ES2234235T3 - Tecnica para usar flujo termico en el cerebro para tratar trastornos cerebrales. - Google Patents

Tecnica para usar flujo termico en el cerebro para tratar trastornos cerebrales.

Info

Publication number
ES2234235T3
ES2234235T3 ES99903007T ES99903007T ES2234235T3 ES 2234235 T3 ES2234235 T3 ES 2234235T3 ES 99903007 T ES99903007 T ES 99903007T ES 99903007 T ES99903007 T ES 99903007T ES 2234235 T3 ES2234235 T3 ES 2234235T3
Authority
ES
Spain
Prior art keywords
brain
activity
heat transfer
heat
detection elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES99903007T
Other languages
English (en)
Inventor
Ronald P. Lesser
S. Robert W. Webber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of ES2234235T3 publication Critical patent/ES2234235T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0002Head or parts thereof
    • A61F2007/0008Scalp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
    • A61F2007/0075Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a Peltier element, e.g. near the spot to be heated or cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
    • A61F2007/0077Details of power supply
    • A61F2007/0078Details of power supply with a battery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0095Heating or cooling appliances for medical or therapeutic treatment of the human body with a temperature indicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0295Compresses or poultices for effecting heating or cooling for heating or cooling or use at more than one temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F2007/126Devices for heating or cooling internal body cavities for invasive application, e.g. for introducing into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36064Epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • A61N1/36075Headache or migraine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease

Abstract

Aparato implantable para realizar la transferencia de calor desde el tejido cerebral que comprende: una bomba térmica (1) que tiene uno o más elementos de detección de actividad (3, 4) y uno o más elementos de detección de la temperatura (18) adaptados para estar en contacto con una porción predeterminada de cerebro; una unidad de tratamiento por transferencia de calor (8) que tiene un microcontrolador (22) conectado a dicho uno o más elementos de detección de actividad y uno o más elementos de detección de la temperatura, y un haz de cables (7) que conecta la unidad de tratamiento por transferencia de calor a la bomba térmica (1); con lo que en respuesta a las señales procedentes de uno o más elementos de detección de actividad, los algoritmos matemáticos de la unidad de tratamiento por transferencia de calor determinan una actividad cerebral anormal, haciendo que la bomba térmica retire calor del tejido cerebral y lo introduzca en un disipador térmico (9), donde dicha bomba térmica usa uniones Peltier para conseguir la transferencia de calor.

Description

Técnica para usar flujo térmico en el cerebro para tratar trastornos cerebrales.
Antecedentes de la invención 1. Campo de la invención
La invención se refiere a métodos agudos para tratar un trastorno cerebral, incluyendo la transferencia de calor para mejorar la función cerebral. La transferencia de calor puede combinarse con una estimulación eléctrica del cerebro o con la infusión directa de agentes terapéuticos en el cerebro para reducir o prevenir la aparición de, por ejemplo, un ataque epiléptico. El método también puede usarse para trastornos cerebrales distintos de la epilepsia, para trastornos espinales y para trastornos de otros órganos y tejidos corporales.
2. Descripción de la técnica relacionada
La epilepsia es un problema médico significativo, ya que casi el 1% de la población de los Estados Unidos se ve afectada por esta enfermedad en algún momento dado, constituyendo este porcentaje aproximadamente 2,6 millones de personas. La incidencia de epilepsia es mayor en niños y en personas de edad avanzada, de tal forma que aproximadamente un 3,5% de la población tendrá epilepsia en algún momento de su vida.^{1, \ 3, \ 20, \ 21}. Los ataques son controlables en el 70% de los pacientes, pero aproximadamente el 30% de los pacientes tienen ataques refractarios al tratamiento. Las estimaciones indican que los costes totales a lo largo de la vida, en dólares de 1990, para todas las personas con epilepsia diagnosticada recientemente sólo en 1990 fueron de 3 billones de dólares, siendo algo más de un billón de estos costes directos y siendo el resto costes indirectos. Para las personas que tienen ataques controlables, el coste por paciente será ligeramente mayor de 4000 dólares. La cifra se eleva a aproximadamente 138.000 dólares para pacientes con epilepsia persistente intratable y que dura toda la vida. En dólares de 1991, los costes directos para el tratamiento de la epilepsia en los Estados Unidos fueron de 1,8 billones de dólares y los costes indirectos fueron de 8,5 billones de dólares^{1, \ 3}. De esta manera, este trastorno es un problema sanitario significativo y existe la necesidad de tratamientos mejorados para controlar la enfermedad y aliviar su carga sobre la sociedad en su conjunto.
Los ataques epilépticos se producen debido a un calentamiento sincronizado y de intensidad anormal de ciertas células cerebrales. Los ataques generalizados pueden empezar esencialmente en todo el cerebro de una vez, mientras que otros ataques, conocidos como ataques focales o parciales, empiezan en un área localizada del cerebro y después se extienden. De esta manera, en la aparición de los ataques parecen estar implicados tanto mecanismos extendidos como mecanismos localizados. Como ejemplo, los ataques se manifiestan como descargas de ataque que afectan a la corteza cerebral, la capa más externa del cerebro, aunque paradójicamente, se ha demostrado que la estimulación del tálamo y de otras regiones subcorticales localizadas más profundamente dentro del cerebro, no sólo inicia sino que también controla e incluso previene los ataques. La evidencia sugiere que el tálamo y la substancia negra están implicados en el desarrollo de ciertos tipos de ataques^{15, \ 9, \ 41, \ 39, \ 13}. Incluso podrían estar implicados mecanismos más extendidos, como se demuestra por el uso satisfactorio de la estimulación del nervio vago para el tratamiento de algunos ataques. El nervio vago está localizado en el cuello y se extiende al tallo cerebral, desde el cual tiene conexiones extendidas dentro del cerebro, incluyendo ramificaciones al tálamo^{32; \ 22}. Ciertos estudios han demostrado que la estimulación crónica del nervio vago puede reducir los ataques en un 50% o más en un tercio de los pacientes tratados^{14; \ 4}. Recientemente se ha lanzado un estimulador del nervio vago como producto comercial. La información conseguida hasta ahora indica que es moderadamente eficaz, pero sólo rara vez controla los ataques completa-
mente.
En algunos pacientes, los ataques están suficientemente localizados como para que la eliminación de un área particular del cerebro pueda producir un control completo del ataque^{11}. La estimulación eléctrica proporciona un medio no quirúrgico para mermar la generación de ataques localizados^{38, \ 32, \ 34, \ 27}. En modelos animales experimentales, la aplicación de fármacos al foco de un ataque puede reprimir o eliminar la actividad del ataque^{10, \ 28, \ 16, \ 24, \ 33}.
Se sabe que la hipotermia tiene un efecto protector sobre el cerebro tanto en preparaciones de animales experimentales como en seres humanos^{5, \ 31, \ 8, \ 29, \ 18, \ 19}. Este efecto protector sobre el cerebro es una de las razones para emplear hipotermia en procedimientos médicos, tales como cirugía cardiaca^{6}. La hipotermia altera la actividad eléctrica de la corteza en modelos de isquemia cerebral, y reduce la producción de los neurotransmisores excitadores glutamato y dopamina^{7}. La hipotermia también parece reducir la aparición, frecuencia y amplitud de los potenciales corticales y suprime la actividad del ataque^{35, \ 12, \ 2, \ 40}. Se cree que la refrigeración previene o detiene los ataques al reducir la excitabilidad cortical. La refrigeración del tejido cerebral puede realizarse de forma segura cuando se emprende de manera apropiada. Por ejemplo, la irrigación del cuerno temporal del ventrículo lateral con líquido enfriado con hielo para enfriar el hipocampo ha sido satisfactoria para alterar de forma aguda funciones de la memoria en seres humanos sin efectos adversos aparentes^{25}.
La prevención de los ataques usando cualquiera de estos métodos implica que se sabe cuando se está produciendo un ataque. Se han explorado numerosas estrategias dirigidas hacia la detección de los ataques^{36, \ 37, \ 17, \ 26, \ 30, \ 38, \ 23, \ 42, \ 43}. Un método potencial utiliza redes neurales como medio para detectar los ataques. La ventaja de esta estrategia es que la detección informática puede modificarse para adecuarse al paciente individual. Los electrodos implantados pueden usar un algoritmo basado en redes neurales para detectar la actividad del ataque. Como alternativa, pueden emplearse varios métodos de correspondencia con plantillas o basados en reglas para la detección del ataque, así como métodos de construcción de modelos de ataques tales como atractores caóticos.
El documento WO 97/26823 describe técnicas para tratar la epilepsia usando estimulación eléctrica y térmica.
La Patente de Estados Unidos Nº 5.713.923 de Ward et al. (Ward '923) describe técnicas para tratar la epilepsia usando una combinación de estimulación eléctrica del cerebro e infusión de fármacos en el tejido neural. La estimulación puede dirigirse para aumentar la producción de estructuras inhibidoras, tales como el cerebelo, el tálamo o el tallo cerebral, o puede inactivar áreas epileptogénicas. Estos métodos tienden a basarse en una estimulación crónica de sistemas inhibidores del cerebro, con el objetivo de reducir la propensión basal a la epileptogénesis. Históricamente, la estimulación de estructuras inhibidoras sola no ha sido particularmente satisfactoria en el tratamiento de los ataques. Ward '923 usa un electrodo implantable para detectar el inicio del ataque, lo cual permite una estimulación regulable del cerebro durante la actividad inicial del ataque. Sin embargo, la combinación de la infusión de fármacos con la estimulación del cerebro como se describe en Ward '923, no podría ser eficaz en muchos tipos de ataques. Muchos fármacos no son particularmente estables a la temperatura corporal, lo cual hace que no sean adecuados para el almacenamiento a largo plazo en un dispositivo de infusión implantado. Existen ciertos riesgos para pacientes que reciben la terapia combinada de Ward '923, incluyendo un mayor riesgo de propagación del ataque debido a la estimulación cerebral así como un mayor riesgo de efectos secundarios relacionados con los fármacos. De esta manera, aunque esta terapia sería adecuada para controlar algunos ataques, una población substancial de pacientes con ataques no podría tratarse usando la metodología de Ward '923.
Por lo tanto, existe la necesidad de mejorar las opciones terapéuticas disponibles para las personas con trastornos cerebrales, tales como epilepsia.
Sumario de la invención
La presente invención se refiere a un aparato de acuerdo con las reivindicaciones 1 y 9. El aparato puede usarse en un método para tratar un trastorno cerebral por transferencia de calor desde un tejido cerebral, que comprende las etapas de:
cortar quirúrgicamente una abertura de transferencia de calor en el cráneo de un paciente, exponiendo de esta manera una porción predeterminada del cerebro del paciente;
implantar quirúrgicamente en dicha abertura de transferencia de calor una bomba térmica que tiene uno o más elementos de detección de actividad y uno o más elementos de detección de la temperatura;
implantar quirúrgicamente una unidad de tratamiento por transferencia de calor en una cavidad corporal de dicho paciente de tal forma que un microcontrolador de la unidad de tratamiento por transferencia de calor esté conectado a uno o más elementos de detección de actividad y uno o más elementos de detección de la temperatura en contacto con el tejido cerebral; y
conectar la unidad de tratamiento por transferencia de calor a dicha bomba térmica por medio de un haz de cables;
con lo que en respuesta a las señales procedentes de dicho uno o más elementos de detección de la actividad o de la temperatura, los algoritmos matemáticos de la unidad de tratamiento por transferencia de calor determinan una actividad cerebral anormal, haciendo que la bomba térmica extraiga calor del tejido cerebral y lo introduzca en un disipador térmico, enfriándose de esta manera la porción predeterminada del cerebro del paciente.
En una realización preferida, el aparato puede usarse en un método para reducir o prevenir la aparición de un ataque que comprende enfriar el tejido cerebral en o cerca del foco de un ataque o una estructura cerebral que modula los ataques.
En otra realización preferida, el aparato puede usarse en un método para reducir o prevenir la aparición de un ataque que comprende enfriar el tejido cerebral y estimular eléctricamente el cerebro en o cerca del foco de un ataque o una estructura cerebral que modula los ataques.
En otra realización preferida, el aparato puede usarse en un método para reducir o prevenir la aparición de un ataque que comprende enfriar el tejido cerebral e infundir un agente terapéutico en el cerebro en o cerca del foco de un ataque o una estructura cerebral que modula los ataques.
En otra realización preferida, el aparato puede usarse en un método para reducir o prevenir la aparición de un ataque que comprende enfriar el tejido cerebral, estimular eléctricamente el tejido cerebral e infundir un agente terapéutico en el cerebro en o cerca del foco de un ataque o una estructura cerebral que modula los ataques.
El método prevé la colocación de electrodos en o sobre el área o áreas del cerebro de focos de ataques y el uso de algoritmos matemáticos para detectar el inicio de un ataque. Una vez que se detecta el inicio de un ataque, se inicia la refrigeración del tejido cerebral para reducir el calentamiento anormal de las células cerebrales. Los electrodos que detectan la aparición del ataque podrían situarse en la superficie cortical, profundamente dentro de la corteza inaccesibles a un electrodo superficial, o en áreas subcorticales más profundas del cerebro tales como el tálamo. De forma similar, la refrigeración y otros tratamientos se podrían realizar en la corteza, se podrían realizar en regiones subcorticales o en ambos sitios. El método proporciona múltiples técnicas que podrían aplicarse individualmente o en combinación dependiendo de la situación del ataque específico. El control de un suceso individual puede requerir sólo uno de estos métodos, o puede requerir una combinación de dos o más procedimientos que implican, por ejemplo, hipotermia e infusión de fármacos conjuntamente con estimulación eléctrica del cerebro. Como se proporcionan técnicas individuales o de combinación, se mejora la probabilidad de control del ataque, ya que la terapia puede adaptarse a las necesidades individuales del paciente. La cantidad total de tratamiento se reduciría hasta la mínima necesaria, ya que el método sólo trataría a los pacientes cuando es inminente o se está produciendo un ataque.
Otra realización preferida proporciona el control de trastornos cerebrales tales como dolor intratable, trastornos psiquiátricos y trastornos del movimiento. Los ejemplos de tales enfermedades incluyen distonía o temblores, enfermedad maníaco-depresiva, ataques de pánico y psicosis, que pueden manifestarse por cambios agudos de comportamiento.
Otra realización preferida proporciona el control de la hinchazón y la inflamación del sistema nervioso central. Por ejemplo, por medio de refrigeración de acuerdo con la invención se pueden controlar la hinchazón del cerebro o del tejido espinal debido a un traumatismo, hemorragia, encefalitis o mielitis localizada, lesiones en masa, tales tumores, quistes y abscesos, y migrañas intratables.
Otra realización preferida proporciona el control de la hinchazón, la inflamación o el dolor localizado en órganos del sistema nervioso no central.
Estas y otras características y ventajas de la invención serán evidentes tras la descripción detallada presentada a continuación y los dibujos adjuntos.
Breve descripción de los dibujos
La fig. 1 muestra los componentes principales de la invención. Se corta quirúrgicamente una abertura de transferencia de calor (HTA) en el cráneo del paciente. Posteriormente, se pone una bomba térmica en esta abertura. El dispositivo se localiza en la superficie cerebral para tratar focos superficiales, de tal forma que la HTA repose sobre la superficie de la sección de cerebro a tratar. El tratamiento de una porción del cerebro por debajo de la superficie se consigue colocando la HTA en una localización conveniente en la superficie del cerebro, conduciendo el tubo al área más profunda del cerebro a tratar. Se muestra la relación entre la bomba térmica y el cerebro, el cráneo y el cuero cabelludo en la realización preferida de la invención. Un haz de cables conecta la bomba térmica a la unidad de tratamiento por transferencia de calor (HTMU) localizada en una cavidad corporal adecuada.
La fig. 2 muestra la serie de uniones de Peltier de la bomba térmica combinadas con elementos de detección que envían señales a la HTMU para proporcionar un tratamiento térmico en respuesta a una actividad eléctrica normal en el cerebro.
La fig. 3 muestra los componentes de la HTMU que analizan las señales procedentes de los elementos de detección y activan la bomba térmica cuando es necesario.
Descripción de realizaciones preferidas
Una realización de la invención se refiere a la hipotermia en combinación con la estimulación cerebral como tratamiento de trastornos cerebrales, tales como la epilepsia. Esto puede realizarse estimulando una estructura cerebral que modula los ataques. La modulación se define en este documento como un aumento o reducción de la excitabilidad neuronal de una región cerebral responsable de la producción de ataques. Las estructuras cerebrales dirigidas a la estimulación pueden ser de naturaleza inhibidora o excitadora. Por ejemplo, puede aumentarse el rendimiento de estructuras inhibidoras tales como el cerebelo, el tálamo o el tallo cerebral por medio de una estimulación cerebral para inhibir el calentamiento de las células en el foco de un ataque localizado en cualquier sitio.
Otro aspecto es la dirección hacia regiones en las que un tratamiento podría bloquear directamente la actividad epileptogénica. Tales objetivos incluyen el hipocampo, el neocórtex y regiones subcorticales y del tallo cerebral. Es de esperar que en diferentes tipos de trastornos cerebrales sean importantes diferentes dianas. Por ejemplo, en pacientes que tienen epilepsia unilateral con inicio en el hipocampo se puede considerar la eliminación del hipocampo, pero la cirugía expone a algunos de estos pacientes a una pérdida potencial de la memoria. Tales pacientes pueden beneficiarse del menor riesgo del procedimiento de hipotermia y de estimulación eléctrica del cerebro de la invención. En otros pacientes que padecen una enfermedad bilateral del hipocampo, la hipotermia y la estimulación eléctrica podrían constituir un tratamiento eficaz, ya que la eliminación unilateral del hipocampo no sería útil y la eliminación bilateral no es una opción debido a los problemas de memoria.
La hipotermia y el tratamiento de estimulación cerebral pueden conseguirse estimulando áreas cerebrales constantemente o a intervalos fijos. De acuerdo con la invención, también es adecuada la estimulación dirigida por retroalimentación del control cerebral de modelos de ataque o de modelos de pre-ataque, de tal forma que después de la detección de actividad de un ataque puede administrarse un tratamiento para prevenir la perpetuación o la extensión de los modelos de ataque. Por ejemplo, cuando se inicia un ataque pueden estar presentes descargas neurales alteradas en el hipocampo, amígdala, neocórtex o en otros sitios. Tales modelos a menudo se producen localmente, pero pueden extenderse antes de que se manifieste clínicamente un ataque. Estas alteraciones podrían detectarse y mitigarse o eliminarse con la estimulación en combinación con la hipotermia. Los pacientes a menudo experimentan auras como advertencias percibidas de ataques inminentes. De hecho, las auras son ataques muy pequeños que no progresan hasta alterar la consciencia. La hipotermia y la estimulación pueden bloquear la extensión de tales auras. Por consiguiente, un paciente podría conducir y realizar otras actividades diarias normales. La estimulación también puede interferir con la sincronización del calentamiento ictal. La sincronización o reclutamiento de múltiples áreas cerebrales en un modelo de ataque está muy relacionada con la extensión de la actividad de un ataque en el cerebro. De esta manera, la estimulación crónica o la estimulación episódica basada en retroalimentación impediría la sincronización y, de esta manera, prevendría el desarrollo del ataque.
Un aspecto del método incluye evaluar sistemáticamente los modelos de calentamiento ictal neocortical y determinar métodos para interferir con estos modelos. Estos modelos y actividades se han controlado extensivamente a través de centros clínicos de control de la epilepsia. Los modelos de calentamiento difieren entre los pacientes, de tal forma que no puede esperarse que se produzca un único modelo en todos los pacientes con epilepsia. La evaluación sistemática del modelo de calentamiento permitirá optimizar el tratamiento para cada paciente. La actividad de las células cerebrales puede controlarse por elementos de detección eléctrica o química (elementos de detección de actividad) en contacto con estructuras cerebrales para detectar los modelos de calentamiento neuronal anormal.
De forma similar, de acuerdo con la invención, la colocación de los electrodos para dirigir el tratamiento a los focos de ataque puede ser específica para el paciente. Los registros EEG indican que algunos ataques empiezan en la superficie cortical, mientras que otros se originan en zonas profundas dentro de estructuras cerebrales internas, tales como el hipocampo, la amígdala y el tálamo. Aunque pueden producirse ataques como un fenómeno puramente subcortical, la mayoría de los epileptólogos creen que en los ataques está implicada la corteza, pero pueden inducirse por circuitos tálamo-corticales o pueden implicar de forma secundaria estos circuitos. De esta manera, tanto la estimulación cortical como la estimulación subcortical podrían anular o controlar los ataques, pero tendrían que estimularse diferentes sitios en diferentes pacientes para ser eficaces. Además de las estructuras cerebrales mencionadas anteriormente, se ha descubierto que otras regiones subcorticales tales como el área tempesta y el núcleo caudado son áreas importantes para el inicio o la propagación de ataques en algunas situaciones y, de esta manera, pueden ser áreas diana para la intervención terapéutica.
El método también proporciona la colocación de un catéter o un tubo similar en el cerebro para el suministro directo de fármacos en el foco de un ataque o en una estructura cerebral que modula la actividad de un ataque. Cuando se combina con la hipotermia controlada, la infusión directa de fármacos en el cerebro puede reducir o prevenir la aparición de ataques. Los ejemplos de medicaciones útiles en la invención incluyen agentes terapéuticos tales como hidantoínas, desoxibarbituratos, benzodiacepinas, agonistas del receptor de glutamato, antagonistas del receptor de glutamato, agonistas del receptor de ácido \gamma-aminobutírico, antagonistas del receptor de ácido \gamma-aminobutírico, agonistas del receptor de dopamina, antagonistas del receptor de dopamina y anestésicos.
Los modelos animales agudos y crónicos de epilepsia, tales como el modelo kindling y el modelo de cobalto/estrógenos/penicilina, sugieren que la hipotermia combinada con la estimulación cerebral y/o la infusión directa de fármacos neurales controlará satisfactoriamente los trastornos cerebrales en los seres humanos.
El método permite el control de trastornos cerebrales tales como el dolor intratable, trastornos psiquiátricos y trastornos del movimiento. Ciertas enfermedades incluyendo la distonía o temblores, enfermedad maníaco-depresiva, ataques de pánico y psicosis se caracterizan por una actividad neuronal aberrante, que puede aliviarse por una hipotermia controlada.
Otro aspecto del método es el control de la hinchazón e inflamación del sistema nervioso central. A este respecto, el dispositivo de transferencia de calor implantable se comporta esencialmente como una "compresa" fría interna controlada. La terapia del frío es bien conocida para el tratamiento de la hinchazón y la invención proporciona un medio finamente regulado para conseguir la terapia del frío. Por ejemplo, la hinchazón del cerebro o del tejido espinal debido a un traumatismo, hemorragia, encefalitis o mielitis localizada, lesiones de masa tales como tumores, quistes y abscesos pueden reducirse o eliminarse enfriando el tejido afectado de acuerdo con la invención. De forma similar, las migrañas intratables pueden controlarse por hipotermia de acuerdo con la invención.
El método para controlar la hinchazón y/o inflamación del cerebro o tejido espinal por medio de refrigeración controlada se realizaría esencialmente como se describe en relación con la refrigeración cerebral para regular ataques. En resumen, el método comprendería cortar quirúrgicamente una abertura de transferencia de calor en el cráneo o en la columna vertebral de un paciente, exponiendo de esta manera una porción predeterminada del cerebro o la médula espinal del paciente. Una bomba térmica con uno o más elementos de detección de actividad celular y uno o más elementos de detección de la temperatura se implantaría quirúrgicamente en dicha abertura de transferencia de calor. La unidad de tratamiento por transferencia de calor se uniría de tal forma que un microcontrolador de la unidad de tratamiento por transferencia de calor estuviera conectado a uno o más elementos de detección eléctrica y uno o más elementos de detección de la temperatura en contacto con el tejido del cerebro o de la médula espinal. La unidad de tratamiento por transferencia de calor estaría conectada a dicha bomba térmica a través de un haz de cables. En respuesta a las señales procedentes de uno o más elementos de detección, los algoritmos matemáticos de la unidad de tratamiento por transferencia de calor determinarían una actividad anormal del cerebro o de la médula espinal, y harían que la bomba térmica transfiriera calor desde el cerebro o la médula espinal hasta un disipador térmico, consiguiéndose de esta manera la refrigeración.
El método se considera un medio para controlar la hinchazón, la inflamación o el dolor localizado en órganos no pertenecientes al sistema nervioso central. La refrigeración dirigida regional o localmente a órganos torácicos y abdominales, incluyendo el hígado y el intestino, así como al músculo esquelético, puede controlar el dolor, la hinchazón o la inflamación asociados con estos órganos. Para este fin, puede implantarse quirúrgicamente una bomba térmica y una unidad de tratamiento por transferencia de calor, por ejemplo, en el abdomen de un paciente, utilizando esencialmente la misma metodología descrita en este documento para la hipotermia cerebral dirigida. En resumen, el procedimiento se iniciaría cortando una incisión en la musculatura de un paciente, la fascia y los revestimientos de la cavidad corporal y la piel, exponiendo de esta manera una porción predeterminada de dicho órgano. Posteriormente, se implantaría quirúrgicamente a través de esta incisión una bomba térmica con uno o más elementos de detección de actividad y uno o más elementos de detección de la temperatura. Se uniría una unidad de tratamiento por transferencia de calor de tal forma que un microcontrolador de la unidad de tratamiento por transferencia de calor estuviera conectado a uno o más elementos de detección de actividad y uno o más elementos de detección de la temperatura en contacto con el tejido del órgano. Un haz de cables conectaría la unidad de tratamiento por transferencia de calor a dicha bomba térmica. En respuesta a las señales procedentes de uno o más elementos de detección de la actividad o de la temperatura, los algoritmos matemáticos de la unidad de tratamiento por transferencia de calor detectarían una actividad anormal en ciertas células del órgano. Tal actividad anormal haría que el microcontrolador en la unidad de tratamiento por transferencia de calor dirigiera a la bomba térmica para que ésta iniciara la refrigeración para anular, por ejemplo, la actividad nociceptora asociada con la hinchazón, la inflamación y el
dolor.
El método también prevé el calentamiento controlable de un cerebro hipotérmico. El calentamiento puede realizarse por transferencia de calor al tejido cerebral usando un aparato de transferencia de calor y detección implantado quirúrgicamente esencialmente como se ha descrito anteriormente en este documento para la refrigeración cerebral. Puede detectarse un calentamiento anormalmente bajo de las células cerebrales y puede controlarse por medio de unidades de detección eléctrica implantadas en el cerebro hipotérmico. La unidad de tratamiento por transferencia de calor se implanta quirúrgicamente en la cavidad corporal de un paciente. En respuesta a las señales de uno o más elementos de detección eléctrica, los algoritmos matemáticos de la unidad de tratamiento por transferencia de calor determinarían una actividad cerebral anormal, haciendo que la bomba térmica transfiriera calor al tejido cerebral desde una fuente de calor, calentándose de esta manera el cerebro del paciente. La ventaja de este método sería permitir un calentamiento controlable basado en el nivel de actividad cerebral, y evitaría el sobrecalentamiento o el calentamiento demasiado rápido de un cerebro hipotérmico. Tales tratamientos podrían usarse en situaciones de hipotermia ambiental o quirúrgica.
Haciendo referencia a las figs. 1-3, en las que los números representan partes iguales, en la fig. 1 la bomba térmica (1) se muestra colocada en una HTA cortada quirúrgicamente en el cráneo de un paciente. La bomba térmica tiene elementos (4) y (18) de detección para detectar una actividad cerebral anormal y la temperatura de la superficie del cerebro, respectivamente. La relación entre estos componentes se detalla en la fig. 2. Además, unos elementos (3) detectores de actividad que reposan en la superficie del cerebro controlan la actividad cerebral de fondo. Las señales generadas por el elemento (3) de detección de actividad se usan por el microcontrolador (22) (mostrado en la fig. 3) en la HTMU (8) para determinar cuando puede ser necesaria la refrigeración, y posiblemente el calentamiento, para el control de los ataques. Pueden estar presentes uno o más elementos (3, 4, 18) de detección, dependiendo de las necesidades del paciente individual. Los elementos (3a, 4a, 18a) de detección pueden extenderse a regiones por debajo de la superficie del cerebro, cuando esto es clínicamente ventajoso. De esta manera, la transferencia de calor también puede controlarse por la temperatura del cerebro detectada por detectores implantados dentro del cerebro. La bomba térmica (1) tiene cables (2) que conectan con un haz de cables (7) que, a su vez, conectan con el HTMU (8). Los cables (5, 6, 19) del detector eléctrico y de la temperatura entran en haz de cables (7) que a su vez conecta con la HTMT (8). La HTMU (8) puede implantarse en el abdomen del paciente, en una cavidad subcutánea o en una cavidad subclavicular.
La refrigeración neural se consigue usando la bomba térmica (1) para extraer calor del cerebro e introducirlo en el disipador térmico (9). El disipador térmico (9) comprende un saco de un compuesto de alta conductividad térmica, tal como una pasta de óxido de silicio. El saco del disipador térmico comprende un material flexible biológicamente inerte y fino que permite un flujo de calor substancial. El disipador térmico (9) cubre un área mayor que la HTA, permitiendo de esta manera la disipación térmica desde el cuerpo a través de una gran parte del cuero cabelludo. La gran área en relación con la HTA y la alta conductividad térmica del disipador permite que se disipe más calor desde el cuerpo para un aumento dado de la temperatura producida por la bomba térmica (1) que se produciría de otra manera. Esta configuración, a su vez, mejora la eficacia de la bomba térmica (1).
En la fig. 2 se muestran detalles de la bomba térmica (1). Se ilustra una bomba térmica en estado sólido que usa el efecto Peltier. Se intercalan uniones Peltier, (13, 15, 16) y (16, 14, 13) entre dos placas cerámicas (17, 12) que tienen una alta conductividad térmica. La corriente eléctrica que pasa a través de las uniones (15) superiores calienta estas uniones, mientras que las uniones (14) inferiores cerca de la superficie del cerebro se enfrían. De esta manera, el efecto Peltier bombea calor desde las uniones inferiores a las uniones superiores lejos del cerebro para efectuar la refrigeración. La inversión de la dirección de la corriente hace que el flujo de calor vaya al cerebro. Los conjuntos completos de bombas térmicas de unión de Peltier son bien conocidos y se pueden adquirir fácilmente. La corriente eléctrica para la bomba térmica (1) se suministra a través de los cables (2) que están dirigidos por el haz de cables (7) que, a su vez, conecta con el HTMU (8).
En una realización preferida de esta invención, se añaden detectores (4) de la actividad y un detector (18) de la temperatura a la placa (17) inferior que reposa sobre la superficie del cerebro. Los detectores (4) de actividad tienen cables (6) que conectan los detectores al haz (7) de cables, que a su vez conecta a la HTMU (8). De forma similar, el detector (18) de temperatura tiene un cable (19) que se dirige a haz de cables (7) y posteriormente a la MTMU (8). Los detectores (4) de actividad muestran funciones dobles, ya que pueden proporcionar estimulación eléctrica al cerebro además de detectar la actividad eléctrica cerebral. La estimulación eléctrica se produce junto con el bombeo de calor para controlar los ataques. El detector (18) de la temperatura tiene dos funciones. En primer lugar, el detector (18) de la temperatura puede desencadenar el bombeo de calor para prevenir un ataque si la temperatura cerebral indica que es inminente un ataque. En segundo lugar, el detector (18) de la temperatura regula la cantidad de bombeo de calor conseguido para prevenir el daño en el tejido. Aunque la refrigeración cerebral generalmente es neuroprotectora, una refrigeración excesiva puede dañar al tejido.
Los detalles de la HTMU (8) se muestran en la fig. 3. Los cables (5, 6, 19) de señal de detector se aplican a amplificadores (20), y después se conectan con un convertidor (21) analógico a digital. Entonces, el microcontrolador (22) analiza las representaciones digitales de las señales del detector. Cuando parece inminente un ataque, el microcontrolador (22) hace funcionar un conmutador en estado sólido (SSW) (24) para suministrar energía a la bomba térmica (1), impidiendo de esta manera que se produzca el ataque. El microcontrolador (22) usa una forma de onda (26) de espacio de marca variable para hacer funcionar el SSW. Esta configuración permite aplicar niveles variables de energía a la bomba térmica mientras que al mismo tiempo se reduce la energía gastada en el elemento regulador SSW
(24).
La fuente de energía (25) está contenida en la HTMU (8) y puede comprender una batería primaria o una célula recargable. Puede proporcionarse energía adicional por medio de una bobina subcutánea o bucle de inducción (10), conectado por el cable (11) a un receptor (23) de bucle que está situado en la HTMU (8). El receptor (23) de bucle sirve para dirigir energía adicional desde el bucle de inducción, y gobierna y configura los cambios para el microcontrolador (22). La energía adicional y/o instrucciones y cambios de configuración proceden de una unidad externa que transmitiría por inducción magnética. Los datos también pueden transmitirse desde el dispositivo implantado a la unidad externa de una manera similar.
Los ataques pueden controlarse por estimulación eléctrica, por infusión de fármacos o por ambas acciones combinadas con bombeo térmico. La estimulación eléctrica o la infusión de un agente terapéutico puede dirigirse a cualquier área cerebral asociada con ataques, incluyendo el neocórtex, el hipocampo, la amígdala, el tálamo, el hipotálamo, el núcleo caudado u otros núcleos de los ganglios basales, cerebelo y tallo cerebral. De acuerdo con la invención, para este fin se proporciona un conmutador (27) de estimulación. El conmutador (27) se activa por el microcontrolador (22), que envía un impulso de corriente a través del cable (6) al electrodo (4) de detección de actividad. Se podrían suministrar medicaciones al cerebro a través de un catéter implantado o tubo similar de la misma manera. Por consiguiente, el conmutador (27) se activa por el microcontrolador (22) y, a su vez, inicia el suministro de una cantidad de medicación a través del tubo sobre o al interior del cerebro (28) (mostrado en la fig. 1). Un depósito recargable situado en la superficie de la cabeza permite la recarga de la medicación, de una manera análoga a las funciones de ciertos tipos de shunts. El conmutador (27) podría ser un solo conmutador para múltiples fines o puede constar de varios conmutadores, uno para cada objetivo de inicio de la estimulación eléctrica y de inicio del suministro de
medicación.
La invención se ilustra adicionalmente por medio del siguiente ejemplo no limitante.
Ejemplo
Los efectos de la refrigeración del tejido neural sobre el desarrollo de un ataque se investigaron usando un modelo de epilepsia en rata knockout EAAC1. Se infundió continuamente ADN antisentido EACC1 en el ventrículo izquierdo de un animal de ensayo durante 10 días usando una bomba localizada en el lomo del animal. De esta manera, se consigue una toxicidad por glutamato difundido en el cerebro de la rata knockout. La actividad del glutamato difundido produjo ataques, manifestados por una interrupción de actividad, mirada fija y modelos de EEG epileptiformes rítmicos 2-3/segundo, indicativos de actividad de ataque. Posteriormente, el animal de ensayo se anestesió y se adhirió una unidad de refrigeración a la cabeza de la rata. Debido a la delgadez del cráneo de la rata, la refrigeración del cerebro se consiguió a través del cráneo intacto de la rata. Se realizaron gráficos de EEG a la temperatura inicial (28,8ºC) y a una temperatura hipotérmica (25,2ºC) de la rata consciente. Se observó una reducción general de la actividad del ataque después de la refrigeración, marcada por el retorno del comportamiento exploratorio normal y los gráficos de EEG normales.
Aunque la invención se ha descrito con detalle y haciendo referencia a realizaciones específicas de la misma, será evidente para los especialistas habituales en la técnica que pueden realizarse diversos cambios y modificaciones sin apartarse del alcance de las reivindicaciones.
Referencias
1. ANNEGERS JF (1998) Demographics and Cost of Epilepsy. The American J of Managed Care, 4, S453-S462.
2. BATTISTA AF (1967) Effect of Cold on Cortical Potentials in Cats. Experimental Neurology, 19, 140-155.
3. BEGLEY GE, ANNEGERS JF, LAIRSON DR, REYNOLDS TF, HAUSER WA (1994) Cost of epilepsy in the United States: A model based on incidence and prognosis. Epilepsia, 35, 1230-1243.
4. BEN-MENACHEM E, MANON-ESPAILLAT R, RISTANOVIC R, WILDER BJ, STEFAN H. MIRZA W, et al (1994) Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia, 35, 616-626.
5. BERNTMAN L, WELSH FA, HARP JR (1981) Cerebral Protective Effect of Low-Grade Hypotermia, Anesthesiology, 55, 495-498.
6. BIGELOW WG, LINDSAY WK, GREENWOOD WF (1950) Hypothermia. Its Possible Role in Cardiac Surgery: An Investigation of Factors Governing Survival in Dogs at Low Body Temperatures. Ann. Surg, 132, 849-866.
7. BUSTO R, GLOBUS MYT, DIETRICH WD, MARTINEZ E, VALDES I, GINBURG MD (1989) Effect of Mild Hypothermia on Ischemia-Induced Release of Neurotransmitters and Free Fatty Acids in Rat Brain. Stroke, 20, 904-910.
8. CLIFTON GL, JIANG JY, LYETH BG, JENKINS LW, HAMM RJ, HAYES RL (1991) Marked Protection by Moderate Hypothermia After Experimental Traumatic Brain Injury, J. Cerebral Blood Flow & Metabolism, 11, 114-121.
9. DEPAULIS EA (1994) Endogenous Control of Epilepsy: The Nigral Inhibitory System, Progress in Neurobiology, 42, 33-52.
10. EDMONSD HL, STARK LG. HOLLINGER MA (1974) The Effects of Diphenylhydantoin, Phenobarbital, and Diazepam on the Penicillin-Induced Epileptogenic Focus in the Rat. Experimental Neurology, 45, 377-386.
11. ENGEL J, JR (1993) Surgical Treatment of the Epilepsies NewYork: Raven Press.
12. ESSMAN WB, SUDAK FN (1964) Audiogenic Seizue in Genetically Susceptible Mice; Relation of Hypothermia to Onset and Susceptibility. Experimental Neurology, 9, 228-235.
13. FISHER RS, UEMATSU S, KRAUSS GL, CYSYK BJ, LESSER RP, RISE M (1992) A Controlled Pilot Study of Centromedian Thalamic Stimulation for Epilepsy, Epilepsia, 33, 841-851.
14. FISHER RS, KRAUSS GL, RAMSAY E, LAXER K. GATES J (1997) Assessment of vagus nerve stimulation for epilepsy; Report of the therapeutics and tecnhology assessment subcommittee of the American Academy of Neurology, Neurology, 49, 293-297.
15. GALE (1985) Mechanisms of Seizure Control Mediated by Gamma-Aminobutyric Acid; Role of the Substantia Nigra. Federal Proceedings, 44, 2414-2424.
16. GARTSIDE IB (1978) The Actions of Diazepam and Phenytoin on a Low Dose Penicillin Epipeptiform Focus in the Anaesthetised Rat. British J Pharmacology, 62, 289-292.
17. GOTMAN J, LEVTOVA V (1996) Amygdala-Hippocampus, Relationships in Temporal Lobe Seizures: A Phase-Coherence Study. Epilepsy Research, 25, 51-57.
18. GUNN AJ, GLUCKMAN PD, GUNN TR (1998a) Selective Head Cooling in Newborn Infants After Perinatal Asphyxia: A Safety Study. Pediatrics, 102, 885-892.
19. GUNN AJ, GUNN TR, GUNNING MI, WILLIANS CE, GLUCKMAN PD (1998b) Neuroprotection with Prolonged Head Cooling Started Before Postischemic Seizures in Fetal Sheep. Pedriatics, 102, 1098-1106.
20. HAUSER WA, ANNEGERS JF, KURLAND LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984, Epilepsia, 34, 453-468.
21. HAUSER WA, HESDORFFER DC (1990) Epilepsy: Frequency, Causes and Consequences, New York: Demos Publications.
\newpage
22. HIRAI T, JONES EG (1989) A New Parcellation of the Human Thalamus on the Basis of Histochemical Staining, Brain Research Review, 14, 1-34.
23. IASEMIDIS LD, SACKELLARES JC, ZAVERL HP, WILLIAMS WJ (1990) Phase Space Topography and the Lyapunov Exponent of Electrocorticograms in Partial Seizures. Brain Topography, 3, 1-15.
24. ITO T, HORI M, YOSHIDA K, SHIMIZU M (1977) Effect of Anticonvulsants on Cortical Focal Seizure in Cats. Epilepsia, 18, 63-71.
25. LEES GP, LORING DW, SMITH JR, FLANIGIN HF (1995) Intraoperative Hippocampal Cooling and Wada Memory Testing in the Evaluation of Amnesia Risk Following Anterior Temporal Lobectomy. Arch Neurology, 52, 857-861.
26. LEHNERTZ K, ELGER CE (1998) Can Epileptic Seizures Be Predicted: Evidence from Nonlinear Time Series Analysis of Brain Electrical Activity, Physiol Rev Lett, 80, 5019-5022.
27. LESSER RP, KIM SH, BEYDERMAN L, KRAUSS G, CYSYK B, SANDERS P (1998) Pulse Stimulation Can Stop Bursts of Afterdischarges in Humans, Epilepsia, 39, 200(Abstract).
28. MARES P, KOLINOVA M, FISCHER J (1998) The Influence of Pentobarbital Upon a Cortical Epileptogenic Focus in Rats. Arch int Pharmacodyn,
29. MARION DW, PENROD LE, KELSEY SF, OBRIST WD, KOCHANEK PM, PALMER AM, et al (1997) Treatment of Traumatic Brain Injury with Moderate Hypothermia, New England Journal of Medicine, 336, 540546.
30. MARTINERIE J. ADAM C. LE VAN QUYEN M, BAULAC M, CLEMENCEAU S, RENAULT B, et al (1994) Epileptic Seizures Can Be Anticipated by Non-Linear Analysis. Nature Medicine, 4, 1173-1176.
31. MINAMISAWA H, SMITH HL, SIESJÖ BK (1990) The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Annals of Neurology, 28, 26-33.
32. MIRSKI MA, ROSSELL LA, TERRY JB, FISHER RS (1997) Anticonvulsant Effect of Anterior Thalamic High Frequency Electrical Stimulation in the Rat. Epilepsy Research, 28, 89-100.
33. MIRSKI MA, FERRENDALLIJA (1986) Selective Metabolic Activation of the Mammillary Bodies and Their Connections During Ethosuximide-Induced Suppression of Pentylenetetrazol Seizures. Epilepsia, 27, 194-203.
34. MIRSKI MA, FISCHER FS (1994) Electrical Stimulation of the Mammillary Nuclei Increases Seizure Threshold to Pentylenetetrazol in Rats. Epilepsia, 35, 1309-1316.
35. OMMAYA AK, BALDWIN M (1963) Extravascular Local Cooling of the Brain in Man. J. Neurosurgery, 20, 8-20.
36. OSORIO I, FREI MG, WILKINSON SB (1998) Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia, 39, 615-627.
37. QU H, GOTMAN J (1993) Improvement in Seizure Detection Performance by Automatic Adaptation to the EEG of Each Patient. Electroencephalo and clin Neurophysiol, 86, 79-87.
38. SCHIFF EA (1994) Controlling Chaos in the Brain, Nature, 340, 615-620.
39. SUSSMAN NM, GOLDMAN HW, JACKEL RA, KAPLAN L, CALLANAN M, BERGEN J, et al (1988) Anterior thalamic stimulation in medically intractable epilepsy. Part II. Preliminary Clinical Results. Epilepsia, 29, 677 (Abstract).
40. VASTOLA EF, HOMAN R, ROSEN A (1969) Inhibition of Focial Seizures by Moderate Hypothermia. Archives of Neurology, 20, 430-439.
41. VELASCO F, VELASCO M, OGARRIO C, FANGHANEL G (1987) Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia, 28, 421-430.
42. WEBBER WR, LITT B. WILSON K, LESSER RP (1994) Practical detection of epileptiform discharges (EDs) in the EEG using an artificial neural network: a comparison of raw and parameterized EEG data, Electroencephalography and Clinical Neurophysiology, 91, 194-204.
43. WEBBER WRS. LESSER RP, RICHARDSON RT, WILSON K (1996) An Approach to Seizure Detection using an Artificial Neural Network (ANN). Electroenceph clin Neurophysiol, 98, 250-272.

Claims (9)

1. Aparato implantable para realizar la transferencia de calor desde el tejido cerebral que comprende: una bomba térmica (1) que tiene uno o más elementos de detección de actividad (3, 4) y uno o más elementos de detección de la temperatura (18) adaptados para estar en contacto con una porción predeterminada de cerebro; una unidad de tratamiento por transferencia de calor (8) que tiene un microcontrolador (22) conectado a dicho uno o más elementos de detección de actividad y uno o más elementos de detección de la temperatura, y un haz de cables (7) que conecta la unidad de tratamiento por transferencia de calor a la bomba térmica (1); con lo que en respuesta a las señales procedentes de uno o más elementos de detección de actividad, los algoritmos matemáticos de la unidad de tratamiento por transferencia de calor determinan una actividad cerebral anormal, haciendo que la bomba térmica retire calor del tejido cerebral y lo introduzca en un disipador térmico (9), donde dicha bomba térmica usa uniones Peltier para conseguir la transferencia de calor.
2. Un dispositivo de acuerdo con la reivindicación 1, donde la transferencia de calor se controla por la temperatura cerebral como se detecta por uno o más elementos de detección de la temperatura, previniendo de esta manera la transferencia de calor excesiva hacia el interior o hacia el exterior del cerebro.
3. Un dispositivo de acuerdo con la reivindicación 2, donde el control de la transferencia de calor puede iniciarse por un agente a través de un bucle de inducción que envía señales al módulo de tratamiento por transferencia de calor.
4. Un dispositivo de acuerdo con cualquiera de las reivindicaciones 1-3, donde dicho disipador térmico comprende pasta de óxido de silicio contenida en un saco fino de material biológicamente inerte.
5. Un dispositivo de acuerdo con cualquiera de las reivindicaciones 1-4, en el que la energía para hacer funcionar la bomba térmica puede proporcionarse por al menos un miembro seleccionado entre el grupo compuesto por baterías, células recargables, un bovina y un bucle de inducción.
6. Un dispositivo de acuerdo con cualquiera de las reivindicaciones 1-5, adaptado para detectar la actividad anormal de células cerebrales característica de la epilepsia, el dolor intratable, trastornos psiquiátricos y trastornos del movimiento.
7. Un dispositivo de acuerdo con cualquiera de las reivindicaciones 1-6, que comprende detectores de actividad adaptados para analizar la actividad cerebral existente a través de un algoritmo para predecir una actividad cerebral anormal futura.
8. Un dispositivo de acuerdo con cualquiera de las reivindicaciones 1-7, que comprende un medio para estimular eléctricamente el tejido cerebral.
9. Aparato capaz de calentar de manera controlable el tejido cerebral hipotérmico por transferencia de calor que comprende: una bomba térmica (1) que tiene uno o más elementos de detección de actividad (3, 4) y uno o más elementos de detección de la temperatura (18) capaces de contactar con el tejido cerebral; una unidad (8) de tratamiento por transferencia de calor que tiene un microcontrolador (22) conectado a dichos uno o más elementos de detección de actividad y uno o más elementos de detección de la temperatura; y un haz de cables (7) que conecta la unidad de tratamiento por transferencia de calor a dicha bomba térmica; con lo que en respuesta a las señales procedentes de dichos uno o más elementos de detección de actividad, los algoritmos matemáticos de la unidad de tratamiento por transferencia de calor determinan una actividad cerebral anormal, haciendo que la bomba térmica transfiera calor al tejido cerebral desde una fuente de calor, calentándose de esta manera el cerebro, caracterizado porque dicha bomba térmica usa uniones Peltier para conseguir la transferencia de calor, y dicho aparato es implantable.
ES99903007T 1998-01-12 1999-01-12 Tecnica para usar flujo termico en el cerebro para tratar trastornos cerebrales. Expired - Lifetime ES2234235T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7131298P 1998-01-12 1998-01-12
US71312P 1998-01-12

Publications (1)

Publication Number Publication Date
ES2234235T3 true ES2234235T3 (es) 2005-06-16

Family

ID=22100543

Family Applications (1)

Application Number Title Priority Date Filing Date
ES99903007T Expired - Lifetime ES2234235T3 (es) 1998-01-12 1999-01-12 Tecnica para usar flujo termico en el cerebro para tratar trastornos cerebrales.

Country Status (8)

Country Link
US (1) US6248126B1 (es)
EP (1) EP1047362B1 (es)
AT (1) ATE280555T1 (es)
AU (1) AU754269B2 (es)
CA (1) CA2318243A1 (es)
DE (1) DE69921449T2 (es)
ES (1) ES2234235T3 (es)
WO (1) WO1999034758A1 (es)

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203537B2 (en) * 1996-08-19 2007-04-10 Mr3 Medical, Llc System and method for breaking reentry circuits by cooling cardiac tissue
US7908003B1 (en) 1996-08-19 2011-03-15 Mr3 Medical Llc System and method for treating ischemia by improving cardiac efficiency
US7840264B1 (en) 1996-08-19 2010-11-23 Mr3 Medical, Llc System and method for breaking reentry circuits by cooling cardiac tissue
US8447399B2 (en) * 1996-08-19 2013-05-21 Mr3 Medical, Llc System and method for managing detrimental cardiac remodeling
US7440800B2 (en) * 1996-08-19 2008-10-21 Mr3 Medical, Llc System and method for managing detrimental cardiac remodeling
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7231254B2 (en) * 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US7974696B1 (en) 1998-08-05 2011-07-05 Dilorenzo Biomedical, Llc Closed-loop autonomic neuromodulation for optimal control of neurological and metabolic disease
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US9113801B2 (en) 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
GB0007193D0 (en) * 2000-03-25 2000-05-17 Univ Manchester Treatment of movrmrnt disorders
US6849072B2 (en) 2000-04-07 2005-02-01 The General Hospital Corporation Methods and apparatus for thermally affecting tissue
US20040034321A1 (en) * 2000-10-05 2004-02-19 Seacoast Technologies, Inc. Conformal pad for neurosurgery and method thereof
US6660026B2 (en) 2000-10-05 2003-12-09 Seacoast Technologies, Inc. Multi-tipped cooling probe
US6678548B1 (en) 2000-10-20 2004-01-13 The Trustees Of The University Of Pennsylvania Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
US6648880B2 (en) 2001-02-16 2003-11-18 Cryocath Technologies Inc. Method of using cryotreatment to treat brain tissue
EP1249691A1 (en) * 2001-04-11 2002-10-16 Omron Corporation Electronic clinical thermometer
US6726709B1 (en) * 2001-04-30 2004-04-27 Medcool, Inc. Method and device for reducing death and morbidity from stroke
US6978183B2 (en) * 2001-05-04 2005-12-20 The Washington University System and method for cooling the cortex to treat neocordical seizures
US6629990B2 (en) * 2001-07-13 2003-10-07 Ad-Tech Medical Instrument Corp. Heat-removal method and apparatus for treatment of movement disorder episodes
US7094234B1 (en) * 2001-08-27 2006-08-22 Medcool, Inc. Interstitial brain cooling probe and sheath apparatus
US6688112B2 (en) 2001-12-04 2004-02-10 University Of Mississippi Thermoacoustic refrigeration device and method
US6746474B2 (en) * 2002-05-31 2004-06-08 Vahid Saadat Apparatus and methods for cooling a region within the body
US20040039430A1 (en) * 2002-08-20 2004-02-26 Xanodyne Pharmacal, Inc. System and method using the rectal mucosal membrane for inducing hypothermia and warming
EP1558123B1 (en) * 2002-10-11 2010-11-24 Flint Hills Scientific, L.L.C. Multi-modal system for detection and control of changes in brain state
US7204833B1 (en) 2002-10-11 2007-04-17 Flint Hills Scientific Llc Multi-modal system for detection and control of changes in brain state
ATE489031T1 (de) * 2002-10-11 2010-12-15 Flint Hills Scient Llc Multimodales system zum nachweis und zur kontrolle von veränderungen des zustands des gehirns
US7596408B2 (en) 2002-12-09 2009-09-29 Medtronic, Inc. Implantable medical device with anti-infection agent
DE60332764D1 (de) * 2002-12-09 2010-07-08 Medtronic Inc Leitungsverbindungsmodul für eine modulare implantierbare medizinische vorrichtung
US7004961B2 (en) * 2003-01-09 2006-02-28 Edward Wong Medical device and method for temperature control and treatment of the brain and spinal cord
US7263401B2 (en) * 2003-05-16 2007-08-28 Medtronic, Inc. Implantable medical device with a nonhermetic battery
US20050004637A1 (en) * 2003-05-16 2005-01-06 Ruchika Singhal Explantation of implantable medical device
US20050003268A1 (en) * 2003-05-16 2005-01-06 Scott Erik R. Battery housing configuration
US7317947B2 (en) * 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
CA2432810A1 (en) * 2003-06-19 2004-12-19 Andres M. Lozano Method of treating depression, mood disorders and anxiety disorders by brian infusion
DE202004021942U1 (de) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material
US20050102006A1 (en) * 2003-09-25 2005-05-12 Whitehurst Todd K. Skull-mounted electrical stimulation system
US7769461B2 (en) * 2003-12-19 2010-08-03 Boston Scientific Neuromodulation Corporation Skull-mounted electrical stimulation system and method for treating patients
US7596399B2 (en) * 2004-04-29 2009-09-29 Medtronic, Inc Implantation of implantable medical device
US7313442B2 (en) * 2004-04-30 2007-12-25 Advanced Neuromodulation Systems, Inc. Method of treating mood disorders and/or anxiety disorders by brain stimulation
US20050245984A1 (en) 2004-04-30 2005-11-03 Medtronic, Inc. Implantable medical device with lubricious material
US20050246000A1 (en) * 2004-05-03 2005-11-03 Seacoast Technologies, Inc. Cooled craniectomy
US7447541B2 (en) * 2004-06-30 2008-11-04 Instrumentarium Corporation Monitoring subcortical responsiveness of a patient
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US8672988B2 (en) * 2004-10-22 2014-03-18 Medtronic Cryocath Lp Method and device for local cooling within an organ using an intravascular device
US7306621B1 (en) 2004-11-19 2007-12-11 National Semiconductor Corporation Heat transfer control for a prosthetic retinal device
US20060212090A1 (en) * 2005-03-01 2006-09-21 Functional Neuroscience Inc. Method of treating cognitive disorders using neuromodulation
AU2006218642A1 (en) * 2005-03-01 2006-09-08 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
WO2006109797A1 (ja) * 2005-04-12 2006-10-19 National University Corporation Nagoya University 細動防止装置及び除細動装置
US7505816B2 (en) * 2005-04-29 2009-03-17 Medtronic, Inc. Actively cooled external energy source, external charger, system of transcutaneous energy transfer, system of transcutaneous charging and method therefore
US7824436B2 (en) * 2005-05-13 2010-11-02 Benechill, Inc. Methods and devices for non-invasive cerebral and systemic cooling
US9358150B2 (en) 2005-05-13 2016-06-07 Benechill, Inc. Methods and devices for non-invasive cerebral and systemic cooling alternating liquid mist/gas for induction and gas for maintenance
US7572268B2 (en) * 2005-10-13 2009-08-11 Bacoustics, Llc Apparatus and methods for the selective removal of tissue using combinations of ultrasonic energy and cryogenic energy
US7842032B2 (en) 2005-10-13 2010-11-30 Bacoustics, Llc Apparatus and methods for the selective removal of tissue
US20070088386A1 (en) * 2005-10-18 2007-04-19 Babaev Eilaz P Apparatus and method for treatment of soft tissue injuries
US7729773B2 (en) * 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US9492313B2 (en) 2006-04-20 2016-11-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US11684510B2 (en) 2006-04-20 2023-06-27 University of Pittsburgh—of the Commonwealth System of Higher Education Noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US9211212B2 (en) 2006-04-20 2015-12-15 Cerêve, Inc. Apparatus and method for modulating sleep
US8236038B2 (en) 2006-04-20 2012-08-07 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Method and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US8425583B2 (en) 2006-04-20 2013-04-23 University of Pittsburgh—of the Commonwealth System of Higher Education Methods, devices and systems for treating insomnia by inducing frontal cerebral hypothermia
US9084901B2 (en) 2006-04-28 2015-07-21 Medtronic, Inc. Cranial implant
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US20080027515A1 (en) 2006-06-23 2008-01-31 Neuro Vista Corporation A Delaware Corporation Minimally Invasive Monitoring Systems
US20090221955A1 (en) * 2006-08-08 2009-09-03 Bacoustics, Llc Ablative ultrasonic-cryogenic methods
US20080039727A1 (en) * 2006-08-08 2008-02-14 Eilaz Babaev Ablative Cardiac Catheter System
AU2007310988B2 (en) 2006-10-18 2013-08-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
AU2007310986B2 (en) 2006-10-18 2013-07-04 Boston Scientific Scimed, Inc. Inducing desirable temperature effects on body tissue
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US20080183097A1 (en) 2007-01-25 2008-07-31 Leyde Kent W Methods and Systems for Measuring a Subject's Susceptibility to a Seizure
EP2126785A2 (en) 2007-01-25 2009-12-02 NeuroVista Corporation Systems and methods for identifying a contra-ictal condition in a subject
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US8734499B2 (en) 2007-03-29 2014-05-27 Cardiac Pacemakers, Inc. Systems and methods for thermal neuroinhibition
US8202308B2 (en) * 2007-06-29 2012-06-19 Matthew D. Smyth Depth cooling implant system
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US8738139B2 (en) 2007-08-01 2014-05-27 Bruce Lanning Wireless system for epilepsy monitoring and measurement
DE102007046694A1 (de) * 2007-09-28 2009-04-09 Raumedic Ag Sensorsystem zur Messung, Übertragung, Verarbeitung und Darstellung eines Hirnparameters
US8170660B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for thermal modulation of neural activity
US8195287B2 (en) * 2007-12-05 2012-06-05 The Invention Science Fund I, Llc Method for electrical modulation of neural conduction
US8165668B2 (en) * 2007-12-05 2012-04-24 The Invention Science Fund I, Llc Method for magnetic modulation of neural conduction
US8180446B2 (en) * 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method and system for cyclical neural modulation based on activity state
US8170658B2 (en) * 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for electrical modulation of neural conduction
US8165669B2 (en) * 2007-12-05 2012-04-24 The Invention Science Fund I, Llc System for magnetic modulation of neural conduction
US8989858B2 (en) 2007-12-05 2015-03-24 The Invention Science Fund I, Llc Implant system for chemical modulation of neural activity
US8180447B2 (en) 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method for reversible chemical modulation of neural activity
US20090149797A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for reversible chemical modulation of neural activity
WO2009073891A1 (en) * 2007-12-07 2009-06-11 Northstar Neuroscience, Inc. Systems and methods for providing targeted neural stimulation therapy to address neurological disorders, including neuropyschiatric and neuropyschological disorders
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US20090171168A1 (en) 2007-12-28 2009-07-02 Leyde Kent W Systems and Method for Recording Clinical Manifestations of a Seizure
CA2722972A1 (en) 2008-05-05 2009-11-12 Stryker Corporation Surgical tool system including a tool and a console, the console capable of reading data from a memory integral with the tool over the conductors over which power is sourced to the tool
US8713026B2 (en) * 2008-06-13 2014-04-29 Sandisk Technologies Inc. Method for playing digital media files with a digital media player using a plurality of playlists
US9393432B2 (en) 2008-10-31 2016-07-19 Medtronic, Inc. Non-hermetic direct current interconnect
AU2009314133B2 (en) 2008-11-17 2015-12-10 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9522081B2 (en) 2008-12-02 2016-12-20 University Of Washington Methods and devices for brain cooling for treatment and/or prevention of epileptic seizures
US8591562B2 (en) * 2008-12-02 2013-11-26 University Of Washington Methods and devices for brain cooling for treatment and prevention of acquired epilepsy
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
WO2011101039A1 (en) 2010-02-22 2011-08-25 Universite Pierre Et Marie Curie (Paris 6) Apparatus for the treatment of brain affections and method implementing thereof
KR20130108067A (ko) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 조직 치료를 위한 발전 및 제어 장치
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
RU2454197C1 (ru) * 2010-12-29 2012-06-27 Общество с ограниченной ответственностью "Центрмед-М" Устройство для индукции гипотермии (варианты)
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
CN103813745B (zh) 2011-07-20 2016-06-29 波士顿科学西美德公司 用以可视化、对准和消融神经的经皮装置及方法
JP6106669B2 (ja) 2011-07-22 2017-04-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. ヘリカル・ガイド内に配置可能な神経調節要素を有する神経調節システム
ES2584388T3 (es) 2011-07-27 2016-09-27 Université Pierre Et Marie Curie (Paris 6) Dispositivo de tratamiento de la capacidad sensorial de una persona
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
EP2768568B1 (en) 2011-10-18 2020-05-06 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
WO2013058962A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2775948B1 (en) 2011-11-08 2018-04-04 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096916A2 (en) 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9849025B2 (en) 2012-09-07 2017-12-26 Yale University Brain cooling system
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
CN104869930B (zh) 2012-10-10 2020-12-25 波士顿科学国际有限公司 肾神经调制装置和方法
ES2868181T3 (es) 2013-01-02 2021-10-21 Ebb Therapeutics Inc Sistemas para mejorar el sueño
US11759650B2 (en) 2013-03-11 2023-09-19 NeuroEM Therapeutics, Inc. Immunoregulation, brain detoxification, and cognitive protection by electromagnetic treatment
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US11752356B2 (en) 2013-03-11 2023-09-12 NeuroEM Therapeutics, Inc. Systems for controlling power to differently loaded antenna arrays
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US11813472B2 (en) 2013-03-11 2023-11-14 NeuroEM Therapeutics, Inc. Systems for sensing proper emitter array placement
US11911629B2 (en) 2013-03-11 2024-02-27 NeurEM Therapeutics, Inc. Treatment of primary and metastatic brain cancers by transcranial electromagnetic treatment
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
EP2967734B1 (en) 2013-03-15 2019-05-15 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
CN105473092B (zh) 2013-06-21 2019-05-17 波士顿科学国际有限公司 具有可旋转轴的用于肾神经消融的医疗器械
EP3010437A1 (en) 2013-06-21 2016-04-27 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
WO2015002787A1 (en) 2013-07-01 2015-01-08 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
WO2015006480A1 (en) 2013-07-11 2015-01-15 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
WO2015010074A1 (en) 2013-07-19 2015-01-22 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
WO2015027096A1 (en) 2013-08-22 2015-02-26 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
EP3041425B1 (en) 2013-09-04 2022-04-13 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
WO2015038947A1 (en) 2013-09-13 2015-03-19 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
CN105592778B (zh) 2013-10-14 2019-07-23 波士顿科学医学有限公司 高分辨率心脏标测电极阵列导管
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
AU2014334574B2 (en) 2013-10-15 2017-07-06 Boston Scientific Scimed, Inc. Medical device balloon
CN105636538B (zh) 2013-10-18 2019-01-15 波士顿科学国际有限公司 具有柔性导线的球囊导管及其使用和制造的相关方法
CN105658163B (zh) 2013-10-25 2020-08-18 波士顿科学国际有限公司 去神经柔性电路中的嵌入式热电偶
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
JP6325121B2 (ja) 2014-02-04 2018-05-16 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 双極電極上の温度センサの代替配置
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11794028B2 (en) * 2014-03-11 2023-10-24 NeuroEM Therapeutics, Inc. Transcranial electromagnetic treatment
US9604060B2 (en) * 2014-03-11 2017-03-28 Oregon Health & Science University Deep brain electrode placement and stimulation based on brown adipose tissue temperature
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
CN111701155A (zh) 2014-12-19 2020-09-25 索邦大学 用于脑治疗的可植入的超声发生治疗装置、包括此装置的设备以及实施此装置的方法
WO2017039762A1 (en) 2015-09-04 2017-03-09 The Johns Hopkins University Low-profile intercranial device
JP6772288B2 (ja) 2016-03-11 2020-10-21 ソルボンヌ・ユニヴェルシテSorbonne Universite 脊髄の治療および脊髄神経の治療のための体外式超音波発生治療デバイス、該デバイスを備える装置、および該装置を用いる方法
EP3426347A1 (en) 2016-03-11 2019-01-16 Sorbonne Universite Implantable ultrasound generating treating device for spinal cord and/or spinal nerve treatment, apparatus comprising such device and method
EP3263076A1 (en) * 2016-06-07 2018-01-03 Universidade do Minho Implantable thermal neuromodulator with wireless powering and wireless communications and fabrication method thereof
US10912648B2 (en) 2016-08-30 2021-02-09 Longeviti Neuro Solutions Llc Method for manufacturing a low-profile intercranial device and the low-profile intercranial device manufactured thereby
US20180318579A1 (en) 2017-05-06 2018-11-08 Smartimplantsystems, Inc. Active implantable medical device associated with, or integrated into, an orthopedic implant device
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
EP3731749A4 (en) 2017-12-31 2022-07-27 Neuroenhancement Lab, LLC NEURO-ACTIVATION SYSTEM AND METHOD FOR ENHANCING EMOTIONAL RESPONSE
US11589992B2 (en) 2018-01-09 2023-02-28 Longeviti Neuro Solutions Llc Universal low-profile intercranial assembly
FR3078879B1 (fr) 2018-03-14 2020-03-06 Assistance Publique Hopitaux De Paris Kit chirurgical a utiliser lors d'une procedure de craniectomie
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170465A (en) * 1962-06-26 1965-02-23 James E Henney Internal body heating devices
EP0061843A3 (en) * 1981-03-28 1983-08-24 Yoshiro Nakamatsu Apparatus for increasing brain activity
EP0132276B1 (en) * 1983-01-21 1991-08-14 Ramm Associates Implantable hyperthermia device and system
US4989601A (en) * 1988-05-02 1991-02-05 Medical Engineering & Development Institute, Inc. Method, apparatus, and substance for treating tissue having neoplastic cells
US5429582A (en) * 1991-06-14 1995-07-04 Williams; Jeffery A. Tumor treatment
US5540737A (en) * 1991-06-26 1996-07-30 Massachusetts Institute Of Technology Minimally invasive monopole phased array hyperthermia applicators and method for treating breast carcinomas
US5995868A (en) * 1996-01-23 1999-11-30 University Of Kansas System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US5916242A (en) * 1996-11-04 1999-06-29 Schwartz; George R. Apparatus for rapid cooling of the brain and method of performing same

Also Published As

Publication number Publication date
WO1999034758A1 (en) 1999-07-15
EP1047362B1 (en) 2004-10-27
AU754269B2 (en) 2002-11-07
DE69921449T2 (de) 2005-11-24
CA2318243A1 (en) 1999-07-15
ATE280555T1 (de) 2004-11-15
DE69921449D1 (de) 2004-12-02
US6248126B1 (en) 2001-06-19
EP1047362A1 (en) 2000-11-02
AU2312899A (en) 1999-07-26
EP1047362A4 (en) 2002-06-05

Similar Documents

Publication Publication Date Title
ES2234235T3 (es) Tecnica para usar flujo termico en el cerebro para tratar trastornos cerebrales.
US6882881B1 (en) Techniques using heat flow management, stimulation, and signal analysis to treat medical disorders
US20220331581A1 (en) Extracranial implantable devices, systems and methods for the treatment of neurological disorders
Sun et al. Responsive cortical stimulation for the treatment of epilepsy
Deletis et al. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts
US9707390B2 (en) Apparatus for modulation of effector organs
Kerrigan et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy
Jobst Brain stimulation for surgical epilepsy
WO2001028622A2 (en) Techniques using heat flow management, stimulation, and signal analysis to treat medical disorders
US10105549B2 (en) Modulating function of neural structures near the ear
US9707391B2 (en) Method for modulation of effector organs
Skarpaas et al. Intracranial stimulation therapy for epilepsy
Al-Otaibi et al. Neuromodulation in epilepsy
Li et al. Electrical control of epileptic seizures
WO2007091424A1 (ja) 頭蓋内埋め込み型大脳冷却装置
Fujii et al. Application of focal cerebral cooling for the treatment of intractable epilepsy
Fauser et al. Critical review of palliative surgical techniques for intractable epilepsy
Vipin et al. Prolonged local hypothermia has no long-term adverse effect on the spinal cord
Jennum et al. Transcranial magnetic stimulation. Its role in the evaluation of patients with partial epilepsy
Marsala et al. Technique of selective spinal cord cooling in rat: Methodology and application
EP3319685B1 (en) Apparatus for modulation of effector organs
Bandla et al. Peripheral sensory stimulation is neuroprotective in a rat photothrombotic ischemic stroke model
Szelényi Intraoperative neurophysiological monitoring under general anesthesia
Zentner et al. Non-resective Epilepsy Surgery
McCandless et al. Deep Brain Stimulation