EP4373677A1 - Composé, mélange de caoutchouc contenant ledit composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation dudit composé comme agent anti-vieillissement et/ou anti-ozonant et/ou colorant - Google Patents

Composé, mélange de caoutchouc contenant ledit composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation dudit composé comme agent anti-vieillissement et/ou anti-ozonant et/ou colorant

Info

Publication number
EP4373677A1
EP4373677A1 EP22738540.8A EP22738540A EP4373677A1 EP 4373677 A1 EP4373677 A1 EP 4373677A1 EP 22738540 A EP22738540 A EP 22738540A EP 4373677 A1 EP4373677 A1 EP 4373677A1
Authority
EP
European Patent Office
Prior art keywords
radicals
compound
rubber
formula
residues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22738540.8A
Other languages
German (de)
English (en)
Inventor
Andreas Jacob
David-Raphael DAUER
Julian STROHMEIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Reifen Deutschland GmbH
Original Assignee
Continental Reifen Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Reifen Deutschland GmbH filed Critical Continental Reifen Deutschland GmbH
Publication of EP4373677A1 publication Critical patent/EP4373677A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/08Nitrogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/28Colorants ; Pigments or opacifying agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/06Dyes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Definitions

  • Vehicle tire which has the rubber mixture in at least one component, method for producing the compound and use of the compound as anti-aging agent and/or anti-ozone agent and/or dye
  • the invention relates to a compound, a rubber compound containing the compound, a vehicle tire which has the rubber compound in at least one component, a method for producing the compound and the use of the compound as an aging inhibitor and/or antiozonant and/or dye.
  • Natural rubber, synthetic polymers such as IR, BR, SSBR, ESBR, etc.
  • natural and synthetic oils, greases and lubricants are subject to oxidation reactions when stored for a long period of time and especially in the target application, which often takes place at higher temperatures, which can have adverse effects affect the original desired properties.
  • the polymer chains are shortened to the point of liquefying the material, or the material is subsequently hardened.
  • Anti-aging agents therefore make a significant contribution to the longevity of vehicle tires and other technical rubber items.
  • antioxidants are aromatic amines, such as 6-PPD (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine),
  • IPPD N-isopropyl-N'-phenyl-p-phenylenediamine
  • SPPD N-(1-phenylethyl)-N'-phenyl-p-phenylenediamine
  • Anti-aging agents that react with ozone in particular and intercept it are also referred to as “ozone protection agents” or “antiozonants”.
  • the invention is based on the object of providing a novel compound which can be used in particular as an anti-aging agent in vehicle tires or other technical rubber articles with a lower risk potential and sufficient solubility in the respective matrix, for example and in particular in the polymer. This is intended to ensure continued optimal protection against oxygen and ozone while reducing the health hazards and to prevent the tendency to bloom.
  • the object is achieved by the compound according to the invention as claimed in claim 1, the rubber mixture according to the invention containing the compound and the vehicle tire according to the invention which has the rubber mixture according to the invention in at least one component.
  • the object is achieved through the use of the compound as an anti-aging agent and/or an anti-ozone agent.
  • the compound according to claim 1 can further be used as a dye. Furthermore, the object is achieved by methods according to the invention for preparing the compound according to the invention.
  • the compound according to claim 1 has the general formula I): wherein R 1 is selected from the group consisting of xi) aromatic residues, the aromatic residues optionally having substituents selected from the group consisting of halogen residues, cyano residues, ester residues, ketone residues, ether residues and thioether radicals, and xii) linear, branched and cyclic aliphatic C4 to C12 radicals, and xiii) combinations of aromatic and aliphatic C1 to C12 radicals; and wherein the radicals R 2 and R 3 independently can be the same or different and are selected from the group consisting of linear, branched and cyclic, saturated and unsaturated, aliphatic C to C-12 radicals which optionally contain one or more halogen -Carry substituents, aryl radicals, which optionally carry one or more halogen substituents, and halogen radicals, fluorine, bromine and chlorine being preferred, cyano radicals, ester radicals
  • R 1 is selected from the group consisting of benzyl and linear, branched and cyclic aliphatic C4 to C12 radicals; and where R 3 is selected from the group consisting of linear, branched and cyclic aliphatic Ci - to Ci2 radicals, and aryl radicals, cyano radicals, halogen radicals, with fluorine, bromine and chlorine being preferred, ether radicals and thioether radicals, and where n is 0 or 1 or 2 or 3 or 4, where the radicals R 3 are independently the same or different when n is 2 or 3 or 4, and where R 2 is selected from the group consisting of linear, branched and cyclic aliphatic Ci - to Ci2 radicals, and aryl radicals, cyano radicals, halogen radicals, with fluorine, bromine and chlorine being preferred, ether radicals and thioether -leftovers; and where m has the value 0 or 1 or 2 or 3, where the radicals R 2 are
  • C4 to C12 radicals mean that radicals having 4 to 12 carbon atoms are meant. Irrespective of this, "Ci” is used to designate the position of the most oxidized carbon atom or the highest priority after the
  • CIP Cahn-Ingold-Prelog Convention
  • the compound according to the invention is an acridinone derivative and has a lower risk potential than known anti-aging agents based on aniline (possible cleavage product of 6-PPD). If one compares the safety data sheets for the base substances aniline and acridinone, it is striking that, in contrast to aniline, acridinone is neither mutagenic nor mutagenic. This is a decisive advantage, especially in a technical application such as in vehicle tires or other rubber products, since the rubber ingredients can be released through abrasion or other degradation processes. Compared to 6-PPD, the compound according to the invention also has an improved protective effect, in particular of polymers, against oxidation and thus aging.
  • the invention also includes configurations that result from the combination of different features of different gradations when these features are preferred, so that a combination of a first feature referred to as “preferred” or a feature described in the context of an advantageous embodiment with a further feature, e.g. B. "particularly preferred” designated feature is covered by the invention.
  • the radicals R 2 and R 3 are independently identical or different and are selected from the group consisting of linear, branched and cyclic, saturated and unsaturated, aliphatic Ci - to Ci2 radicals, which optionally carry one or more halogen substituents, aryl radicals which optionally carry one or more halogen substituents, and halogen radicals, with fluorine, bromine and chlorine being preferred, cyano radicals, ester radicals, ketone radicals, ether radicals and thioether radicals.
  • radicals R 2 and R 3 mentioned can already be attached to the respective benzene ring or its precursor, in particular through the selection of suitable starting substances.
  • n is 0 (zero).
  • m is 0 (zero).
  • the radical R 1 is selected from the group consisting of xi) aromatic radicals, where the aromatic radicals optionally have substituents selected from the group consisting of halogen radicals, cyano radicals, ester radicals, ketone radicals, ether radicals and thioether residues, and xii) C3 to C12 linear, branched and cyclic aliphatic radicals, especially C4 to C12 radicals, and xiii) combinations of C1 to C12 aromatic and aliphatic radicals.
  • the aromatic radical from subgroup xi) is, for example and preferably, a phenyl radical.
  • the aromatic radicals of subgroup xi) can carry substituents. As stated above, these are selected from the group consisting of halogen radicals, cyano radicals, ester radicals, ketone radicals, ether radicals and thioether radicals.
  • the substituents are preferably selected from the group consisting of ester residues, ketone residues, ether residues and thioether residues.
  • the aromatic radical is not substituted on the two C atoms which are adjacent to the Ci atom, ie the carbon atom which is bonded to the N atom.
  • the aromatic radical is not substituted on the two C atoms which are adjacent to the Ci atom, ie the carbon atom which is bonded to the N atom.
  • the aromatic radical of subgroup xi) is unsubstituted.
  • R 1 is bonded to the nitrogen atom (N) through a tertiary carbon atom.
  • the Ci atom is therefore preferably a tertiary carbon atom.
  • tertiary carbon atom means a carbon atom which is bonded to only one hydrogen atom.
  • the mixed aromatic and aliphatic radical from subgroup xiii) is, for example and preferably, selected from the group consisting of benzyl and 1-phenylalkyl radicals having a total of 7 to 18 carbon atoms, in particular selected from benzyl and 1-phenylethyl radicals, where 1 -Phenylalkyl radicals, in particular 1-phenylethyl, are particularly preferred because of the tertiary carbon atom.
  • R 1 is a branched or cyclic alkyl radical having three to twelve carbon atoms, preferably three to eight carbon atoms, where R 1 is particularly preferably selected from
  • the compound has the structure according to formula II):
  • the compound according to formula II) is therefore a better and at the same time more health-friendly and environmentally friendly anti-aging agent.
  • the compound according to the invention according to formula I) or formula II) or all of the above statements is particularly useful as an anti-aging agent and/or anti-ozone agent in vehicle tires and/or technical rubber articles, such as in particular an air spring, a bellows, conveyor belt, belt, belt, hose, rubber band , profile, a seal, a membrane, tactile sensors for medical applications or robotic applications, or a shoe sole or parts thereof, and/or oils and/or lubricants.
  • a further object of the present invention is therefore the use of the compound according to the invention as an anti-aging agent and/or an anti-ozone agent in vehicle tires and/or technical rubber articles, such as in particular an air spring, a bellows, a conveyor belt, a belt, a belt, a hose, a rubber band, a profile, a seal, a membrane, tactile sensors for medical applications or robotic applications, or a shoe sole or parts thereof, and/or oils and/or lubricants.
  • an air spring, a bellows, a conveyor belt, a belt, a belt, a hose, a rubber band, a profile, a seal, a membrane, tactile sensors for medical applications or robotic applications, or a shoe sole or parts thereof, and/or oils and/or lubricants such as in particular an air spring, a bellows, a conveyor belt, a belt, a belt, a hose, a rubber band, a profile, a seal, a membrane, tactile sensors for medical applications or robotic
  • Another object of the invention is the use of the compound according to the invention of formula I) or formula II) or all of the above statements as a dye in fibers and/or polymers and/or paper and/or in paints and varnishes.
  • the base in step b) is preferably selected from organic and inorganic bases.
  • the inorganic base is preferably selected from the group consisting of potassium carbonate, potassium phosphate, sodium carbonate, sodium phosphate, cesium carbonate.
  • the organic base is preferably selected from the group consisting of sodium Fe/f-butoxide, potassium Fe/f-butoxide.
  • the catalyst in step b) is preferably a catalyst which catalyzes via a “copper coupling”, such as in particular copper iodide.
  • an inorganic base is preferably used, e.g. B. copper iodide as a catalyst in combination with the base potassium carbonate.
  • a “palladium coupling” is also preferred, where the catalyst optionally has mono- or polydentate ligands, in particular mono- or polydentate phosphine ligands. Suitable catalysts are in particular and for example triphenylphosphine and binaphthylphosphine (BINAP).
  • Both an inorganic and an organic base can be used in copper coupling.
  • hydrogenation reagent a compound that enables hydrogenation.
  • hydrides in particular metal hydrides.
  • a suitable hydride is e.g. B. sodium borohydride.
  • hydrogen is not additionally listed under “hydrogenation reagent” since it is explicitly mentioned as an alternative. Naturally however, all reagents that generate hydrogen in situ that cause hydrogenation are included under “hydrogenation reagent”.
  • the reaction in step c) is preferably carried out with hydrogen (H2) and the ketone or aldehyde, preferably ketone, using a hydrogenation catalyst and preferably at a temperature of 50 to 70° C., in particular 60° C., for example.
  • Hydrogen is preferably injected at a pressure of 15 to 25 bar, in particular 20 bar, for example, and stirring is then preferably carried out for 1 to 20 hours, preferably 8 to 13 hours, in particular 10 hours, for example.
  • the ketone in step c) is the ketone derivative of the later radical R 1 ; With an aldehyde corresponding to the aldehyde derivative.
  • the ketone methyl isobutyl ketone is preferably used here.
  • the reaction with hydrogen in step c) preferably takes place in a container suitable for the comparatively high pressures, such as in particular an autoclave or another pressure reactor.
  • the solvent in step c) can be either the ketone or aldehyde when in liquid form or an inert solvent such as toluene or xylene, especially when the ketone or aldehyde is in solid form. In the latter case, the ketone or aldehyde is used only in stoichiometric amounts as the reactant.
  • a ketone or aldehyde, particularly preferably ketone, in liquid form is preferably used as the solvent.
  • an additional substance such as toluene or xylene can be dispensed with.
  • a suitable catalyst referred to as “hydrogenation catalyst” in the context of the present invention, is preferably used in the process steps in which a reaction with hydrogen takes place.
  • the hydrogenation catalyst is preferably a noble metal catalyst, such as in particular palladium (Pd) or platinum (Pt).
  • the noble metal on carbon (C) is preferably used, such as palladium on carbon (Pd/C).
  • Reaction with a base is optional.
  • the compound of the formula D) can also be reacted directly with an acid to give the target compound of the formula I).
  • sulfuric acid H2SO4 is used in particular and for example as the acid.
  • step d) preferably takes place first.
  • the conversion of the compound according to formula D) into the compound according to formula E) represents an ester cleavage and is preferably carried out with a reagent suitable for this purpose, in particular with a base, for example sodium hydroxide (NaOH), or an acid, for example concentrated hydrochloric acid (conc. HCl).
  • a base for example sodium hydroxide (NaOH)
  • an acid for example concentrated hydrochloric acid (conc. HCl).
  • the reaction in step d) is preferably heated under reflux for several hours. Preference is given to heating for 4 to 12 hours, particularly preferably 6 to 10 hours, for example 8 hours (overnight), and then cooling.
  • the pH is then preferably adjusted to 6.8 to 7.2, in particular 7, preferably with ice cooling.
  • step d) the compound of the formula E) is reacted with an acid.
  • Polyphosphoric acid PPA is used here, for example and preferably.
  • the reaction in step e) is preferably carried out at a temperature of from 120 to 140.degree. C., for example 130.degree. It is then preferably first cooled to a temperature of 50 to 70° C. and unreacted acid is hydrolyzed with water. Subsequently, it is preferably further cooled to room temperature (RT). The pH is then preferably adjusted to 6.8 to 7.2, in particular 7. This results in particularly high yields of the target compound of the formula I).
  • a further subject of the present invention is a further process for preparing the compound of the formula I), which comprises at least the following process steps: a1) providing the compound of the formula A1)
  • the base in step b1) is preferably a strong base such as potassium carbonate (K2CO3) or potassium phosphate (K3PO4). Potassium carbonate (K2CO3) is particularly preferably used.
  • the reaction according to step b1) preferably takes place in a polar solvent, such as in particular dimethylformaldehyde (DMF) or dimethyl sulfoxide (DMSO).
  • a polar solvent such as in particular dimethylformaldehyde (DMF) or dimethyl sulfoxide (DMSO).
  • Dimethylformaldehyde (DMF) is particularly preferably used.
  • the reaction in step c1) preferably takes place with hydrogen and the ketone or aldehyde, preferably ketone, using a hydrogenation catalyst and preferably at a temperature of 120 to 150° C., in particular 140° C., for example.
  • Hydrogen is preferably injected at a pressure of 35 to 45 bar, in particular 40 bar, for example, and stirring is then preferably carried out for 1 to 20 hours, preferably 8 to 13 hours, in particular 10 hours, for example.
  • the ketone in step c) is the ketone derivative of the later radical R 1 ; With an aldehyde corresponding to the aldehyde derivative.
  • the ketone methyl isobutyl ketone is preferably used here.
  • a suitable catalyst referred to as “hydrogenation catalyst” in the context of the present invention, is preferably used in the process steps in which a reaction with hydrogen takes place.
  • the hydrogenation catalyst is preferably a noble metal catalyst, such as in particular palladium (Pd) or platinum (Pt).
  • the noble metal on carbon (C) is preferably used, such as palladium on carbon (Pd/C).
  • the solvent in step c1) can be either the ketone or aldehyde when in liquid form, or an inert solvent such as toluene or xylene, especially when the ketone or aldehyde is in solid form. In the latter case, the ketone or aldehyde is used only in stoichiometric amounts as the reactant.
  • a ketone or aldehyde, particularly preferably ketone, in liquid form is preferably used as the solvent.
  • an additional substance such as toluene or xylene can be dispensed with.
  • reaction product of the above-described method according to the invention is in particular a mixture of substances comprising the compound of the formula I), with purification preferably taking place after step c1) or e), for example by column chromatography, for example on silica gel.
  • a further object of the invention, as stated above, is a rubber mixture.
  • the rubber mixture according to the invention contains the compound of the formula I), in particular of the formula II).
  • the rubber mixture according to the invention can be any rubber mixture, in particular in which the novel compound according to the invention of formula I), in particular of formula II), acts as an anti-aging agent and/or antiozonant with lower toxicity.
  • the rubber mixture according to the invention contains at least one rubber.
  • the rubber mixture according to the invention preferably contains 0.1 to 10 phr, particularly preferably 0.1 to 7 phr, very particularly preferably 1 to 6 phr, of the compound of the formula I), in particular of the formula II).
  • the specification phr (parts per hundred parts of rubber by weight) used in this document is the quantity specification for compound formulations customary in the rubber industry.
  • the dosage of the parts by weight of the individual substances is based on 100 parts by weight of the total mass of all high molecular weight (Mw greater than 20,000 g/mol) rubbers present in the mixture.
  • the rubber mixture according to the invention contains at least one diene rubber.
  • the rubber mixture can thus contain a diene rubber or a mixture of two or more different diene rubbers.
  • the diene rubber is preferably selected from the group consisting of natural polyisoprene (NR), synthetic polyisoprene (IR), epoxidized polyisoprene (ENR), butadiene rubber (BR), butadiene-isoprene rubber, solution-polymerized styrene-butadiene rubber (SSBR ), emulsion-polymerized styrene-butadiene rubber (ESBR), styrene-isoprene rubber, liquid rubbers with a molecular weight Mw greater than 20000 g/mol, halobutyl rubber, polynorbornene, isoprene-isobutylene copolymer, ethylene-propylene-diene rubber ,
  • nitrile rubber chloroprene rubber, acrylate rubber, fluorine rubber, silicone rubber, polysulfide rubber, epichlorohydrin rubber, styrene-isoprene-butadiene terpolymer, hydrogenated acrylonitrile-butadiene rubber and hydrogenated styrene-butadiene rubber.
  • nitrile rubber hydrogenated acrylonitrile butadiene rubber, chloroprene rubber, butyl rubber, flalobutyl rubber and/or ethylene propylene diene rubber are used in the manufacture of technical rubber articles such as belts, belts and hoses and/or shoe soles.
  • the mixture compositions known to those skilled in the art for these rubbers, which are particular with regard to fillers, plasticizers, vulcanization systems and additives, are preferably used.
  • the natural and/or synthetic polyisoprene of all embodiments can be either cis-1,4-polyisoprene or 3,4-polyisoprene. However, preference is given to using cis-1,4-polyisoprenes with a cis-1,4 content>90% by weight. On the one hand, such a polyisoprene can be obtained by stereospecific polymerization in solution with Ziegler-Natta catalysts or using finely divided lithium alkyls. On the other hand, natural rubber (NR) is a cis-1,4-polyisoprene in which the cis-1,4 content in the natural rubber is greater than 99% by weight.
  • Natural rubber means naturally occurring rubber that can be obtained from Hevea rubber trees and "non-Hevea” sources.
  • Non-Hevea sources include guayule shrubs and dandelions such as TKS (Taraxacum kok-saghyz; Russian dandelion).
  • An example of a low cis polybutadiene is Li-BR (lithium catalyzed butadiene rubber) having a cis content of 20 to 50% by weight. Particularly good properties and low hysteresis of the rubber compound are achieved with a high-cis BR.
  • the polybutadiene(s) used can/can be end-group-modified with modifications and functionalizations and/or functionalized along the polymer chains.
  • the modification can involve those with hydroxyl groups and/or ethoxy groups and/or epoxy groups and/or siloxane groups and/or amino groups and/or aminosiloxane and/or carboxy groups and/or Act phthalocyanine groups and / or silane sulfide groups.
  • modifications known to those skilled in the art, also referred to as functionalizations are also possible.
  • Metal atoms can be part of such functionalizations.
  • styrene-butadiene rubber styrene-butadiene copolymer
  • SSBR solution-polymerized styrene-butadiene rubber
  • ESBR emulsion-polymerized styrene-butadiene rubber
  • styrene-butadiene rubber and “styrene-butadiene copolymer” are used synonymously in the context of the present invention.
  • the styrene-butadiene copolymer used can be end-group-modified with the modifications and functionalizations mentioned above for polybutadiene and/or functionalized along the polymer chains.
  • the at least one diene rubber is preferably selected from the group consisting of natural polyisoprene (NR, natural rubber), synthetic polyisoprene (IR), butadiene rubber (BR), solution-polymerized styrene-butadiene rubber (SSBR), emulsion-polymerized styrene-butadiene rubber (ESBR), butyl rubber (IIR) and halobutyl rubber.
  • NR natural polyisoprene
  • IR synthetic polyisoprene
  • BR butadiene rubber
  • SSBR solution-polymerized styrene-butadiene rubber
  • ESBR emulsion-polymerized styrene-butadiene rubber
  • IIR butyl rubber
  • halobutyl rubber halobutyl rubber
  • the at least one diene rubber is selected from the group consisting of natural polyisoprene (NR), synthetic polyisoprene (IR), butadiene rubber (BR), solution-polymerized styrene-butadiene rubber (SSBR) and emulsion-polymerized styrene Butadiene Rubber (ESBR).
  • natural polyisoprene NR
  • synthetic polyisoprene IR
  • BR butadiene rubber
  • SSBR solution-polymerized styrene-butadiene rubber
  • ESBR emulsion-polymerized styrene Butadiene Rubber
  • the rubber mixture contains at least one natural polyisoprene (NR) and/or synthetic polyisoprene (IR), preferably in amounts of 50 to 100 phr, and according to a particularly advantageous embodiment of the invention 80 to 100 phr, entirely more preferably 95 to 100 phr, again preferably 100 phr.
  • NR natural polyisoprene
  • IR synthetic polyisoprene
  • the rubber mixture contains less than 100 phr NR and/or IR, it preferably contains at least one diene rubber selected from the group consisting of butadiene rubber (BR), solution-polymerized styrene-butadiene rubber (SSBR) and emulsion polymerized styrene butadiene rubber (ESBR).
  • BR butadiene rubber
  • SSBR solution-polymerized styrene-butadiene rubber
  • ESBR emulsion polymerized styrene butadiene rubber
  • the rubber mixture contains at least one natural polyisoprene (NR), preferably in amounts of 5 to 55 phr, and according to a particularly advantageous embodiment of the invention 5 to 25 phr, most preferably 5 to 20 phr.
  • NR natural polyisoprene
  • the rubber mixture contains at least one polybutadiene (BR, butadiene rubber), preferably in amounts of 10 to 80 phr, particularly preferably 10 to 50 phr, and according to a particularly advantageous embodiment of the invention 15 to 40 phr.
  • BR polybutadiene
  • the rubber mixture contains at least one polybutadiene (BR, butadiene rubber), preferably in amounts of 10 to 80 phr, particularly preferably 10 to 50 phr, and according to a particularly advantageous embodiment of the invention 15 to 40 phr.
  • the rubber mixture contains at least one solution-polymerized styrene-butadiene rubber (SSBR), preferably in amounts of 10 to 80 phr, particularly preferably 30 to 80 phr, and according to a particularly advantageous embodiment of the invention 50 to 70 phr.
  • SSBR solution-polymerized styrene-butadiene rubber
  • SSBR is used in combination with at least one other rubber in order to achieve an optimal and balanced property profile.
  • the rubber mixture preferably contains at least one filler, preferably in amounts of 30 to 500 phr, particularly preferably 50 to 400 phr, again preferably 80 to 300 phr.
  • the filler is a reinforcing filler, preferably selected from the group consisting of carbon blacks and silica.
  • Suitable carbon blacks are all types of carbon black known to those skilled in the art.
  • the carbon black is preferably selected from carbon blacks and pyrolysis carbon blacks, carbon blacks being more preferred.
  • the carbon black preferably has an iodine number, according to ASTM D 1510, which is also referred to as the iodine adsorption number, between 30 and 250 g/kg, preferably 30 to 180 g/kg, particularly preferably 40 to 180 g/kg, and very particularly preferably 40 to 130 g/kg, and a DBP number according to ASTM D 2414 of 30 to 200 ml/100 g, preferably 70 to 200 ml/100 g, particularly preferably 90 to 200 ml/100 g.
  • the DBP number according to ASTM D 2414 determines the specific absorption volume of a carbon black or a light-colored filler using dibutyl phthalate.
  • Particularly suitable and preferred is a carbon black with an iodine adsorption number of between 80 and 110 g/kg and a DBP number of 100 to 130 ml/100 g, such as in particular carbon black of the N339 type.
  • the silica is preferably amorphous silica, for example precipitated silicic acid, also referred to as precipitated silica.
  • precipitated silica also referred to as precipitated silica.
  • pyrogenic silicon dioxide can also be used.
  • a finely divided, precipitated silica which has a nitrogen surface area (BET surface area) (according to DIN ISO 9277 and DIN 66132) from 35 to 400 m 2 /g, preferably from 35 to 350 m 2 / g, more preferably from 85 to 320 m 2 / g and most preferably from 120 to 235 m 2 / g, and a CTAB surface area (according to ASTM D 3765) from 30 to 400 m 2 / g, preferably from 30 to 330 m 2 /g, more preferably from 80 to 300 m 2 /g and most preferably from 115 to 200 m 2 /g.
  • BET surface area nitrogen surface area
  • CTAB surface area accordinging to ASTM D 3765
  • the rubber mixture contains at least one silica as a filler, preferably in amounts of 30 to 500 phr, particularly preferably 50 to 400 phr, again preferably 80 to 300 phr.
  • silicic acid is present in particular as the sole or main filler (more than 50% by weight, based on the total amount of filler).
  • the rubber mixture contains at least one silica as an additional filler, preferably in amounts of 5 to 100 phr, particularly preferably 5 to 80 phr, again preferably 10 to 60 phr.
  • Silicic acid is contained in these amounts in particular as a further filler in addition to another main substance, such as in particular a carbon black.
  • silicic acid and “silica” are used synonymously in the context of the present invention.
  • the rubber mixture according to the invention contains from 0.1 to 60 phr, preferably from 3 to 40 phr, particularly preferably from 5 to 30 phr, very particularly preferably from 5 to 15 phr, of at least one carbon black.
  • carbon black is contained in particular as a further filler in addition to a main filler, such as in particular silica.
  • the rubber mixture according to the invention contains 30 to 300 phr, preferably 30 to 200 phr, particularly preferably 40 to 100 phr of at least one carbon black.
  • carbon black is present as the only filler or as the main filler and optionally in combination with silica in the smaller amounts mentioned above.
  • the rubber mixture contains 5 to 60 phr, particularly preferably 5 to 40 phr, of at least one carbon black and 50 to 300 phr, preferably 80 to 200 phr of at least one silica.
  • the rubber mixture can also contain other fillers that have a reinforcing effect or do not have a reinforcing effect.
  • the other (non-reinforcing) fillers include aluminosilicates, kaolin, chalk, starch, magnesium oxide, titanium dioxide or rubber gels and fibers (such as, for example, aramid fibers, glass fibers, carbon fibers, cellulose fibers).
  • CNT carbon nanotubes
  • FICF hollow carbon fibers
  • modified CNT containing one or more functional groups such as flydroxy, carboxy and carbonyl groups
  • zinc oxide does not belong to the fillers.
  • the rubber mixture can contain customary additives in customary parts by weight, which are preferably added in at least one basic mixing stage during its production.
  • additives include a) anti-aging agents known in the prior art, such as e.g. B. p-phenylenediamines, such as
  • N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6PPD), N,N'-diphenyl-p-phenylenediamine (DPPD),
  • SPPD N-(1-phenylethyl)-N'-phenyl-p-phenylenediamine
  • DTPD N,N'-ditolyl-p-phenylenediamine
  • IPPD N-isopropyl-N'-phenyl-p-phenylenediamine
  • TMQ 2,2,4-Trimethyl,2-dihydroquinoline
  • activators such as e.g. B. zinc oxide and fatty acids (z. B.
  • stearic acid and / or other activators such as zinc complexes such as zinc ethylhexanoate
  • Activators and/or agents for binding fillers in particular carbon black or silicic acid, such as S-(3-aminopropyl)thiosulfuric acid and/or its metal salts (binding to carbon black) and silane coupling agents (binding to silicon dioxide, in particular silicic acid)
  • d) anti-ozone waxes e
  • resins in particular adhesive resins
  • mastication aids such as e.g. B.
  • plasticizers
  • mineral oil this is preferably selected from the group consisting of DAE (Distillated Aromatic Extracts), RAE (Residual Aromatic Extract), TDAE (Treated Distillated Aromatic Extracts), MES (Mild Extracted Solvents) and naphthenic oils.
  • the rubber mixture according to the invention does not contain any aging inhibitors from the group of p-phenylenediamines, in particular those from list a) above.
  • the rubber mixture according to the invention contains from 0 to 0.1 phr, in particular 0 phr, of further aging inhibitors based on p-phenylenediamines, which are selected from the group comprising, preferably consisting of
  • At least one other of the p-phenylenediamine anti-aging agents mentioned is also present, so that the compound according to the invention only partially replaces the p-phenylenediamines known in the prior art. Flier also achieves the advantage of the invention, just not to the optimum extent.
  • aging inhibitors based on dihydroquinoline such as TMQ
  • TMQ dihydroquinoline
  • the amount of dihydroquinolines present, such as TMQ in particular, is preferably from 0.1 to 3, in particular from 0.5 to 1.5 phr.
  • Anti-ozone waxes (group d above) are considered separately and, according to preferred embodiments of the invention, are present in the rubber mixture, regardless of whether additional anti-aging agents a) are present.
  • the silane coupling agents can be of any type known to those skilled in the art.
  • the rubber mixture can thus contain a mixture of different silanes.
  • the silane coupling agents react with the surface silanol groups of the silicon dioxide, in particular the silicic acid, or other polar groups during the mixing of the rubber or the rubber mixture (in situ) or even before the filler is added to the rubber in the sense of a pretreatment (premodification).
  • Coupling agents known from the prior art are bifunctional organosilanes which have at least one alkoxy, cycloalkoxy or phenoxy group as a leaving group on the silicon atom and which have a group as another functionality which, after cleavage, can undergo a chemical reaction with the double bonds of the polymer.
  • the latter group can be z. Examples are the following chemical groups:
  • Blocked mercaptosilanes as z. B. are known from WO 99/09036, can be used as a silane coupling agent.
  • Silanes as described in WO 2008/083241 A1, WO 2008/083242 A1, WO 2008/083243 A1 and WO 2008/083244 A1, can also be used.
  • the proportion of the total amount of further additives is preferably 3 to 150 phr, particularly preferably 3 to 100 phr and very particularly preferably 5 to 80 phr.
  • Zinc oxide (ZnO) can be contained in the abovementioned amounts in the total proportion of the other additives.
  • the conventionally used zinc oxide usually has a BET surface area of less than 10 m 2 /g.
  • a zinc oxide with a BET surface area of 10 to 100 m 2 /g such as so-called “nano-zinc oxides”, can also be used.
  • the rubber mixture according to the invention is preferably used in vulcanized form, in particular in vehicle tires or other vulcanized technical rubber articles.
  • the vulcanization of the rubber mixture according to the invention is preferably carried out in the presence of sulfur and/or sulfur donors with the aid of vulcanization accelerators, it being possible for some vulcanization accelerators to also act as sulfur donors.
  • the accelerator is selected from the group consisting of thiazole accelerators, mercapto accelerators, sulfenamide accelerators, thiocarbamate accelerators, thiuram accelerators, thiophosphate accelerators, thiourea accelerators, xanthogenate accelerators and guanidine accelerators.
  • a sulfenamide accelerator selected from the group consisting of N-cyclohexyl-2-benzothiazole sulfenamide (CBS), N,N-dicyclohexylbenzothiazole-2-sulfenamide (DCBS),
  • benzothiazyl-2-sulfenmorpholide MMS
  • N-tert-butyl-2-benzothiazylsulfenamide TBBS
  • guanidine accelerators such as diphenylguanidine (DPG).
  • vulcanization retarders can be present in the rubber compound.
  • the rubber mixture is preferably prepared by the process customary in the rubber industry, in which a basic mixture with all the components apart from the vulcanization system (e.g. sulfur and substances that influence vulcanization) is first prepared in one or more mixing stages. The finished mixture is produced by adding the vulcanization system in a final mixing stage.
  • a basic mixture with all the components apart from the vulcanization system e.g. sulfur and substances that influence vulcanization
  • the finished mixture is further processed, e.g. by an extrusion process or calendering, and brought into the appropriate shape.
  • the rubber mixture according to the invention is particularly suitable for use in vehicle tires, in particular pneumatic vehicle tires.
  • vehicle tires in particular pneumatic vehicle tires.
  • the use in all tire components is conceivable in principle, in particular in an outer component, in particular and preferably in the horn profile, tread strip and/or the sidewall tread strip.
  • the rubber mixture according to the invention is preferably used at least in the cap.
  • the mixture is brought into the appropriate form, preferably an outer component, as a ready-to-use mixture before vulcanization and applied in the known manner during the production of the vehicle tire blank.
  • the rubber mixture according to the invention for use as other body mixture in vehicle tires is produced as already described.
  • the difference lies in the shaping after the extrusion process or the calendering of the mixture.
  • the forms of the still unvulcanized rubber mixture obtained in this way for one or more different body mixtures are then used to build up a green tire.
  • the rubber mixtures for the inner components of a tire such as essentially squeegee, inner liner (inner layer), core profile, belt, shoulder, belt profile, carcass, bead reinforcement, bead profile, horn profile and bandage, are referred to as body mixture.
  • the still unvulcanized green tire is then vulcanized.
  • the extruded, still unvulcanized mixture is brought into the appropriate shape and is often provided with reinforcements, e.g. synthetic fibers or steel cords, either at the same time or afterwards.
  • reinforcements e.g. synthetic fibers or steel cords
  • a further subject of the present invention is a vehicle tire which has the rubber mixture according to the invention containing the compound according to the invention in at least one component.
  • At least one component of the vulcanized vehicle tire has a vulcanizate of at least one rubber mixture according to the invention. It is known to those skilled in the art that most substances, e.g. B. the contained rubbers are present or can be present in a chemically modified form either after mixing or only after vulcanization.
  • vehicle tires are understood to mean pneumatic vehicle tires and solid rubber tires, including tires for industrial and construction site vehicles, truck, passenger car and two-wheeler tires.
  • the vehicle tire according to the invention preferably has the rubber mixture according to the invention in at least one outer component, the outer component preferably being a tread strip, a side wall and/or a horn profile.
  • the vehicle tire according to the invention can therefore also have the rubber mixture according to the invention containing the compound according to the invention according to formula I), in particular according to formula II), in a plurality of components in an optionally adapted composition.
  • the invention is to be explained in more detail below using exemplary embodiments.
  • the compound of the formula II) as a preferred embodiment of the compound of the formula I) was prepared in the following manner according to a first synthesis route:
  • the two starting substances are commercially available.
  • the substance can be purified by column chromatography on silica gel (cyclohexane/ethyl acetate 10:1 -> 1:1). Light yellow solid.
  • Oxidation induction time tested under laboratory conditions for its potential protective effect as an anti-aging agent was tested under laboratory conditions for its potential protective effect as an anti-aging agent.
  • glass transition temperature Tg -63 °C) at a constant temperature (180°C) until oxidation occurred (starting temperature 35°C, heating to 170°C at a heating rate of 20 K/min (Kelvin per minute), heating to 180° C with a heating rate of 1 K/min; purge gas: nitrogen (N2) with a flow rate of 50 mL/min).
  • N2 nitrogen
  • the oxidation was determined via a peak using DSC (differential scanning calorimetry).
  • the compound according to formula II even achieves a significantly better protective effect, since it takes longer for the polymer to be decomposed by oxygen.
  • the compound according to the invention of the formula I) or formula II) is therefore more environmentally friendly and health-friendly than 6-PPD or other representatives of the substance class, as stated at the outset, and also a better anti-aging agent.
  • the compound according to formula II) was then mixed into an exemplary rubber mixture according to the invention, as shown in Table 3.
  • the resulting example according to the invention is marked E1.
  • a rubber mixture C1 containing 6PPD serves as anti-aging agent instead of the compound of the formula II) with an otherwise identical composition.
  • the amounts in Table 3 are given in units of phr.
  • the mixture was prepared by the process customary in the rubber industry under customary conditions in three stages in a laboratory mixer 300 milliliters to 3 liters volume, in which initially in the first mixing stage (basic mixing stage) all components except the vulcanization system (sulphur and vulcanization-influencing substances) were mixed for 200 to 600 seconds at 145 to 165 °C, target temperatures of 152 to 157 °C . In the second stage, the mixture from the first stage was mixed again. The ready mix was produced by adding the vulcanization system in the third stage (ready mix stage), with mixing at 90 to 120° C. for 180 to 300 seconds.
  • Test specimens were produced from all the mixtures by vulcanization according to t95 to t100 (measured on a moving die rheometer according to ASTM D 5289-12/ISO 6502) under pressure at 160° C. to 170° C.
  • test specimens of both V1 and E1 were aged (70 °C for 28 days in air).
  • V1 The values obtained for V1 were each normalized to 100% as a reference.
  • the compound of the formula II) according to the invention results in improved protection against aging because of important properties such as elongation at break and the rebound resilience at E1 after aging are each at a higher level than at V1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne un composé, un mélange de caoutchouc contenant ledit composé, un pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, un procédé de production du composé et l'utilisation dudit composé en tant qu'agent de protection anti-vieillissement et/ou anti-ozonant et/ou colorant. Le composé selon l'invention présente la formule (I) dans laquelle R1 est choisi dans le groupe constitué par xi) des groupes aromatiques, les groupes aromatiques portant éventuellement des substituants qui sont choisis dans le groupe constitué par les groupes halogène, les groupes cyano, les groupes ester, les groupes cétone, les groupes éther et les groupes thioéther, et xii) des groupes C4 à C12 aliphatiques linéaires, ramifiés et cycliques, et xiii) des combinaisons de groupes aromatiques et de groupes C1 à C12 aliphatiques.
EP22738540.8A 2021-07-23 2022-06-14 Composé, mélange de caoutchouc contenant ledit composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation dudit composé comme agent anti-vieillissement et/ou anti-ozonant et/ou colorant Pending EP4373677A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021207928.8A DE102021207928A1 (de) 2021-07-23 2021-07-23 Verbindung, Verfahren zu deren Herstellung sowie Verwendung der Verbindung als Alterungsschutzmittel und/oder Ozonschutzmittel und/oder Farbstoff
PCT/DE2022/200131 WO2023001341A1 (fr) 2021-07-23 2022-06-14 Composé, mélange de caoutchouc contenant ledit composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation dudit composé comme agent anti-vieillissement et/ou anti-ozonant et/ou colorant

Publications (1)

Publication Number Publication Date
EP4373677A1 true EP4373677A1 (fr) 2024-05-29

Family

ID=82458513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22738540.8A Pending EP4373677A1 (fr) 2021-07-23 2022-06-14 Composé, mélange de caoutchouc contenant ledit composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation dudit composé comme agent anti-vieillissement et/ou anti-ozonant et/ou colorant

Country Status (6)

Country Link
EP (1) EP4373677A1 (fr)
JP (1) JP2024529394A (fr)
KR (1) KR20240058842A (fr)
CN (1) CN117693430A (fr)
DE (1) DE102021207928A1 (fr)
WO (1) WO2023001341A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3478010A (en) * 1966-04-06 1969-11-11 Hoechst Ag Azo dyestuffs of the acridone series
EP1679315A1 (fr) 1997-08-21 2006-07-12 General Electric Company Agents de couplage à base de mercaptosilanes bloqués, utiles dans des caoutchoucs à charge
GB0027151D0 (en) * 2000-11-07 2000-12-27 Clariant Int Ltd Hetero-anellated ortho-aminophenols
GB0113435D0 (en) * 2001-06-04 2001-07-25 Amersham Pharm Biotech Uk Ltd Acridone derivatives as labels for fluorescence detection of target materials
US7968634B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing silated core polysulfides
US7968635B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing free-flowing filler compositions
US7968633B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing free-flowing filler compositions
US7968636B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing silated cyclic core polysulfides
WO2010033360A1 (fr) * 2008-09-19 2010-03-25 1/3 Absolute Science, Inc. Procédés de traitement d'une affection liée à une toxine botulique chez un sujet
DE102019212916A1 (de) * 2019-08-28 2021-03-04 Continental Reifen Deutschland Gmbh Vernetzbare Kautschukmischung, Vulkanisat und Fahrzeugreifen

Also Published As

Publication number Publication date
JP2024529394A (ja) 2024-08-06
DE102021207928A1 (de) 2023-02-09
WO2023001341A1 (fr) 2023-01-26
CN117693430A (zh) 2024-03-12
KR20240058842A (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
EP3645307B1 (fr) Silane, mélange de caoutchouc contenant le silane et pneumatique de véhicule qui comprend le mélange de caoutchouc dans au moins un élément
EP4222146B1 (fr) Composé de phénothiazine, préparation et utilisation de celui-ci dans des mélanges de caoutchouc et des pneumatiques de véhicule comme agent anti-vieillissement, anti-oxydant, anti-ozonant et colorant
EP4373677A1 (fr) Composé, mélange de caoutchouc contenant ledit composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation dudit composé comme agent anti-vieillissement et/ou anti-ozonant et/ou colorant
EP3765469B1 (fr) Silane, mélange de caoutchouc contenant le silane et pneumatique de véhicule qui comprend le mélange de caoutchouc dans au moins un élément
EP4373883A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation du composé comme agent de protection contre le vieillissement et/ou agent antiozonant et/ou colorant
WO2023001338A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation du composé comme agent de protection contre le vieillissement et/ou agent antiozonant et/ou colorant
WO2023098953A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation du composé comme agent anti-vieillissement et/ou anti-oxydant et/ou colorant
EP4373678A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comportant au moins un élément comprenant le mélange de caoutchouc, procédé de préparation du composé, et utilisation du composé en tant qu'agent de protection contre le vieillissement et/ou antiozonant et/ou colorant
DE102019217621A1 (de) Silan, Kautschukmischung enthaltend das Silan und Fahrzeugreifen, der die Kautschukmischung in wenigstens einem Bauteil aufweist sowie Verfahren zur Herstellung des Silans
WO2023098954A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé, et utilisation du composé en tant qu'agent de résistance au vieillissement et/ou antioxydant
WO2023198253A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de préparation du composé, et utilisation du composé en tant qu'agent anti-vieillissement et/ou antioxydant
WO2023198254A1 (fr) Composé, sa préparation et son utilisation dans des mélanges de caoutchouc et pneus de véhicule, en tant qu'agent anti-vieillissement, antioxydant et/ou agent colorant
EP4190856A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de production du composé et utilisation du composé en tant qu'agent antivieillissement et/ou agent anti-oxydant
EP3730500B1 (fr) Silane, mélange caoutchouteux contenant le silane et pneu de véhicule comportant le mélange caoutchouteux dans au moins un composant ainsi que procédé de fabrication de silane
WO2023143677A1 (fr) Composé, mélange de caoutchouc contenant le composé, pneu de véhicule comprenant le mélange de caoutchouc dans au moins un composant, procédé de préparation du composé, et utilisation du composé en tant qu'agent anti-vieillissement et/ou antioxydant
DE102020212507A1 (de) Verbindung, Kautschukmischung enthaltend die Verbindung, Fahrzeugreifen, der die Kautschukmischung in wenigstens einem Bauteil aufweist, Verfahren zur Herstellung der Verbindung sowie Verwendung der Verbindung als Alterungsschutzmittel und/oder Antioxidationsmittel und/oder Farbstoff
DE102021213723A1 (de) Verbindung, Kautschukmischung enthaltend die Verbindung, Fahrzeugreifen, der die Kautschukmischung in wenigstens einem Bauteil aufweist, Verfahren zur Herstellung der Verbindung sowie Verwendung der Verbindung als Alterungsschutzmittel und/oder Antioxidationsmittel und/oder Farbstoff
EP3730499A1 (fr) Silane, mélange caoutchouteux contenant le silane et pneu de véhicule comportant le mélange caoutchouteux dans au moins un composant ainsi que procédé de fabrication de silane
DE102019217623A1 (de) Silan, Kautschukmischung enthaltend das Silan und Fahrzeugreifen, der die Kautschukmischung in wenigstens einem Bauteil aufweist sowie Verfahren zur Herstellung des Silans
EP3760670A1 (fr) Mélange de caoutchouc et pneu

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR