema de transmision termica bifasica segun la reivindicacion 1 caracterizado porque el receptor de calor (1) se encuentra a una altura respecto a la horizontal, inferior a la altura del emisor (2) y como aceleracion de retorno del fluido se usa la gravedad.2. - Two-phase thermal transmission system according to claim 1, characterized in that the heat receiver (1) is at a height with respect to the horizontal, lower than the height of the emitter (2) and as a fluid return acceleration is used the gravity. 3. - Sistema de transmision termica bifasica segun la reivindicacion 1 caracterizado porque el dispositivo empleado para la aceleracion del fluido en direction al receptor es una bomba de condensados (7) o dispositivo analogo que bombea el fluido condensado hacia el receptor de calor (1) de forma tanto continua como discontinua.3. - Two-phase thermal transmission system according to claim 1 characterized in that the device used for the acceleration of the fluid in the direction of the receiver is a condensate pump (7) or analogous device that pumps the condensed fluid to the heat receiver (1) both continuously and discontinuously. 4. - Sistema de transmision termica bifasica segun la reivindicacion 1 o 3 caracterizado porque a la salida del receptor de calor (1) se dispone un sobrecalentador de vapor (8) en serie para incrementar la temperatura de salida del vapor por encima de su temperatura de saturacion.4. - biphasic thermal transmission system according to claim 1 or 3 characterized in that at the outlet of the heat receiver (1) a steam superheater (8) is arranged in series to increase the steam outlet temperature above its temperature of saturation. 5. - Sistema de transmision termica bifasica segun la reivindicacion 3 o 4 caracterizado porque el receptor (1) se encuentra a una altura respecto de la horizontal superior a la altura del emisor (2). 5. - Two-phase thermal transmission system according to claim 3 or 4 characterized in that the receiver (1) is at a height with respect to the horizontal above the height of the emitter (2). 6. - Sistema de transmision termica bifasica segun una de las reivindicaciones 1 a 5 donde se unan en paralelo o serie multiples receptores termicos (1) y/o emisores termicos (2).6. - Two-phase thermal transmission system according to one of claims 1 to 5 wherein multiple thermal receivers (1) and / or thermal emitters (2) are joined in parallel or series. 7. - Sistema de transmision termica bifasica segun una de las reivindicaciones 1 a 6 que contengan dispositivos de distribution y control del los elementos del mismo, tales como: Valvulas, distribuidores, detentores, termometros, manometros, vacuometros, transmisores, termostatos, dilatadores, purgadores, visores... 7. Two-phase thermal transmission system according to one of claims 1 to 6 containing devices for distribution and control of the elements thereof, such as: Valves, distributors, detectors, thermometers, manometers, vacuum gauges, transmitters, thermostats, dilators, traps, visors ...
ES201730102A 2017-01-31 2017-01-31 Two-phase thermal transmission system Expired - Fee Related ES2677269B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201730102A ES2677269B1 (en) 2017-01-31 2017-01-31 Two-phase thermal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201730102A ES2677269B1 (en) 2017-01-31 2017-01-31 Two-phase thermal transmission system

Publications (2)

Publication Number Publication Date
ES2677269A1 ES2677269A1 (en) 2018-07-31
ES2677269B1 true ES2677269B1 (en) 2019-05-14

Family

ID=62976690

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201730102A Expired - Fee Related ES2677269B1 (en) 2017-01-31 2017-01-31 Two-phase thermal transmission system

Country Status (1)

Country Link
ES (1) ES2677269B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1227978A (en) * 1983-05-06 1987-10-13 Institut National De La Recherche Scientifique Phase change solar heating system
US5257660A (en) * 1992-06-30 1993-11-02 Aaron J. Cargile Thermal transport oscillator
US20060279706A1 (en) * 2005-06-14 2006-12-14 Bash Cullen E Projection system
CN100386587C (en) * 2006-06-12 2008-05-07 北京科技大学 Pump-free self-circulation non-vacuum split type gravity heat pipe
CN203964739U (en) * 2014-08-04 2014-11-26 董陈 Thermal siphon loop heat abstractor

Also Published As

Publication number Publication date
ES2677269A1 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
AU2008343788B2 (en) Heat pipes incorporating microchannel heat exchangers
Shabgard et al. Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of the art
Quoilin et al. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation
ES2589956T3 (en) A closed cycle heat transfer device and method
Cao et al. A review on independent and integrated/coupled two-phase loop thermosyphons
US4306416A (en) Closed cycle, hydraulic-turbine heat engine
ES2672718T3 (en) Cooling device
ES2371607B1 (en) GEOTHERMAL PLANT WITH ELECTRICITY GENERATION SYSTEM AND MODULATING POWER.
CA2778101A1 (en) Power generation by pressure differential
US10648678B2 (en) Building-integrated solar energy system
KR20140027945A (en) Organic rankine cycle for concentrated solar power system with saturated liquid storage and method
US8658918B1 (en) Power generation using a heat transfer device and closed loop working fluid
WO2012110987A1 (en) Environmental energy conversion device
Smyth et al. The evolutionary thermal performance and development of a novel thermal diode pre-heat solar water heater under simulated heat flux conditions
ES2677269B1 (en) Two-phase thermal transmission system
GB2540670A (en) A solar energy capture, energy conversion and energy storage system
WO2010067359A2 (en) Closed loop solar energy system with a push-pull electric generator
RU2656037C1 (en) Pressure capillary pump
US20160084114A1 (en) Thermo-elevation plant and method
Maydanik et al. Two-phase loop thermosyphons
RU2487063C2 (en) Landing lunar module instrument compartment thermal control system
EP2444665A1 (en) Method for the natural draught cooling of a solar concentration plant
AU2014250674B2 (en) Heat pipes incorporating microchannel heat exchangers
KR20160081758A (en) High efficiency low temperature power generation system by evaporator
JP7543447B2 (en) Multi-siphon passive cooling system with liquid bridge

Legal Events

Date Code Title Description
BA2A Patent application published

Ref document number: 2677269

Country of ref document: ES

Kind code of ref document: A1

Effective date: 20180731

FG2A Definitive protection

Ref document number: 2677269

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20190514

FD2A Announcement of lapse in spain

Effective date: 20220526