EP4256729A1 - Procede de controle de la retrodiffusion d'un signal ambiant, dispositif pour la mise en oeuvre dudit procede de controle - Google Patents

Procede de controle de la retrodiffusion d'un signal ambiant, dispositif pour la mise en oeuvre dudit procede de controle

Info

Publication number
EP4256729A1
EP4256729A1 EP21839240.5A EP21839240A EP4256729A1 EP 4256729 A1 EP4256729 A1 EP 4256729A1 EP 21839240 A EP21839240 A EP 21839240A EP 4256729 A1 EP4256729 A1 EP 4256729A1
Authority
EP
European Patent Office
Prior art keywords
transmitter device
ambient
signal
ambient signal
called
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21839240.5A
Other languages
German (de)
English (en)
Inventor
Dinh Thuy Phan Huy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
Orange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange SA filed Critical Orange SA
Publication of EP4256729A1 publication Critical patent/EP4256729A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter

Definitions

  • the present invention belongs to the general field of telecommunications. It relates more particularly to a method for controlling the backscatter of an ambient signal transmitted by a transmitting source. It also relates to a transmitter device configured to implement said control method as well as an ambient backscatter communication system comprising said transmitter device.
  • the invention finds a particularly advantageous application, although in no way limiting, for applications of the "Internet of Things” type ("Internet of Things” or loT in the Anglo-Saxon literature), in particular in the context of communications called “ terminal to terminal” (“device-to-device communications” or even “D2D communications” in the Anglo-Saxon literature).
  • Ambient backscatter communication technology is well known today. The technical principles on which this technology is based are described, in particular, in the document: “Ambient Backscatter Communications: A Contemporary Survey”, N. Van Huynh, D. Thai Hoang, X. Lu, D. Niyato, P. Wang , D. In Kim, IEEE Communications Surveys & tutorials, vol. 20, no. 4, p. 2889-2922, Fourthquarter 2018.
  • the backscattering of an ambient signal takes place between a transmitting device and a receiving device.
  • the ambient signal concerned corresponds to a radio signal emitted, permanently or else recurrently, in a given frequency band by a source distinct from said transmitter and receiver devices.
  • a source distinct from said transmitter and receiver devices.
  • it can be a television signal, a mobile phone signal (3G, 4G, 5G), a Wi-Fi signal, a WiMax signal, etc.
  • the transmitter device uses the ambient signal to send data to said receiver device. More particularly, the transmitter device reflects the ambient signal towards the receiver device, optionally modulating it by selectively connecting an antenna which equips it to distinct impedances.
  • the signal thus reflected is called a “backscattered signal”, and is intended to be decoded by the receiver device (i.e. the receiver device extracts from the backscattered signal information transmitted by the transmitter device, for example in the form of bits).
  • the transmitter device when the transmitter device is excessively illuminated by the source (i.e. when the electromagnetic power received by the transmitter device from the source, via the ambient signal, is very high), the coverage of the latter is high. .
  • This has the effect of increasing the probability that the coverage of the transmitting device overlaps that of another transmitting device.
  • such a superimposition is a source of mutual interference between the transmitting devices concerned. Consequently, the probability that the decoding of this information is compromised increases.
  • the transition from a traditional mode to said backscattering mode takes place conditionally.
  • a criterion consisting in checking, on the receiving device side, whether the quality of reception of a backscattered signal is sufficient to ensure correct decoding of information transmitted by the transmitting device. If the criterion is verified, the passage from the traditional mode to the said backscatter mode is validated (sending of a message from the receiver device to the transmitter device to signify this validation). It is therefore understood that the fact of authorizing the use of ambient backscattering only under conditions makes it possible to control the coverage of the transmitting device (absence of ambient backscattering if the quality of reception is insufficient).
  • the evaluation of the criterion requires the implementation, by the receiver device, of complex calculations aimed at decoding the backscattered ambient signal (extraction of information in the backscattered signal by implementing attenuation processing interference). These complex calculations are moreover carried out whatever the final decision, namely validation or not of a switch to the backscattering mode.
  • the present invention aims to remedy all or part of the drawbacks of the prior art, in particular those set out above, by proposing a solution which makes it possible to control the coverage of a transmitter device in a simpler way than the solutions of the prior art. Consequently, the solution proposed by the invention also makes it possible to more easily control the selective implementation of a communication by ambient backscatter.
  • the invention relates to a method for controlling the ambient backscattering of a signal, called “ambient signal”, emitted by a transmitter device.
  • Said method comprises a so-called “current phase” phase implemented by a transmitter device configured to backscatter said ambient signal and comprising steps of: - acquisition of a measurement, called “current measurement”, of electromagnetic power received from the transmitter device via the ambient signal received,
  • coverage distance a distance that is reached given, called “target value”, of reception quality of a signal obtained by ambient backscattering of the ambient signal, is included in a given interval, said coverage distance being defined according to said current measurement and said target value,
  • the method according to the invention therefore proposes that it be the transmitter device which alone controls its coverage via said evaluation step.
  • the transmitter device carries out, on the basis of the current measurement acquired, calculations allowing it to assess whether the theoretical coverage distance in which the target value of the reception quality is reached ("achievable received quality in Anglo-Saxon literature) remains included in the given interval.
  • the transmitter device thus performs a simulation of the coverage that it is able to provide when it is illuminated by the source under conditions which cause it to acquire said current measurement.
  • the transmitter device is able to control its coverage on its own, without the assistance of another device, as is done in the state of the art.
  • the transmitter device therefore does not require, from any other device, confirmation as to the possibility of implementing the backscatter of the ambient signal.
  • control method may also comprise one or more of the following characteristics, taken in isolation or in all technically possible combinations.
  • said target value is a value of any one of the following quantities:
  • the ambient signal is characterized by:
  • said coverage distance is also defined as a function of the ratio between said first and second power spectral densities.
  • Such provisions make it possible to take account of variations in the conditions of illumination of the transmitter device by the transmitter device. In this way, the transmitter device can achieve finer control over its coverage, and therefore a fortiori also over the possibility of backscattering of the ambient signal.
  • the transmitter device is configured to backscatter said ambient signal to at least one receiver device, said receiver device being configured to decode said backscattered ambient signal, said transmitter and receiver devices being respectively characterized by antenna gains G_TX and G_RX, said coverage distance also being defined as a function of said antenna gains G_TX and G_RX.
  • said method comprises, before the implementation of said current phase, a preliminary experimental phase during which the transmitter device is fixed and comprising steps of acquisition, by the transmitter device , of a measurement, called “reference measurement”, of electromagnetic power received from a transmitter device emitting a signal, called “experimental ambient signal”,
  • said experimental preliminary phase further comprising, during the execution of said ambient backscattering step, a search for a location at which the backscattered experimental ambient signal is received by the receiver device with a reception quality reaching said target value, the distance separating the receiver device from the transmitter device when such a location has been found being called the "reference distance" and said coverage distance also being defined as a function of said reference measurement and said reference distance.
  • Such provisions allow the transmitter device to carry out an evaluation of the criterion from an alternative analytical expression with respect to that which can be used when the antenna gains G_TX, G_RX are given.
  • said current phase further comprises a step of determining the coverage distance, said at least one verification carried out during the evaluation of the criterion consisting of a direct verification of the belonging of the coverage distance determined to said interval.
  • the interval associated with the coverage distance comprises a lower limit and an upper limit, said current phase further comprising steps of:
  • minimum power an electromagnetic power
  • maximum power an electromagnetic power
  • the transmitter device is mobile at a speed V between instants at which said steps of acquisition and evaluation of said current phase are executed, the evaluation of the criterion also consisting in verifying whether the duration separating said instants of execution is sufficiently small compared to the ratio ⁇ /V, where ⁇ corresponds to the wavelength of the carrier frequency of the ambient signal, so that the electromagnetic power received by the transmitting device from of the transmitting device via the ambient signal is substantially constant during said duration.
  • the invention relates to a computer program comprising instructions for the implementation of at least the steps of the current phase of a control method according to the invention when said program is executed. by a computer.
  • This program can use any programming language, and be in the form of source code, object code, or intermediate code between source code and object code, such as in a partially compiled form, or in no any other desirable shape.
  • the invention relates to an information or recording medium readable by a computer on which is recorded a computer program according to the invention.
  • the information or recording medium can be any entity or device capable of storing the program.
  • the medium may comprise a storage means, such as a Flash type memory, for example a USB key or an SSD (“Solid State Drive”) disk, such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or alternatively a magnetic recording medium, such as a hard disk, for example a hard disk HDD (“Hard Disk Drive”).
  • a storage means such as a Flash type memory, for example a USB key or an SSD (“Solid State Drive”) disk, such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or alternatively a magnetic recording medium, such as a hard disk, for example a hard disk HDD (“Hard Disk Drive”).
  • a storage means such as a Flash type memory, for example a USB key or an SSD (“Solid State Drive”) disk, such as a ROM, for example a CD ROM or a microelectronic circuit
  • the information or recording medium can be a transmissible medium such as an electrical or optical signal, which can be conveyed via an electrical or optical cable, by radio or by other means.
  • the program according to the invention can in particular be downloaded from an Internet-type network.
  • the information or recording medium may be an integrated circuit in which the program is incorporated, the circuit being adapted to execute or to be used in the execution of the method in question.
  • the invention relates to a transmitter device for controlling the ambient backscatter of a signal, called “ambient signal”, emitted by a transmitter device.
  • Said transmitter device is configured to backscatter said ambient signal and comprises:
  • an acquisition module configured to acquire a measurement, called "current measurement", of electromagnetic power received from the transmitter device via the ambient signal received
  • an evaluation module configured to evaluate a criterion consisting of at least verifying whether a distance, called “coverage distance”, counted from a position occupied by the transmitter device during the acquisition of the current measurement and which a given value, called “target value”, of reception quality of a signal obtained by ambient backscattering of the ambient signal is reached, is included in a given interval, said coverage distance being defined as a function of said current measurement and said target value,
  • control module configured to implement the backscatter/not implement the backscatter of the ambient signal if said criterion is satisfied/not satisfied.
  • the invention relates to an ambient backscatter communication system, said system comprising a transmitter device configured to transmit an ambient signal and a transmitter device according to the invention.
  • FIG. 1 schematically represents, in its environment, a particular embodiment of a communication system by ambient backscatter according to the invention
  • FIG. 2 schematically represents an example of hardware architecture of a transmitter device according to the invention belonging to the communication system of FIG. 1;
  • FIG. 3 represents, in the form of a flowchart, a particular mode of a control method according to the invention, as it is implemented by the transmitter device of FIG. 2;
  • FIG. 4 represents, in the form of a flowchart, another particular mode of the control method according to the invention.
  • FIG. 5 in the form of a flowchart, yet another particular mode of the control method according to the invention.
  • FIG. 1 schematically represents, in its environment, a particular embodiment of a system 10 for communication by ambient backscatter according to the invention.
  • the communication system 10 comprises a transmitter device, also called “source” SO, configured to transmit, according to a transmission frequency F_E included in a given frequency band called “band d 'emission', a radioelectric signal called an "ambient signal".
  • the emission of the ambient signal is carried out for example permanently or else recurrently.
  • radioelectric signal reference is made here to an electromagnetic wave propagating by non-wired means, the frequencies of which are included in the traditional spectrum of radioelectric waves (a few hertz to several hundred gigahertz).
  • the ambient signal is a 4G mobile telephony signal transmitted in the transmission band [811 MHz, 821 MHz] by the source SO.
  • the invention remains applicable to other types of radio signals, such as for example a mobile telephone signal other than 4G (for example 2G, 3G, 5G), a Wi-Fi signal, a WiMax signal, a DVB-T signal, etc.
  • a mobile telephone signal other than 4G for example 2G, 3G, 5G
  • Wi-Fi for example
  • WiMax for example
  • DVB-T DVB-T signal
  • no limitation is attached to the ambient radio signal that can be considered in the context of the present invention as long as the latter can be used to communicate by ambient backscatter.
  • the communication system 10 also comprises a transmitter device D_TX and a receiver device D_RX respectively configured in order to communicate with each other by ambient backscatter from the ambient signal emitted by the source SO. It should be noted that, in accordance with the invention, the transmitter D_TX and receiver D_RX devices are distinct from each other as well as from the source SO.
  • the communication system 10 comprises a single transmitter device D_TX and a single receiver device D_RX. It should however be specified that the invention is also applicable to a communication system comprising a plurality of transmitting devices and/or a plurality of transmitting devices, the developments necessary for such a generalization being able to be implemented without difficulty by man. of career.
  • communication by ambient backscatter consists of the exploitation of the ambient signal, by the transmitter device D_TX, to send information data to said receiver device D_RX, such as for example an identification data specific to said transmitter device D_TX.
  • the D_TX transmitter device is equipped with an antenna (not shown in Figure 1) configured, in a manner known per se, to receive the ambient signal but also to backscatter it to the D_RX receiver device . It should however be noted that the invention remains applicable in the case where the transmitter device D_TX comprises a plurality of antennas.
  • the transmission of the backscattered signal by the transmitter device D_TX is carried out by variation of the backscattering of the ambient signal, this variation being based on the possibility that the transmitter device T to modify the impedance presented to the antenna which equips it, according to the information datum to be transmitted.
  • the transmitter device D_TX can be associated with operating states depending on the impedance which is presented to the antenna with which it is fitted.
  • these states are a so-called “backscatter” state (the transmitter device T can backscatter the ambient signal), as well as a contrary state called “non-backscatter” (the transmitter device T cannot backscatter the ambient signal, or, in other words, is "transparent" to the ambient signal).
  • the impedance associated with the backscatter state typically corresponds to zero or infinite impedance, whereas the impedance associated with the non-backscatter state typically corresponds to the complex conjugate of the characteristic impedance of the antenna in the medium considered propagation and at the considered frequency.
  • the invention is not limited to this ideal case in which only two states respectively perfectly backscattering using and perfectly non-backscattering would be considered. Indeed, the invention also remains applicable in the case where at least two states (first state and second state) are not perfectly backscattering/non-backscattering, since the variation of the used backscattering waves is perceptible by the receiver device D_RX when it is positioned at an appropriate distance from the transmitting device D_TX.
  • An information datum intended to be transmitted by the transmitter device D_TX, by means of the backscattered signal, is conventionally encoded by means of a set of symbols, comprising for example a so-called “high” symbol (bit of value “ 1”), or else a so-called “low” symbol (bit with value “0”).
  • the transmission of such information data can therefore be carried out, in a manner known per se, by alternating between said backscatter and non-backscatter states, each of said states being dedicated to the transmission of a symbol of a particular type (e.g. high symbol for backscatter state and low symbol for non-backscatter state, or vice versa).
  • an information datum is transported to the receiver device D_RX by modulation of the waves of the ambient signal (i.e. by retromodulation).
  • the receiver device D_RX is also equipped with a reception antenna (not shown in the figures) configured to receive signals coming directly from the source SO as well as backscattered signals coming from the D_TX transmitter device. It should however be noted that the invention remains applicable in the case where the transmitter device D_TX comprises a plurality of antennas.
  • the source SO is a base station
  • the transmitter device D_TX (respectively the receiver device D_RX) is a cell phone, for example of the smartphone type, or a touch pad, or a personal digital assistant, or even a personal computer , etc.
  • the source SO (respectively the transmitter device D_TX) is a cell phone, for example of the smartphone type, or a touch pad, or a personal digital assistant, or even a personal computer, etc.
  • the receiver device D_RX is a base station
  • the transmitter device D_TX and the receiver device D_RX are all three cellular telephones, for example of the smartphone type,
  • the source SO is a home gateway (also called “Internet box") emitting a Wi-Fi signal
  • the transmitter device D_TX (respectively the receiver device D_RX) is a cell phone, for example of the smartphone type, or a touch pad , or a personal digital assistant, or even a personal computer, etc., capable of communicating according to the Wi-Fi protocol.
  • the processing aimed at backscattering the ambient signal are conventionally carried out by the transmitter device D_TX (respectively the receiver device D_RX), by implementing a backscattering method (respectively a decoding method) not shown in the figures.
  • the transmitter device D_TX (respectively the receiver device D_RX) comprises for example one or more processors and storage means (magnetic hard disk, electronic memory, optical disk, etc.) in which data are stored and a computer program, in the form of a set of program code instructions to be executed to implement the backscatter method (respectively the decoding method).
  • processors and storage means magnetic hard disk, electronic memory, optical disk, etc.
  • computer program in the form of a set of program code instructions to be executed to implement the backscatter method (respectively the decoding method).
  • the transmitter device D_TX (respectively the receiver device D_RX) also comprises one or more programmable logic circuits, of the FPGA, PLD, etc. type, and/or specialized integrated circuits (ASIC), and/or a set of discrete electronic components, etc. adapted to implement the backscatter method (respectively the decoding method).
  • the transmitter device D_TX also comprises one or more programmable logic circuits, of the FPGA, PLD, etc. type, and/or specialized integrated circuits (ASIC), and/or a set of discrete electronic components, etc. adapted to implement the backscatter method (respectively the decoding method).
  • ASIC specialized integrated circuits
  • the transmitter device D_TX (respectively the receiver device D_RX) comprises a set of means configured in software (specific computer program) and/or hardware (FPGA, PLD, ASIC, etc.) to implement the backscatter method (respectively the decoding method).
  • software specific computer program
  • FPGA field-programmable gate array
  • PLD PLD
  • ASIC application-specific integrated circuit
  • the decoding of the backscattered signal it is known that this can only be implemented if the variation in electromagnetic power, called “power difference” E_P, received by the receiver device D_RX depending on whether the transmitter device D_TX is in a backscattering or non-backscattering state is, in absolute value, greater than a determined threshold, referred to as the “power threshold” S_P.
  • said power threshold S_P determines the value of the power difference E_P from which the receiver device D_RX is able to decode a signal backscattered by the transmitter device D_TX. Consequently, it is understood that the power threshold S_P is representative of a desired reception quality for the backscattered signal.
  • the power threshold S_P can be defined in different ways.
  • the power threshold S_P is defined from a value of a signal to noise ratio "SNR_RX" (acronym of the English expression "Signal to Noise Radio") on the receiver device side D_RX.
  • the power threshold S_P is defined from a value of a signal-to-noise plus interference ratio "SINR_RX" (acronym of the English expression “Signal to Interference plus Radio Noise” ) on the D_RX receiving device side.
  • SINR_RX signal-to-noise plus interference ratio
  • the power threshold S_P is representative of a desired reception quality for the backscattered signal. Therefore, the quantities from which the power threshold S_P can be set (SNR_RX, SINR_RX, BER_RX, etc.) also inherit this characteristic. In other words, the fact of setting a value, called “target value” VAL_C, for such a quantity on the receiver device side D_RX makes it possible to define an expected quality of reception for the backscattered signal.
  • the quantity chosen to evaluate the quality of reception of the backscattered signal is the signal-to-noise ratio SNR_RX.
  • the target value VAL_C considered below corresponds to a value of said signal-to-noise ratio SNR_RX.
  • the signal-to-noise ratio SNR_RX is conventionally defined as follows: expression in which:
  • - P(D_RX) is the electromagnetic power received by the receiver device D_RX at its antenna and from the transmitter device D_TX,
  • - P_NOISE(D_RX) is a coefficient corresponding to the adaptation losses at the level of the transmitter device D_RX.
  • the target value VAL_C can itself be formulated analytically by means of the Friis equation. More specifically, we have that: expression and in which:
  • - P(D_TX) is the electromagnetic power received by the transmitter device D_TX at its antenna and from the source SO
  • - P_NOISE(D_TX) is a coefficient corresponding to the adaptation losses at the level of the transmitter device D_TX
  • - r is a power transmission coefficient (between 0 and 1) of the transmitter device D_TX.
  • r is defined according to the impedance of the antenna equipping the transmitter device D_TX,
  • - G_RX is the gain of the antenna equipping the receiver device D_RX
  • - G_TX is the gain of the antenna fitted to the transmitter device D_TX
  • - d is the distance separating the transmitting device D_TX from the receiving device D_RX.
  • the coefficient P(D_TX)/P_NOISE(D_TX) corresponds to a value (denoted “VAL_M” below) of the signal-to-noise ratio on the transmitter device side D_TX.
  • This signal-to-noise ratio is for its part denoted “SNR_TX” in the remainder of the description.
  • the analytical expression given above for the target value VAL_C of the signal to noise ratio SNR_RX is an expression in which all the parameters which could theoretically be taken into account. Indeed, in this analytical expression, it is considered that the respective antennas of the transmitter D_TX and receiver D_RX devices are correctly aligned in terms of polarization of the electromagnetic field. It would nevertheless be possible to generalize this analytical expression by adding (in the rightmost member between square brackets) a multiplicative coefficient corresponding to the polarization efficiency.
  • the spectral density (expressed in Watts per Hertz) of the ambient signal remains substantially constant over time.
  • first instant a first spectral density DSP1 in an instant, called "first instant", in which a measurement of the quantity P(D_TX) is acquired
  • the distance d considered in the analytical expression given above corresponds to the distance, counted from the transmitter device D_TX, at which said target value VAL_C of the signal-to-noise ratio SNR_RX is reached.
  • said distance d represents the coverage of the transmitter device D_RX for a target value fixed at VAL_C.
  • said distance d is therefore called “coverage distance”, as denoted “D_COUV”.
  • the transmitter device D_TX is associated with a coverage constraint.
  • This coverage constraint corresponds to an interval I_COUV in which the coverage distance D_COUV must be comprised so that the backscattering of the ambient signal, by said transmitter device D_TX, is implemented. It is therefore understood that the fact of imposing such a coverage constraint, in order to decide whether the ambient backscatter must be implemented or not, ultimately amounts to exercising control over said ambient backscatter.
  • the transmitter device D_TX is configured not only to backscatter the ambient signal, as has already been mentioned previously, but also to carry out processing aimed at controlling the implementation of said backscattering of the ambient signal, by implementing steps of a control method according to the invention.
  • the lower D_MIN and upper D_MAX bounds of the interval I_COUV associated with said coverage constraint are calculated.
  • the lower limit D_MIN is deduced from the upper limit D_MAX by application of a tolerance coefficient.
  • a tolerance coefficient can for example correspond to a multiplicative coefficient (eg: D_MAX ⁇ 0.9).
  • D_MAX multiplicative coefficient
  • D_MIN and D_MAX limits can be defined according to the context in which the invention is implemented.
  • the upper limit D_MAX can be chosen to be substantially equal to one meter.
  • Such a value makes it possible to ensure that a receiver device will decode the signal backscattered by a transmitter device only when it is close to the latter (i.e. at a distance between said lower D_MIN and upper D_MAX terminals). In this way, mutual interference between transmitting devices is minimized at the receiving device, which increases the probability of achieving correct decoding.
  • the fact of considering that the upper limit D_MAX is substantially equal to one meter also applies advantageously when a large number of receiver devices are located in the environment of the transmitter device(s) implementing the control method according to the invention. Indeed, in this case, this makes it possible to limit the probability that a backscattered signal will be decoded by a receiver device not intended to receive said backscattered signal. The security of communications between two devices is therefore reinforced.
  • the upper limit D_MAX can be increased with respect to the previous examples, and be for example chosen substantially equal to ten meters. In this way, the communication range (and therefore the coverage) of a transmitter device is advantageously increased.
  • FIG. 2 schematically represents an example of hardware architecture of the transmitter device D_TX belonging to the system 10 of FIG. 1, for the implementation of said control method.
  • the transmitter device D_TX has the hardware architecture of a computer.
  • the transmitter device D_TX comprises, in particular, a processor 1, a random access memory 2, a read only memory 3 and a non-volatile memory 4. It also comprises a communication module 5.
  • the read only memory 3 of the transmitter device D_TX constitutes a recording medium in accordance with the invention, readable by the processor 1 and on which is recorded a computer program PROG in accordance with the invention, comprising instructions for the execution of at least some of the steps of the control method according to the invention.
  • the PROG program defines functional modules of the D_TX transmitter device, which relies on or controls the hardware elements 1 to 5 of the D_TX transmitter device mentioned above, and which include in particular:
  • an acquisition module MOD_ACQ configured to acquire an electromagnetic power measurement received from the source SO via the ambient signal
  • a determination module MOD_DET configured to determine the coverage distance D_COUV in accordance with the analytical expression mentioned above (said coverage distance D_COUV being counted from a position occupied by the transmitter device D_TX during the acquisition of said measurement and at which the target value VAL_C is reached, the coefficient VAL_M being calculated according to said acquired measurement),
  • an evaluation module MOD_EVAL configured to evaluate a CRIT criterion consisting of at least checking whether the coverage distance D_COUV is included in the interval I_COUV,
  • control module MOD_CONT configured to implement the backscatter/not to implement the backscatter of the ambient signal if said criterion CRIT is satisfied/not satisfied.
  • the communication module 5 notably allows the transmitter device D_TX to communicate with the receiver device D_RX, and for this purpose incorporates the antenna fitted to said transmitter device D_TX.
  • the communication module 5 is also configured to allow the transmitter device D_TX to communicate with devices other than the receiver device D_RX, such as for example with the SO source, following any technically conceivable communication protocol.
  • the acquisition module MOD_ACQ comprises an acquisition chain connected to a sensitive element configured to provide an analog electrical signal representative of the measured electromagnetic power.
  • said sensitive element corresponds to the antenna fitted to the transmitter device D_RX.
  • Said acquisition chain comprises for example an acquisition card configured to condition said electrical signal.
  • the conditioning implemented by the acquisition card comprises for example, in a manner known per se, an amplification and/or a filtering and/or a current-power conversion.
  • the configuration of such an acquisition module MOD_ACQ is well known to those skilled in the art, and is therefore not detailed here further.
  • the CRIT criterion can comprise one or more conditions to be verified, including in particular the condition according to which the coverage distance D_COUV belongs to the interval I_COUV.
  • the criterion CRIT includes a single condition to be verified (it is therefore the aforementioned condition relating to the coverage distance D_COUV).
  • the implementation of such an example turns out to be preferred when the transmitter device D_TX is fixed. Indeed, it is understood that the fact of considering the transmitter device D_TX as being fixed makes it possible to guarantee that the conditions of illumination of the latter by the source SO do not vary over time (except in the event of modification of the spectral density of the ambient signal, this aspect being dealt with above).
  • the criterion CRIT comprises two conditions to be verified.
  • a first relating to said coverage distance D_COUV (this first condition is identical to that mentioned in the preceding example), and a second aimed at taking account of a mobility of the transmitter device D_TX.
  • the transmitter device D_TX is mobile at a speed V between instants at which the acquisition module MOD_ACQ acquires a measurement of electromagnetic power coming from the source SO and the module d
  • the MOD_EVAL evaluation evaluates the CRIT criterion.
  • said second condition of the CRIT criterion consists in verifying whether the duration separating said instants is sufficiently low compared to the ⁇ /V ratio, so that the electromagnetic power received by the transmitter device D_TX from the source SO via the ambient signal is substantially constant during said duration. In other words, it is a question of guaranteeing that the conditions of illumination of the transmitter device D_TX remain stable over time, at the very least during said duration.
  • said speed V can for example correspond to a speed defined in a telecommunications standard. According to another example, said speed V corresponds to a typical speed of movement for the transmitter device D_TX (example: a speed of the order of 3 km/h for a smartphone in the possession of a walking user).
  • said speed V corresponds to data that can be stored in the storage means of the transmitter device D_TX during its design, such as for example in its non-volatile memory. 4.
  • said speed V is data that can be stored by an ancillary device, such as for example a server storing a database, the transmitting device D_TX having access to this parameter thus stored by exchanging messages with said auxiliary device.
  • the transmitter device D_TX is equipped with means configured to carry out measurements of its displacement speed V.
  • Such means comprise for example an accelerometer.
  • the transmitter device D_TX remains fixed over time. It is also considered that the criterion CRIT comprises a single condition to be checked, namely the condition according to which the distance of coverage D_COUV belongs to the interval I_COUV.
  • the evaluation of the criterion CRIT requires, in the present embodiment, to calculate the coverage distance D_COUV in accordance with the analytical expression given previously.
  • This analytical expression notably involves the coefficients ⁇ , r, G_TX and G_RX which may, in whole or in part, be defined in a telecommunications standard or even be measured in the factory.
  • the transmitter device D_TX is aware of these coefficients when it evaluates the criterion CRIT by means of its module MOD_EVAL.
  • all or part of said coefficients ⁇ , r, G_TX and G_RX can be stored in storage means of the transmitter device D_TX during its design, or else in an ancillary device.
  • FIG. 3 represents, in the form of a flowchart, a particular mode of the control method according to the invention, as it is implemented by the transmitter device D_TX of FIG. 2.
  • the particular mode of FIG. 3 relates to a so-called “current phase” phase E20 of the control method.
  • This current phase E20 comprises a plurality of steps, and may optionally be preceded, according to other modes of implementation and as described later, by a preliminary phase during which various quantities can be determined so that the evaluation of the distance of coverage D_COUV is carried out according to an analytical expression different from that given above.
  • the coverage distance D_COUV is defined according to the expression considered so far, namely:
  • the transmitter device D_TX is in the non-backscattering state when the control method is implemented.
  • said current phase E20 includes a step E20_1 of acquiring a measurement, called “current measurement” M_CUR, of electromagnetic power received from the source SO via the ambient signal.
  • Said step E20_1 is implemented by the acquisition module MOD_ACQ equipping the transmitter device D_TX.
  • Said current phase E20 also includes a step E20_2 for determining the coverage distance D_COUV.
  • Said step E20_2 is implemented by the determination module MOD_DET equipping the transmitter device D_TX.
  • step 30 more particularly comprises:
  • a sub-step E20_2_l of determining the value VAL_M of the signal-to-noise ratio on the transmitter device side D_TX from the current measurement M_CUR (this involves dividing M_CUR by P_NOISE(D_TX)).
  • Said determination of the value VAL_M is implemented by a determination sub-module (not shown in the figures) of the determination module MOD_DET,
  • Said calculation of D_COUV is implemented by a calculation sub-module (not shown in the figures) of the determination module MOD_DET.
  • said current phase E20 includes a step E20_3 for evaluating the criterion CRIT.
  • Said step E20_3 is implemented by the evaluation module MOD_EVAL equipping the transmitter device D_TX.
  • said step E20_3 consists in verifying that the coverage distance D_COUV determined in step E20_2 belongs to the interval I_COUV, that is to say is between the limits D_MIN and D_MAX.
  • said current phase E20 comprises a step E20_4 of backscattering of the ambient signal.
  • Said step E20_4 is implemented by the control module MOD_CONT equipping the transmitter device D_TX.
  • the step E20_4 consists in implementing the backscattering of the ambient signal by the transmitter device D_TX. Therefore, the module of control makes it possible to cause the transmitter device D_TX to pass selectively from the non-backscatter state to the backscatter state (and vice versa) as a function of an information datum that said transmitter device D_TX wishes to communicate to the receiver device D_RX.
  • said current phase E20 comprises a step E20_5 of absence of ambient backscattering of the ambient signal.
  • said step E20_5 is implemented by the control module MOD_CONT equipping the transmitter device D_TX.
  • step E20_5 consists in maintaining the transmitter device D_TX in this non-backscattering state. backscatter.
  • step E20_4 the transmitter device D_TX passes from the backscattering state to the non-backscattering state by means of its control module MOD_CONT.
  • step E20_MIN for determining an electromagnetic power, called “minimum power" P_MIN, which, if it is received by the transmitter device D_TX from the source SO, allows said target value VAL_C to be reached at a distance equal to said lower limit D_MIN,
  • the verification carried out during the evaluation of the criterion CRIT (step E20_3) consists, in this alternative mode of implementation, in verifying whether the current measurement M_CUR is between said minimum powers P_MIN and maximum P_MAX.
  • the transmitter device D_TX is associated with a coverage constraint corresponding to an interval whose limits are P_MIN and P_MAX, and in which the power received from the source SO must be included for ambient signal backscatter to be implemented.
  • FIG. 5 represents, in the form of a flowchart, another particular mode of implementation of the control method according to the invention.
  • control method comprises a preliminary experimental phase E10, for example carried out in the factory, during which the transmitter device D_TX is fixed and comprising a plurality of steps.
  • said preliminary phase E10 initially comprises a step E10_1 of transmitting an ambient signal, called “experimental ambient signal” S_AMB_EXP, by a transmitter device D_EMI.
  • Said transmitter device D_EMI can for example correspond to the source SO considered previously, or even to a device distinct from said source SO.
  • the preliminary phase E10 also includes a step E10_2 of acquisition, by the transmitter device D_TX, of a measurement, called “reference measurement” M_REF, of electromagnetic power received from the transmitter device D_EMI via the experimental ambient signal S_AMB_EXP.
  • the implementation of said step E10_2 is similar to that of step E20_1 described previously.
  • said reference measurement M_REF can for example be used for the determination, by the transmitter device D_TX, of a value VAL_REF of a signal-to-noise ratio on the transmitter device side D_TX.
  • the preliminary phase E10 also includes a step E10_3 of ambient backscattering of the experimental ambient signal S_AMB_EXP by the transmitter device D_TX and to a receiver device D_REC configured to decode said backscattered experimental ambient signal.
  • the receiver device D_REC can for example correspond to the receiver device D_RX mentioned above.
  • Said preliminary phase E10 further comprises, during the execution of said ambient backscattering step E10_3, a search for a location LOC at which the backscattered experimental ambient signal S_AMB_EXP is received by the receiver device D_REC with a quality of reception reaching said target value VAL_C.
  • This search for the location LOC is for example implemented thanks to an operator in charge of moving the receiver device D_REC, so that once moved, said receiver device D_REC can carry out an acquisition of a measurement of electromagnetic power received from the transmitter device D_TX and determining, on the basis of this power measurement, the signal-to-noise ratio at its level. Consequently, when the target value VAL_C is reached after a displacement, the receiver device D_REC can for example transmit a message intended for the transmitter device D_TX to inform it thereof.
  • the receiver device D_REC corresponds to a mechatronic device (for example a robot) comprising drive means (such as for example an electric or thermal motor, etc.) as well as displacement means (such as for example wheels, caterpillars, etc.) allowing it to move autonomously or even remotely.
  • drive means such as for example an electric or thermal motor, etc.
  • displacement means such as for example wheels, caterpillars, etc.
  • the distance separating the receiver device D_REC from the transmitter device D_TX when such a location LOC has been found is called the “reference distance” D_REF.
  • the transmitter device D_TX then becomes aware of this reference distance D_REF, no limitation being attached to the way in which this awareness is carried out (examples: reference distance D_REF noted by the operator then stored in memory means of the transmitter device D_TX; receiver device D_REC equipped with means for measuring distance, the reference distance D_REF then being measured by said receiver device D_REC which communicates it to the transmitter device D_TX).
  • said coverage distance D_COUV is defined as follows:
  • D_COUV is, in this mode of implementation, defined according to:
  • the control method again comprises, in the mode of implementation of FIG. 5, a current phase E20.
  • This current phase E20 is similar to those described above with reference to FIGS. 3 and 4, except that the expression used to determine the coverage distance D_COUV or expressing the power received by the transmitter device D_TX coming from the source SO is the expression given above in which the quantities D_REF and VAL_REF intervene.
  • a receiver device D_RX belongs to the system 10 for communication by ambient backscatter. It is then understood that the fact of considering the presence of such a receiver device D_RX makes it possible to envisage a particularly advantageous application of the invention in the context of D2D communications, the transmitter device D_TX now being able to control its coverage, at the difference from what is practiced in the state of the art.
  • the invention nevertheless remains applicable to the case where said system 10 does not include a receiver device D_RX during the implementation of said current phase, the transmitter device D_TX therefore contenting itself, for example, with backscatter the ambient signal without specifically seeking to transmit an information datum that is specific to it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un procédé de contrôle de la rétrodiffusion d'un signal ambiant émis par un dispositif émetteur (SO). Ledit procédé comporte des étapes mises en œuvre par un dispositif transmetteur (D_TX) configuré pour rétrodiffuser ledit signal ambiant : - acquisition (E20_1) d'une mesure (M_CUR) de puissance reçue en provenance du dispositif émetteur, - évaluation (E20_3) d'un critère (CRIT) consistant à au moins vérifier si une distance (D_COUV), comptée à partir d'une position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et en laquelle est atteinte une valeur donnée (VAL_C) de qualité de réception d'un signal obtenu par rétrodiffusion du signal ambiant, est comprise dans un intervalle donné (I_COUV), ladite distance de couverture étant définie en fonction de ladite mesure et de ladite valeur, - si ledit critère est satisfait, rétrodiffusion ambiante (E20_4) du signal ambiant, - si ledit critère n'est pas satisfait, absence de rétrodiffusion ambiante (E20_5) du signal ambiant.

Description

Description
Titre de l'invention : Procédé de contrôle de la rétrodiffusion d'un signal ambiant, dispositif pour la mise en œuvre dudit procédé de contrôle
Technique antérieure
[0001] La présente invention appartient au domaine général des télécommunications. Elle concerne plus particulièrement un procédé de contrôle de la rétrodiffusion d'un signal ambiant émis par une source émettrice. Elle concerne également un dispositif transmetteur configuré pour mettre en œuvre ledit procédé de contrôle ainsi qu'un système de communication par rétrodiffusion ambiante comportant ledit dispositif transmetteur. L'invention trouve une application particulièrement avantageuse, bien que nullement limitative, pour des applications du type « Internet des objets » (« Internet of Things » ou loT dans la littérature anglo- saxonne), en particulier dans le cadre de communications dites de « terminal à terminal » (« device-to-device communications » ou encore « D2D communications » dans la littérature anglo-saxonne).
[0002] La technologie de communication par rétrodiffusion ambiante est aujourd'hui bien connue. Les principes techniques sur lesquels s'appuie cette technologie sont décrits, notamment, dans le document : « Ambient Backscatter Communications: A Contemporary Survey », N. Van Huynh, D. Thai Hoang, X. Lu, D. Niyato, P. Wang, D. In Kim, IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2889-2922, Fourthquarter 2018.
[0003] De manière conventionnelle, la rétrodiffusion d'un signal ambiant s'effectue entre un dispositif transmetteur et un dispositif récepteur. Le signal ambiant concerné correspond à un signal radio émis, de manière permanente ou bien de manière récurrente, dans une bande fréquentielle donnée par une source distincte desdits dispositifs transmetteur et récepteur. Par exemple, il peut s'agir d'un signal de télévision, d'un signal de téléphonie mobile (3G, 4G, 5G), d'un signal Wi-Fi, d'un signal WiMax, etc.
[0004] Pour communiquer avec le dispositif récepteur, le dispositif transmetteur exploite le signal ambiant pour envoyer des données vers ledit dispositif récepteur. Plus particulièrement, le dispositif transmetteur réfléchit le signal ambiant vers le dispositif récepteur, éventuellement en le modulant en connectant de manière sélective une antenne qui l'équipe à des impédances distinctes. Le signal ainsi réfléchi est dit « signal rétrodiffusé », et est destiné à être décodé par le dispositif récepteur (i.e. le dispositif récepteur extrait du signal rétrodiffusé une information transmise par le dispositif transmetteur, par exemple sous forme de bits).
[0005] Le fait qu'aucune onde radio supplémentaire (au sens d'une onde autre que celle issue du signal ambiant) n'est émise par le dispositif transmetteur rend la technologie de rétrodiffusion ambiante particulièrement attractive. En effet, le coût énergétique d'une communication est ainsi réduit, ce qui est notamment d'importance dans le contexte actuel de l'IoT où chaque objet de la vie courante a vocation à devenir un objet communicant.
[0006] Il n'en reste pas moins que l'exploitation conventionnelle de la technologie de communication par rétrodiffusion ambiante s'effectue sans contrôle de la couverture que le dispositif transmetteur est en mesure de fournir (la source émet indépendamment de la couverture fournie par le dispositif transmetteur). Par « couverture », on fait référence ici à l'étendue de la zone au sein de laquelle est atteinte une qualité de réception (« achievable received quality » dans la littérature anglo-saxonne) du signal rétrodiffusé suffisante pour garantir un décodage correct, par un éventuel dispositif récepteur positionné dans ladite zone, d'une information transmise par le dispositif transmetteur.
[0007] Le fait que la couverture du dispositif transmetteur ne puisse être contrôlée est problématique. En effet, lorsque le dispositif transmetteur n'est pas suffisamment éclairé par la source (i.e. lorsque la puissance électromagnétique reçue par le dispositif transmetteur en provenance de la source, via le signal ambiant, est faible), la couverture de ce dernier est restreinte. Il en résulte alors, pour le dispositif transmetteur, une dépense inutile d'énergie puisque l'information qu'il peut transmettre par rétrodiffusion ambiante ne pourra être décodée qu'avec une très faible probabilité.
[0008] A contrario, lorsque le dispositif transmetteur est excessivement éclairé par la source (i.e. lorsque la puissance électromagnétique reçue par le dispositif transmetteur en provenance de la source, via le signal ambiant, est très importante), la couverture de ce dernier est grande. Ceci a pour effet d'augmenter la probabilité que la couverture du dispositif transmetteur se superpose à celle d'un autre dispositif transmetteur. Or, une telle superposition est source d'interférences mutuelles entre les dispositifs transmetteurs concernés. En conséquence, la probabilité que le décodage de ces informations soit compromis augmente.
[0009] Plus récemment, il a été proposé d'élargir le cadre d'utilisation conventionnel de la technologie de communication par rétrodiffusion ambiante en l'intégrant à la mise en œuvre de communications D2D. De manière plus détaillée, il s'agit d'implémenter, en complément de modes traditionnels de communications (mode ascendant/descendant dans lequel un terminal/une station de base émet des données à destination d'une station de base/d'un terminal), un autre mode, dit « mode de rétrodiffusion », dans lequel deux terminaux communiquent entre eux par rétrodiffusion ambiante. L'ajout de de mode de rétrodiffusion permet avantageusement de décharger le réseau utilisé pour les modes traditionnels, et donc de sauvegarder des ressources fréquentielles.
[0010] Le passage d'un mode traditionnel audit mode de rétrodiffusion s'effectue sous condition. En particulier, il est possible d'évaluer, lors d'une phase préliminaire, un critère consistant à vérifier, côté dispositif récepteur, si la qualité de réception d'un signal rétrodiffusé est suffisante pour assurer un décodage correct d'une information transmise par le dispositif transmetteur. Si le critère est vérifié, le passage du mode traditionnel audit mode de rétrodiffusion est validé (envoi d'un message du dispositif récepteur au dispositif transmetteur pour signifier cette validation). On comprend dès lors que le fait d'autoriser l'utilisation de la rétrodiffusion ambiante uniquement sous condition permet de maitriser la couverture du dispositif transmetteur (absence de rétrodiffusion ambiante si la qualité de réception est insuffisante). Pour plus de détails concernant ces aspects, l'homme du métier peut se rapporter au document : « Wireless-Powered Device-to-Device Communications with ambient backscattering : performance modeling and analysis », X. Lu, H. Jiang, D. Niyato, D. I. Kim, Z. Han, IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 1528-1544, March 2018.
[0011] Il n'en reste pas moins que ces développements récents (évaluation d'un critère côté dispositif récepteur dans le cadre de communications D2D) restent complexe à mettre en œuvre. En effet, des échanges de signaux sont nécessaires entre le dispositif transmetteur et le dispositif récepteur pour confirmer que le mode de rétrodiffusion puisse être mis en œuvre (le système formé des dispositifs transmetteur et récepteur est un système de contrôle en boucle fermée étant donné la transmission d'un signal rétrodiffusé et l'envoi du message de validation relatif audit signal rétrodiffusé).
[0012] Par ailleurs, l'évaluation du critère nécessite la mise en œuvre, par le dispositif récepteur, de calculs complexes visant à décoder le signal ambiant rétrodiffusé (extraction d'information dans le signal rétrodiffusé en mettant en œuvre des traitements d'atténuation d'interférences). Ces calculs complexes sont d'ailleurs réalisés quel que soit la décision finale, à savoir validation ou non d'un passage vers le mode de rétrodiffusion.
Exposé de l'invention
[0013] La présente invention a pour objectif de remédier à tout ou partie des inconvénients de l'art antérieur, notamment ceux exposés ci-avant, en proposant une solution qui permette de contrôler la couverture d'un dispositif transmetteur de manière plus simple que les solutions de l'art antérieur. En conséquence, la solution proposée par l'invention permet également de contrôler plus facilement la mise en œuvre sélective d'une communication par rétrodiffusion ambiante.
[0014] A cet effet, et selon un premier aspect, l'invention concerne un procédé de contrôle de la rétrodiffusion ambiante d'un signal, dit « signal ambiant », émis par un dispositif émetteur. Ledit procédé comporte une phase dite « phase courante » mise en œuvre par un dispositif transmetteur configuré pour rétrodiffuser ledit signal ambiant et comprenant des étapes de : - acquisition d'une mesure, dite « mesure courante », de puissance électromagnétique reçue en provenance du dispositif émetteur via le signal ambiant reçu,
- évaluation d'un critère consistant à au moins vérifier si une distance, dite « distance de couverture », comptée à partir d'une position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et en laquelle est atteinte une valeur donnée, dite « valeur cible », de qualité de réception d'un signal obtenu par rétrodiffusion ambiante du signal ambiant, est comprise dans un intervalle donné, ladite distance de couverture étant définie en fonction de ladite mesure courante et de ladite valeur cible,
- si ledit critère est satisfait, rétrodiffusion ambiante du signal ambiant,
- si ledit critère n'est pas satisfait, absence de rétrodiffusion ambiante du signal ambiant.
[0015] Le procédé selon l'invention propose donc que ce soit le dispositif transmetteur qui contrôle seul sa couverture via ladite étape d'évaluation.
[0016] Plus particulièrement, le dispositif transmetteur réalise, sur la base de la mesure courante acquise, des calculs lui permettant d'évaluer si la distance de couverture théorique en laquelle est atteinte la valeur cible de la qualité de réception (« achievable received quality » dans la littérature anglo-saxonne) reste comprise dans l'intervalle donné. Autrement dit, le dispositif transmetteur réalise ainsi une simulation de la couverture qu'il est en mesure de fournir lorsqu'il est illuminé par la source dans des conditions qui font qu'il acquiert ladite mesure courante.
[0017] Ainsi, grâce au procédé de l'invention, le dispositif transmetteur est en mesure de contrôler tout seul sa couverture, sans l'assistance d'un autre dispositif, comme cela est réalisé dans l'état de la technique. Le dispositif transmetteur ne nécessite donc pas, de la part d'un quelconque autre dispositif, d'une confirmation quant à la possibilité de mettre en œuvre la rétrodiffusion du signal ambiant.
[0018] Dans des modes particuliers de mise en œuvre, le procédé de contrôle peut comporter en outre l'une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles.
[0019] Dans des modes particuliers de mise en œuvre, ladite valeur cible est une valeur de l'une quelconque des quantités suivantes :
- un rapport signal sur bruit,
- un rapport signal sur bruit plus interférence,
- un taux d'erreur de décodage.
[0020] Dans des modes particuliers de mise en œuvre, le signal ambiant est caractérisé par :
- une première densité spectrale lorsque l'étape d'acquisition de la mesure courante est exécutée,
- une deuxième densité spectrale, distincte de ladite première densité spectrale, lorsque l'étape d'évaluation du critère est exécutée.
En outre, ladite distance de couverture est également définie en fonction du rapport entre lesdites première et deuxième densités spectrales de puissance.
[0021] De telles dispositions permettent de tenir compte de variations dans les conditions d'illumination du dispositif transmetteur par le dispositif émetteur. De cette manière, le dispositif transmetteur peut réaliser un contrôle plus fin sur sa couverture, et donc a fortiori aussi sur l'éventualité d'une rétrodiffusion du signal ambiant.
[0022] Dans des modes particuliers de mise en œuvre, le dispositif transmetteur est configuré pour rétrodiffuser ledit signal ambiant vers au moins un dispositif récepteur, ledit dispositif récepteur étant configuré pour décoder ledit signal ambiant rétrodiffusé, lesdits dispositifs transmetteur et récepteur étant respectivement caractérisés par des gains d'antenne G_TX et G_RX, ladite distance de couverture étant également définie en fonction desdits gains d'antenne G_TX et G_RX.
[0023] Le fait de connaître les valeurs de tels gains d'antennes permet au dispositif transmetteur de réaliser une évaluation du critère à partir d'une expression analytique dérivée de l'équation de Friis.
[0024] Dans des modes particuliers de mise en œuvre, ledit procédé comporte, avant la mise en œuvre de ladite phase courante, une phase préliminaire expérimentale au cours de laquelle le dispositif transmetteur est fixe et comprenant des étapes de acquisition, par le dispositif transmetteur, d'une mesure, dite « mesure de référence », de puissance électromagnétique reçue en provenance d'un dispositif émetteur émettant un signal, dit « signal ambiant expérimental »,
- rétrodiffusion ambiante du signal ambiant expérimental par le dispositif transmetteur et vers un dispositif récepteur configuré pour décoder ledit signal ambiant expérimental rétrodiffusé, ladite phase préliminaire expérimentale comprenant en outre, lors de l'exécution de ladite étape de rétrodiffusion ambiante, une recherche d'un emplacement en lequel le signal ambiant expérimental rétrodiffusé est reçu par le dispositif récepteur avec une qualité de réception atteignant ladite valeur cible, la distance séparant le dispositif récepteur du dispositif transmetteur lorsqu'un tel emplacement a été trouvé étant dite « distance de référence » et ladite distance de couverture étant également définie en fonction de ladite mesure de référence et de ladite distance de référence.
[0025] De telles dispositions permettent au dispositif transmetteur de réaliser une évaluation du critère à partir d'une expression analytique alternative par rapport à celle pouvant être utilisée lorsque les gains d'antennes G_TX, G_RX sont donnés.
[0026] Dans des modes particuliers de mise en œuvre, ladite phase courante comporte en outre une étape de détermination de la distance de couverture, ladite au moins une vérification effectuée lors de l'évaluation du critère consistant en une vérification directe de l'appartenance de la distance de couverture déterminée audit intervalle.
[0027] Dans des modes particuliers de mise en œuvre, l'intervalle associé à la distance de couverture comporte une borne inférieure et une borne supérieure, ladite phase courante comportant en outre des étapes de :
- détermination d'une puissance électromagnétique, dite « puissance minimale », qui, si elle est reçue par le dispositif transmetteur en provenance du dispositif émetteur, permet que ladite valeur cible soit atteinte à une distance comptée à partir de la position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et égale à ladite borne inférieure,
- détermination d'une puissance électromagnétique, dite « puissance maximale », qui, si elle est reçue par le dispositif transmetteur en provenance du dispositif émetteur, permet que ladite valeur cible soit atteinte à une distance comptée à partir de la position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et égale à ladite borne supérieure, ladite au moins une vérification effectuée lors de l'évaluation du critère consistant à vérifier si la mesure courante est comprise entre lesdites puissances minimale et maximale.
[0028] Dans des modes particuliers de mise en œuvre, le dispositif transmetteur est mobile suivant une vitesse V entre des instants en lesquels sont exécutées lesdites étapes d'acquisition et d'évaluation de ladite phase courante, l'évaluation du critère consistant également à vérifier si la durée séparant lesdits instants d'exécution est suffisamment faible devant le rapport À/V, où À correspond à la longueur d'onde de la fréquence porteuse du signal ambiant, de sorte que la puissance électromagnétique reçue par le dispositif transmetteur en provenance du dispositif émetteur via le signal ambiant est sensiblement constante pendant ladite durée.
[0029] Le fait d'inclure de réaliser une telle vérification (en sus de la vérification portant sur l'appartenance de la distance de couverture à l'intervalle donné) permet de s'assurer que les conditions d'illumination du dispositif transmetteur demeurent stables dans le temps malgré le fait que ce dernier soit en mouvement.
[0030] Selon un deuxième aspect, l'invention concerne un programme d'ordinateur comportant des instructions pour la mise en œuvre d'au moins les étapes de la phase courante d'un procédé de contrôle selon l'invention lorsque ledit programme est exécuté par un ordinateur.
[0031] Ce programme peut utiliser n'importe quel langage de programmation, et être sous la forme de code source, code objet, ou de code intermédiaire entre code source et code objet, tel que dans une forme partiellement compilée, ou dans n'importe quelle autre forme souhaitable. [0032] Selon un troisième aspect, l'invention concerne un support d'informations ou d'enregistrement lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur selon l'invention.
[0033] Le support d'informations ou d'enregistrement peut être n'importe quelle entité ou dispositif capable de stocker le programme. Par exemple, le support peut comporter un moyen de stockage, telle qu'une mémoire de type Flash par exemple une clé USB ou un disque SSD (« Solid State Drive »), tel qu'une ROM, par exemple un CD ROM ou une ROM de circuit microélectronique, ou encore un moyen d'enregistrement magnétique, tel qu'un disque dur, par exemple un disque dur HDD (« Hard Disk Drive »).
[0034] D'autre part, le support d'informations ou d'enregistrement peut être un support transmissible tel qu'un signal électrique ou optique, qui peut être acheminé via un câble électrique ou optique, par radio ou par d'autres moyens. Le programme selon l'invention peut être en particulier téléchargé sur un réseau de type Internet.
[0035] Alternativement, le support d'informations ou d'enregistrement peut être un circuit intégré dans lequel le programme est incorporé, le circuit étant adapté pour exécuter ou pour être utilisé dans l'exécution du procédé en question.
[0036] Selon un quatrième aspect, l'invention concerne un dispositif transmetteur pour le contrôle de la rétrodiffusion ambiante d'un signal, dit « signal ambiant », émis par un dispositif émetteur. Ledit dispositif transmetteur est configuré pour rétrodiffuser ledit signal ambiant et comprend :
- un module d'acquisition configuré pour acquérir une mesure, dite « mesure courante », de puissance électromagnétique reçue en provenance du dispositif émetteur via le signal ambiant reçu,
- un module d'évaluation configuré pour évaluer un critère consistant à au moins vérifier si une distance, dite « distance de couverture », comptée à partir d'une position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et en laquelle est atteinte une valeur donnée, dite « valeur cible », de qualité de réception d'un signal obtenu par rétrodiffusion ambiante du signal ambiant, est comprise dans un intervalle donné, ladite distance de couverture étant définie en fonction de ladite mesure courante et de ladite valeur cible,
- un module de contrôle configuré pour mettre en œuvre la rétrodiffusion/ne pas mettre en œuvre la rétrodiffusion du signal ambiant si ledit critère est satisfait/n'est pas satisfait.
[0037] Selon un cinquième aspect, l'invention concerne un système de communication par rétrodiffusion ambiante, ledit système comportant un dispositif émetteur configuré pour émettre un signal ambiant et un dispositif transmetteur selon l'invention. Brève description des dessins
[0038] D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
[Fig. 1] la figure 1 représente schématiquement, dans son environnement, un mode particulier de réalisation d'un système de communication par rétrodiffusion ambiante selon l'invention ;
[Fig. 2] la figure 2 représente schématiquement un exemple d'architecture matérielle d'un dispositif transmetteur selon l'invention appartenant au système de communication de la figure 1 ;
[Fig. 3] la figure 3 représente, sous forme d'ordinogramme, un mode particulier d'un procédé de de contrôle selon l'invention, tel qu'il est mis en œuvre par le dispositif transmetteur de la figure 2 ;
[Fig. 4] la figure 4 représente, sous forme d'ordinogramme, un autre mode particulier du procédé de contrôle selon l'invention ;
[Fig. 5] la figure 5, sous forme d'ordinogramme, encore un autre mode particulier du procédé de contrôle selon l'invention.
Description des modes de réalisation
[0039] La figure 1 représente schématiquement, dans son environnement, un mode particulier de réalisation d'un système 10 de communication par rétrodiffusion ambiante selon l'invention.
[0040] Tel qu'illustré par la figure 1, le système 10 de communication comporte un dispositif émetteur, encore dit « source » SO, configuré pour émettre, selon une fréquence d'émission F_E comprise dans une bande fréquentielle donnée dite « bande d'émission », un signal radioélectrique dit « signal ambiant ». L'émission du signal ambiant s'effectue par exemple de manière permanente ou bien de manière récurrente.
[0041] Pour la suite de la description, et tel qu'illustré par la figure 1, on considère de manière nullement limitative le cas où le signal ambiant n'est émis que par une seule source. Le choix consistant à considérer une seule source est ici réalisé à des fins de simplification de la description uniquement. Aussi, aucune limitation n'est attachée au nombre de sources pouvant être considérée dans le cadre de la présente invention, les développements qui suivent étant en effet généralisables sans difficulté par l'homme du métier au cas d'une pluralité de sources non cohérentes entre elles.
[0042] Par « signal radioélectrique », on fait référence ici à une onde électromagnétique se propageant par des moyens non filaires, dont les fréquences sont comprises dans le spectre traditionnel des ondes radioélectriques (quelques hertz à plusieurs centaines de gigahertz). [0043] A titre d'exemple nullement limitatif, le signal ambiant est un signal de téléphonie mobile 4G émis dans la bande d'émission [811 MHz, 821 MHz] par la source SO.
[0044] Il convient toutefois de préciser que l'invention reste applicable à d'autres types de signaux radioélectriques, comme par exemple un signal de téléphonie mobile autre que 4G (par exemple 2G, 3G, 5G), un signal Wi-Fi, un signal WiMax, un signal DVB-T, etc. D'une manière générale, aucune limitation n'est attachée au signal radio ambiant pouvant être considéré dans le cadre de la présente invention dès lors que ce dernier peut être exploité pour communiquer par rétrodiffusion ambiante.
[0045] Le système 10 de communication comporte également un dispositif transmetteur D_TX ainsi qu'un dispositif récepteur D_RX respectivement configurés afin de communiquer entre eux par rétrodiffusion ambiante à partir du signal ambiant émis par la source SO. Il est à noter que, conformément à l'invention, les dispositifs transmetteur D_TX et récepteur D_RX sont distincts entre eux ainsi que de la source SO.
[0046] Dans la suite de la description, et tel qu'illustré par la figure 1, on considère de manière non limitative que le système 10 de communication comprend un seul dispositif transmetteur D_TX et un seul dispositif récepteur D_RX. Il convient toutefois de préciser que l'invention est également applicable à un système de communication comprenant une pluralité de dispositifs transmetteurs et / ou une pluralité de dispositifs émetteurs, les développements nécessaires pour une telle généralisation pouvant être mis en œuvre sans difficulté par l'homme du métier.
[0047] En outre, et comme cela est décrit plus en détail ultérieurement, rien n'exclut non plus d'envisager le cas où aucun dispositif récepteur n'est présent, dès lors que le dispositif transmetteur D_TX est en mesure de contrôler la couverture qu'il est en mesure de fournir dans le cadre d'une communication par rétrodiffusion ambiante.
[0048] De manière connue en soi, la communication par rétrodiffusion ambiante consiste en l'exploitation du signal ambiant, par le dispositif transmetteur D_TX, pour envoyer une donnée d'information vers ledit dispositif récepteur D_RX, comme par exemple une donnée d'identification propre audit dispositif transmetteur D_TX.
[0049] Dans le présent mode de réalisation, le dispositif transmetteur D_TX est équipé d'une antenne (non représentée sur la figure 1) configurée, de manière connue en soi, pour recevoir le signal ambiant mais aussi le rétrodiffuser vers le dispositif récepteur D_RX. Il convient toutefois de noter que l'invention reste applicable dans le cas où le dispositif transmetteur D_TX comporte une pluralité d'antennes.
[0050] La transmission du signal rétrodiffusé par le dispositif transmetteur D_TX s'effectue par variation de la rétrodiffusion du signal ambiant, cette variation reposant sur la possibilité qu'a le dispositif transmetteur T de modifier l'impédance présentée à l'antenne qui l'équipe, en fonction de la donnée d'information à transmettre.
[0051] Plus particulièrement, le dispositif transmetteur D_TX peut être associé à des états de fonctionnement en fonction de l'impédance qui est présentée à l'antenne dont il est muni. Pour la suite de la description, on considère de manière non limitative que ces états sont un état dit de « rétrodiffusion » (le dispositif transmetteur T peut rétrodiffuser le signal ambiant), ainsi qu'un état contraire dit de « non-rétrodiffusion » (le dispositif transmetteur T ne peut pas rétrodiffuser le signal ambiant, ou, encore dit autrement, est « transparent » au signal ambiant). L'impédance associée à l'état de rétrodiffusion correspond typiquement à une impédance nulle ou infinie, alors que l'impédance associée à l'état de non-rétrodiffusion correspond typiquement au complexe conjugué de l'impédance caractéristique de l'antenne dans le milieu de propagation considéré et à la fréquence considérée.
[0052] Il importe de noter que l'invention ne se limite pas à ce cas idéal dans lequel seuls deux états respectivement parfaitement rétrod iff usant et parfaitement non-rétrodiffusant seraient considérés. En effet, l'invention reste également applicable dans le cas où au moins deux états (premier état et deuxième état) ne sont pas parfaitement rétrodiffusant/non-rétrodiffusant, dès lors que la variation des ondes rétrod iff usées est perceptible par le dispositif récepteur D_RX lorsque celui-ci est positionné à une distance appropriée du dispositif transmetteur D_TX.
[0053] Une donnée d'information destinée à être transmise par le dispositif transmetteur D_TX, au moyen du signal rétrodiffusé, est conventionnellement encodée au moyen d'un jeu de symboles, comprenant par exemple un symbole dit « haut » (bit de valeur « 1 »), ou bien un symbole dit « bas » (bit de valeur « 0 »). La transmission d'une telle donnée d'information peut dès lors s'effectuer, de manière connue en soi, par alternance entre lesdits états de rétrodiffusion et de non-rétrodiffusion, chacun desdits états étant dédié à la transmission d'un symbole d'un type particulier (par exemple symbole haut pour l'état de rétrodiffusion et symbole bas pour l'état de non-rétrodiffusion, ou vice versa). En d'autres termes, une donnée d'information est transportée vers le dispositif récepteur D_RX par modulation des ondes du signal ambiant (i.e. par rétromodulation).
[0054] Dans le présent mode de réalisation, le dispositif récepteur D_RX est également équipé d'une antenne de réception (non représentée sur les figures) configurée pour recevoir des signaux en provenance directe de la source SO ainsi que des signaux rétrodiffusés en provenance du dispositif transmetteur D_TX. Il convient toutefois de noter que l'invention reste applicable dans le cas où le dispositif transmetteur D_TX comporte une pluralité d'antennes.
[0055] D'une manière générale, aucune limitation n'est attachée aux formes structurelles pouvant être prises respectivement par la source SO, le dispositif transmetteur D_TX et le dispositif récepteur D_RX. A titre d'exemples nullement limitatifs, les configurations suivantes sont envisageables (selon la bande fréquentielle d'émission considérée) :
- la source SO est une station de base, et le dispositif transmetteur D_TX (respectivement le dispositif récepteur D_RX) est un téléphone cellulaire, par exemple de type smartphone, ou une tablette tactile, ou un assistant personnel numérique, ou bien encore un ordinateur personnel, etc.
- la source SO (respectivement le dispositif transmetteur D_TX) est un téléphone cellulaire, par exemple de type smartphone, ou une tablette tactile, ou un assistant personnel numérique, ou bien encore un ordinateur personnel, etc., et le dispositif récepteur D_RX est une station de base,
- la source SO, le dispositif transmetteur D_TX et le dispositif récepteur D_RX sont tous trois des téléphones cellulaires, par exemple de type smartphone,
- la source SO est une passerelle domestique (encore dite « box Internet ») émettant un signal Wi-Fi, et le dispositif transmetteur D_TX (respectivement le dispositif récepteur D_RX) est un téléphone cellulaire, par exemple de type smartphone, ou une tablette tactile, ou un assistant personnel numérique, ou bien encore un ordinateur personnel, etc., apte à communiquer suivant le protocole Wi-Fi.
[0056] Les traitements visant à rétrodiffuser le signal ambiant (respectivement à décoder le signal rétrodiffusé) sont classiquement effectués par le dispositif transmetteur D_TX (respectivement le dispositif récepteur D_RX), en mettant en œuvre un procédé de rétrodiffusion (respectivement un procédé de décodage) non représenté sur les figures.
[0057] A cet effet, le dispositif transmetteur D_TX (respectivement le dispositif récepteur D_RX) comporte par exemple un ou plusieurs processeurs et des moyens de mémorisation (disque dur magnétique, mémoire électronique, disque optique, etc.) dans lesquels sont mémorisés des données et un programme d'ordinateur, sous la forme d'un ensemble d'instructions de code de programme à exécuter pour mettre en œuvre le procédé de rétrodiffusion (respectivement le procédé de décodage).
[0058] Alternativement ou en complément, le dispositif transmetteur D_TX (respectivement le dispositif récepteur D_RX) comporte également un ou des circuits logiques programmables, de type FPGA, PLD, etc., et / ou circuits intégrés spécialisés (ASIC), et / ou un ensemble de composants électroniques discrets, etc. adaptés à mettre en œuvre le procédé de rétrodiffusion (respectivement le procédé de décodage).
[0059] En d'autres termes, le dispositif transmetteur D_TX (respectivement le dispositif récepteur D_RX) comporte un ensemble de moyens configurés de façon logicielle (programme d'ordinateur spécifique) et / ou matérielle (FPGA, PLD, ASIC, etc.) pour mettre en œuvre le procédé de rétrodiffusion (respectivement le procédé de décodage). [0060] Les aspects spécifiques concernant les techniques de traitement de signal pour la transmission de données par rétrodiffusion ambiante ainsi que le décodage de ces données sont connus et par exemple détaillés dans le document de N. Van Huynh et al. déjà mentionné auparavant.
[0061] En ce qui concerne plus spécifiquement le décodage du signal rétrodiffusé, il est connu que celui-ci ne peut être mis en œuvre que si la variation de puissance électromagnétique, dite « écart de puissance » E_P, reçue par le dispositif récepteur D_RX selon que le dispositif transmetteur D_TX est dans un état de rétrodiffusion ou de non-rétrodiffusion est, en valeur absolue, supérieure à un seuil déterminé, dit « seuil de puissance » S_P. Autrement dit, ledit seuil de puissance S_P détermine la valeur de l'écart de puissance E_P à partir de laquelle le dispositif récepteur D_RX est apte à décoder un signal rétrodiffusé par le dispositif transmetteur D_TX. Dès lors, on comprend que le seuil de puissance S_P est représentatif de d'une qualité de réception recherchée pour le signal rétrodiffusé.
[0062] Il convient toutefois de noter que bien que le décodage puisse être théoriquement mis en œuvre dès lors que | E_P| > S_P, rien n'exclut qu'une condition de décodage plus restrictive soit imposée au dispositif récepteur D_RX, comme par exemple | E_P| > N x S_P où N est un nombre réel strictement plus grand que 1. Imposer une condition plus restrictive permet d'accroitre la qualité de communication entre les dispositifs transmetteur D_TX et récepteur D_RX, mais cela limite également la quantité de données susceptibles d'être échangées entre ces dispositifs. D'une manière générale, l'homme du métier sait quelle plage de valeurs peut être considérée pour la valeur absolue de l'écart de puissance E_P de sorte que le fonctionnement du système 10 ne soit pas compromis.
[0063] Le seuil de puissance S_P peut être défini de différentes manières. Ainsi, selon un exemple de réalisation, le seuil de puissance S_P est défini à partir d'une valeur d'un rapport signal sur bruit « SNR_RX » (acronyme de l'expression anglo-saxonne « Signal to Noise Radio ») côté dispositif récepteur D_RX.
[0064] Selon un autre exemple, le seuil de puissance S_P est défini à partir d'une valeur d'un rapport signal sur bruit plus interférence « SINR_RX » (acronyme de l'expression anglo- saxonne « Signal to Interference plus Noise Radio ») côté dispositif récepteur D_RX.
[0065] Rien n'exclut toutefois de considérer encore d'autres quantités pour définir ledit seuil de puissance, comme par exemple un taux d'erreur de décodage « BER_RX » (acronyme de l'expression anglo-saxonne « Bit Error Rate »). Concernant ces aspects, l'homme du métier peut se référer au document : « Real-Time Ambient Backscatter Demonstration », K. Rachedi, D. T. Phan-Huy, N. Selmene, A. Ourir, M. Gautier, A. Gati, A. Gal indo- Serra no, R. Fara, J. De Rosny, IEEE INFOCON 2019 Posters and Demos, 1st May 2019, Paris, France. [0066] Comme mentionné auparavant, le seuil de puissance S_P est représentatif d'une qualité de réception recherchée pour le signal rétrodiffusé. Par conséquent, les quantités à partir desquelles le seuil de puissance S_P peut être défini (SNR_RX, SINR_RX, BER_RX, etc.) héritent également de cette caractéristique. Dit encore autrement, le fait de fixer une valeur, dite « valeur cible » VAL_C, pour une telle quantité côté dispositif récepteur D_RX permet de définir une qualité de réception attendue pour le signal rétrodiffusé.
[0067] Pour la suite de la description, on considère que la quantité choisie pour évaluer la qualité de réception du signal rétrodiffusé est le rapport signal sur bruit SNR_RX. Ainsi, au regard de ce qui précède, la valeur cible VAL_C considérée ci-après correspond à une valeur dudit rapport signal sur bruit SNR_RX.
[0068] Il convient toutefois de noter qu'il est possible d'exprimer une quantité parmi un signal sur bruit, un signal sur bruit plus interférence, un taux d'erreur de décodage en fonction d'une autre desdites quantités. Cela s'effectue classiquement au moyen d'une fonction analytique propre aux quantités considérées. Autrement dit, le choix selon lequel ladite qualité de réception est évaluée au moyen du signal sur bruit SNR_RX ne constitue qu'une variante d'implémentation de l'invention, et il est tout à fait équivalent de prendre en compte une quantité autre que le rapport signal sur bruit SNR_RX.
[0069] Le rapport signal sur bruit SNR_RX se définit classiquement de la façon suivante : expression dans laquelle :
- P(D_RX) est la puissance électromagnétique reçue par le dispositif récepteur D_RX au niveau de son antenne et en provenance du dispositif transmetteur D_TX,
- P_NOISE(D_RX) est un coefficient correspondant aux pertes d'adaptation au niveau du dispositif émetteur D_RX.
[0070] La valeur cible VAL_C peut quant à elle être formulée analytiquement au moyen de l'équation de Friis. Plus particulièrement, on a que : expression et dans laquelle :
- P(D_TX) est la puissance électromagnétique reçue par le dispositif transmetteur D_TX au niveau de son antenne et en provenance de la source SO, - P_NOISE(D_TX) est un coefficient correspondant aux pertes d'adaptation au niveau du dispositif transmetteur D_TX,
- À est la longueur d'onde de la fréquence porteuse du signal ambiant,
- r est un coefficient (compris entre 0 et 1) de transmission de puissance du dispositif transmetteur D_TX. Notamment, r est défini en fonction de l'impédance de l'antenne équipant le dispositif transmetteur D_TX,
- G_RX est le gain de l'antenne équipant le dispositif récepteur D_RX,
- G_TX est le gain de l'antenne équipant le dispositif transmetteur D_TX,
- d est la distance séparant le dispositif transmetteur D_TX du dispositif récepteur D_RX.
[0071] A titre informatif, on note que le coefficient P(D_TX)/P_NOISE(D_TX) correspond à une valeur (notée « VAL_M » par la suite) du rapport signal sur bruit côté dispositif transmetteur D_TX. Ce rapport signal sur bruit est quant à lui noté « SNR_TX » dans la suite de la description.
[0072] Il importe de noter que, pour des raisons de simplification de la description, l'expression analytique donnée ci-avant pour la valeur cible VAL_C du rapport signal sur bruit SNR_RX est une expression dans laquelle ne figurent pas tous les paramètres qui pourraient théoriquement être pris en considération. En effet, dans cet expression analytique, il est considéré que les antennes respectives des dispositifs transmetteur D_TX et récepteur D_RX sont correctement alignées en termes de polarisation du champ électromagnétique. Il serait néanmoins possible de généraliser cette expression analytique en ajoutant (dans le membre entre crochet situé le plus à droite) un coefficient multiplicatif correspondant à l'efficacité de polarisation. Ces aspects sont connus de l'homme du métier.
[0073] Egalement pour des raisons de simplification de la description, il est considéré dans le présent mode de réalisation et pour ce qui concerne la formulation analytique de la valeur cible VAL_C, que la densité spectrale (exprimée en Watts par Hertz) du signal ambiant demeure sensiblement constante dans le temps.
[0074] Il n'en reste pas moins que la variation de ladite densité spectrale pourrait également être prise en compte (cela n'est toutefois pas le cas dans la suite de la description). Par exemple, si on suppose que le signal ambiant est caractérisé par :
- une première densité spectrale DSP1 en un instant, dit « premier instant », en lequel une mesure de la quantité P(D_TX) est acquise,
- une deuxième densité spectrale DSP2 pour tout instant supérieur audit premier instant, alors, si la valeur cible VAL_C est calculée ultérieurement audit premier instant, ladite expression analytique devient :
[0075] La distance d considérée dans l'expression analytique donnée ci-dessus correspond à la distance, comptée à partir du dispositif transmetteur D_TX, en laquelle est atteinte ladite valeur cible VAL_C du rapport signal sur bruit SNR_RX. Dit encore autrement, ladite distance d représente la couverture du dispositif transmetteur D_RX pour une valeur cible fixée à VAL_C. Pour la suite de la description, ladite distance d est donc dite « distance de couverture », ainsi que notée « D_COUV ».
[0076] Etant donné les éléments d'écriture considérés ci-avant, il est possible de donner l'expression analytique suivante pour la distance de couverture D_COUV :
[0077] Dans le cadre de la présente invention, le dispositif transmetteur D_TX est associé à une contrainte de couverture. Cette contrainte de couverture correspond à un intervalle I_COUV dans lequel la distance de couverture D_COUV doit être comprise pour que la rétrodiffusion du signal ambiant, par ledit dispositif transmetteur D_TX, soit mise en œuvre. On comprend donc que le fait d'imposer une telle contrainte de couverture, pour décider si la rétrodiffusion ambiante doit être mise en œuvre ou non, revient in fine à exercer un contrôle de ladite rétrodiffusion ambiante.
[0078] A cet effet, le dispositif transmetteur D_TX est configuré non seulement pour rétrodiffuser le signal ambiant, comme cela a déjà été mentionné auparavant, mais également pour réaliser des traitements visant à contrôler la mise en œuvre de ladite rétrodiffusion du signal ambiant, en mettant en œuvre des étapes d'un procédé de contrôle selon l'invention.
[0079] Aucune limitation n'est attachée à la manière dont les bornes inférieure D_MIN et supérieure D_MAX de l'intervalle I_COUV associé à ladite contrainte de couverture sont calculées. Par exemple, une fois la borne supérieure D_MAX choisie, la borne inférieure D_MIN se déduit de la borne supérieure D_MAX par application d'un coefficient de tolérance. Un tel coefficient de tolérance peut par exemple correspondre à un coefficient multiplicatif (ex : D_MAX x 0,9). Bien entendu, rien n'exclut d'envisager d'autres types de coefficients, comme par exemple un coefficient soustractif appliqué à D_MAX. [0080] Dans la pratique, les bornes D_MIN et D_MAX peuvent être définies en fonction du contexte dans lequel l'invention est mise en œuvre.
[0081] Par exemple, s'il est prévu que le procédé de contrôle de l'invention soit mis en œuvre par un grand nombre de dispositifs transmetteurs, la borne supérieure D_MAX peut être choisie sensiblement égale à un mètre. Une telle valeur permet de faire en sorte qu'un dispositif récepteur décodera le signal rétrodiffusé par un dispositif transmetteur uniquement quand il sera proche de ce dernier (i.e. à une distance comprise entre lesdites bornes inférieure D_MIN et supérieure D_MAX). De cette manière, les interférences mutuelles entre dispositifs transmetteurs sont minimisées au niveau du dispositif récepteur, ce qui augmente la probabilité de réalisation d'un décodage correct.
[0082] On note que le fait de considérer que la borne supérieure D_MAX est sensiblement égale à un mètre s'applique également de manière avantageuse quand un grand nombre de dispositifs récepteurs sont situés dans l'environnement du ou des dispositifs transmetteurs mettant en œuvre le procédé de contrôle selon l'invention. En effet, dans ce cas, cela permet de limiter la probabilité qu'un signal rétrodiffusé soit décodé par un dispositif récepteur non destiné à recevoir ledit signal rétrodiffusé. La sécurité des communications entre deux dispositifs s'en trouve donc renforcée.
[0083] D'ailleurs, pour ce type de contexte visant à garantir la sécurité des communications, il est bien entendu possible d'envisager une borne supérieur D_MAX inférieure à un mètre, comme par exemple dix centimètres. Pouvoir envisager une borne supérieur D_MAX aussi petite s'avère particulièrement avantageux pour des applications dans lesquelles les communications sont destinées à se faire sur de très courtes distances, comme par exemple des achats sans contact.
[0084] A l'inverse, et selon un autre exemple, s'il est prévu que le procédé de contrôle de l'invention soit mis en œuvre par un faible nombre de dispositifs transmetteurs, la borne supérieure D_MAX peut être augmentée par rapport aux exemples précédents, et être par exemple choisie sensiblement égale à dix mètres. De cette manière, on augmente avantageusement la portée de communication (et donc la couverture) d'un dispositif transmetteur.
[0085] D'une manière générale, aucune limitation n'est attachée aux valeurs pouvant être prises par lesdites bornes inférieure D_MIN et supérieure D_MAX. L'homme du métier sait en effet quelles valeurs peuvent être envisagées en fonction du contexte d'application de l'invention.
[0086] La figure 2 représente schématiquement un exemple d'architecture matérielle du dispositif transmetteur D_TX appartenant au système 10 de la figure 1, pour la mise en œuvre dudit procédé de contrôle. [0087] Tel qu'illustré par la figure 2, le dispositif transmetteur D_TX dispose de l'architecture matérielle d'un ordinateur. Ainsi, le dispositif transmetteur D_TX comporte, notamment, un processeur 1, une mémoire vive 2, une mémoire morte 3 et une mémoire non volatile 4. Il comporte en outre un module de communication 5.
[0088] La mémoire morte 3 du dispositif transmetteur D_TX constitue un support d'enregistrement conforme à l'invention, lisible par le processeur 1 et sur lequel est enregistré un programme d'ordinateur PROG conforme à l'invention, comportant des instructions pour l'exécution d'au moins une partie des étapes du procédé de contrôle selon l'invention. Le programme PROG définit des modules fonctionnels du dispositif transmetteur D_TX, qui s'appuie ou commande les éléments matériels 1 à 5 du dispositif transmetteur D_TX cités précédemment, et qui comprennent notamment :
- un module d'acquisition MOD_ACQ configuré pour acquérir une mesure de puissance électromagnétique reçue en provenance de la source SO via le signal ambiant,
- un module de détermination MOD_DET configuré pour déterminer la distance de couverture D_COUV conformément à l'expression analytique mentionnée ci-avant (ladite distance de couverture D_COUV étant comptée à partir d'une position occupée par le dispositif transmetteur D_TX lors de l'acquisition de ladite mesure et en laquelle est atteinte la valeur cible VAL_C, le coefficient VAL_M étant quant à lui calculé en fonction de ladite mesure acquise),
- un module d'évaluation MOD_EVAL configuré pour évaluer un critère CRIT consistant à au moins vérifier si la distance de couverture D_COUV est comprise dans l'intervalle I_COUV,
- un module de contrôle MOD_CONT configuré pour mettre en œuvre la rétrodiffusion/ne pas mettre en œuvre la rétrodiffusion du signal ambiant si ledit critère CRIT est satisfait/n'est pas satisfait.
[0089] Le module de communication 5 permet notamment au dispositif transmetteur D_TX de communiquer avec le dispositif récepteur D_RX, et intègre à cet effet l'antenne équipant ledit dispositif transmetteur D_TX. Rien n'exclut cependant d'envisager, suivant d'autres exemples non détaillés ici, que le module de communication 5 soit également configuré pour permettre au dispositif transmetteur D_TX de communiquer avec d'autres dispositifs que le dispositif récepteur D_RX, comme par exemple avec la source SO, suivant tout protocole de communication techniquement envisageable.
[0090] De manière conventionnelle, le module d'acquisition MOD_ACQ comporte une chaine d'acquisition connectée à un élément sensible configuré pour fournir un signal électrique analogique représentatif de la puissance électromagnétique mesurée. Dans le présent exemple de réalisation, ledit élément sensible correspond à l'antenne équipant le dispositif transmetteur D_RX. [0091] Ladite chaine d'acquisition comporte par exemple une carte d'acquisition configurée pour conditionner ledit signal électrique. Le conditionnement mis en œuvre par la carte d'acquisition comporte par exemple, de manière connue en soi, une amplification et/ou un filtrage et/ou une conversion courant-puissance. D'une manière générale, la configuration d'un tel module d'acquisition MOD_ACQ est bien connue de l'homme du métier, et n'est donc pas détaillée ici plus avant.
[0092] Le critère CRIT peut comporter une ou plusieurs conditions à vérifier, dont notamment la condition selon laquelle la distance de couverture D_COUV appartient à l'intervalle I_COUV.
[0093] Ainsi, et selon un premier exemple, le critère CRIT comporte une unique condition à vérifier (il s'agit donc de la condition susmentionnée portant sur la distance de couverture D_COUV). La mise en œuvre d'un tel exemple se révèle être préférée lorsque le dispositif transmetteur D_TX est fixe. En effet, on comprend que le fait de considérer le dispositif transmetteur D_TX comme étant fixe permet de garantir que les conditions d'illumination de ce dernier par la source SO ne varie pas dans le temps (sauf en cas de modification de la densité spectrale du signal ambiant, cet aspect étant traité ci-avant).
[0094] Selon un deuxième exemple, le critère CRIT comporte deux conditions à vérifier. Une première portant sur ladite distance de couverture D_COUV (cette première condition est identique à celle évoquée dans l'exemple précédent), et une deuxième visant à tenir compte d'une mobilité du dispositif transmetteur D_TX. Plus particulièrement, dans cet autre exemple de réalisation, on considère que le dispositif transmetteur D_TX est mobile suivant une vitesse V entre des instants en lesquels le module d'acquisition MOD_ACQ acquiert une mesure de puissance électromagnétique en provenance de la source SO et le module d'évaluation MOD_EVAL évalue le critère CRIT. Dès lors, ladite deuxième condition du critère CRIT consiste à vérifier si la durée séparant lesdits instants est suffisamment faible devant le rapport À/V, de sorte que la puissance électromagnétique reçue par le dispositif transmetteur D_TX en provenance de la source SO via le signal ambiant est sensiblement constante pendant ladite durée. Dit encore autrement, il s'agit de garantir que les conditions d'illumination du dispositif transmetteur D_TX demeurent stables dans le temps, à tout le moins pendant ladite durée.
[0095] On note que ladite vitesse V peut par exemple correspondre à une vitesse définie dans une norme de télécommunications. Selon un autre exemple, ladite vitesse V correspond à une vitesse typique de déplacement pour le dispositif transmetteur D_TX (exemple : une vitesse de l'ordre de 3 km/h pour un smartphone en possession d'un utilisateur qui marche).
[0096] Dans ces exemples (vitesse définie par une norme ou bien vitesse typique), ladite vitesse V correspond à une donnée pouvant être stockée dans des moyens de mémorisation du dispositif transmetteur D_TX lors de sa conception, comme par exemple dans sa mémoire non volatile 4. Alternativement, ladite vitesse V est une donnée pouvant être stockée par un dispositif annexe, comme par exemple un serveur stockant une base de données, le dispositif transmetteur D_TX ayant accès à ce paramètre ainsi stocké par échange de messages avec ledit dispositif annexe.
[0097] Rien n'exclut toutefois de considérer que le dispositif transmetteur D_TX est équipé de moyens configurés pour réaliser des mesures de sa vitesse V de déplacement. De tels moyens comportent par exemple un accéléromètre.
[0098] Pour la suite de la description, et à des fins de simplification de celle-ci, on considère désormais que le dispositif transmetteur D_TX reste fixe dans le temps. On considère également que le critère CRIT comporte une unique condition à vérifier, à savoir la condition selon laquelle la distance de couverture D_COUV appartient à l'intervalle I_COUV.
[0099] On note par ailleurs que l'évaluation du critère CRIT impose, dans le présent mode de réalisation, de calculer la distance de couverture D_COUV conformément à l'expression analytique donnée auparavant. Cette expression analytique fait notamment intervenir les coefficients À, r, G_TX et G_RX qui peuvent, en tout ou partie, être définis dans une norme de télécommunication ou bien encore être mesurés en usine. Autrement dit, le dispositif transmetteur D_TX a connaissance de ces coefficients lorsqu'il évalue le critère CRIT au moyen de son module MOD_EVAL.
[0100] Suivant des considérations similaires à celles évoquées ci-avant concernant la vitesse V, tout ou partie desdits coefficients À, r, G_TX et G_RX peut être stocké dans des moyens de mémorisation du dispositif transmetteur D_TX lors de sa conception, ou bien dans un dispositif annexe.
[0101] D'une manière générale, aucune limitation n'est attachée à la manière dont le dispositif transmetteur D_TX obtient la connaissance desdits coefficients À, r, G_TX et G_RX.
[0102] La figure 3 représente, sous forme d'ordinogramme, un mode particulier du procédé de contrôle selon l'invention, tel qu'il est mis en œuvre par le dispositif transmetteur D_TX de la figure 2.
[0103] Le mode particulier de la figure 3 concerne une phase dite « phase courante » E20 du procédé de contrôle. Cette phase courante E20 comporte une pluralité d'étapes, et peut éventuellement être précédée, selon d'autres modes de mise en œuvre et tel que cela est décrit ultérieurement, d'une phase préliminaire au cours de laquelle diverses quantités peuvent être déterminées de sorte que l'évaluation de la distance de couverture D_COUV s'effectue suivant une expression analytique différente de celle donnée ci-avant. En tout état de cause, pour ce qui concerne la description de la figure 3, on considère que la distance de couverture D_COUV est définie suivant l'expression considérée jusqu'à présent, à savoir :
[0104] Pour la description de la figure 3, on considère également, de manière nullement limitative, que le dispositif transmetteur D_TX est dans l'état de non-rétrodiffusion lorsque le procédé de contrôle est mis en œuvre.
[0105] Tel qu'illustré par la figure 3, ladite phase courante E20 comporte une étape E20_l d'acquisition d'une mesure, dite « mesure courante » M_CUR, de puissance électromagnétique reçue en provenance de la source SO via le signal ambiant. Ladite étape E20_l est mise en œuvre par le module d'acquisition MOD_ACQ équipant le dispositif transmetteur D_TX.
[0106] Ladite phase courante E20 comporte également une étape E20_2 de détermination de la distance de couverture D_COUV. Ladite étape E20_2 est mise en œuvre par le module de détermination MOD_DET équipant le dispositif transmetteur D_TX.
[0107] Dans le mode de mise en œuvre de la figure 3, ladite étape 30 comporte plus particulièrement :
- une sous-étape E20_2_l de détermination de la valeur VAL_M du rapport signal sur bruit côté dispositif transmetteur D_TX à partir de la mesure courante M_CUR (il s'agit de diviser M_CUR par P_NOISE(D_TX)). Ladite détermination de la valeur VAL_M est mise en œuvre par un sous-module de détermination (non représenté sur les figures) du module de détermination MOD_DET,
- une sous-étape E20_2_2 de calcul de la distance de couverture D_COUV à partir de la valeur VAL_M ainsi déterminée. Ledit calcul de D_COUV est mis en œuvre par un sous-module de calcul (non représenté sur les figures) du module de détermination MOD_DET.
[0108] Une fois la distance D_COUV déterminée, ladite phase courante E20 comporte une étape E20_3 d'évaluation du critère CRIT. Ladite étape E20_3 est mise en œuvre par le module de d'évaluation MOD_EVAL équipant le dispositif transmetteur D_TX.
[0109] Dans le présent mode de mise en œuvre, ladite étape E20_3 consiste à vérifier que la distance de couverture D_COUV déterminée à l'étape E20_2 appartient à l'intervalle I_COUV, c'est-à-dire est comprise entre les bornes D_MIN et D_MAX.
[0110] Dès lors, si le critère CRIT est satisfait (i.e. la distance de couverture D_COUV appartient à l'intervalle I_COUV), ladite phase courante E20 comporte une étape E20_4 de rétrodiffusion du signal ambiant. Ladite étape E20_4 est mise en œuvre par le module de contrôle MOD_CONT équipant le dispositif transmetteur D_TX.
[OUI] Ainsi, si le critère CRIT est vérifié, l'étape E20_4 consiste à mettre en œuvre la rétrodiffusion du signal ambiant par le dispositif transmetteur D_TX. Dès lors, le module de contrôle permet de faire passer le dispositif transmetteur D_TX sélectivement de l'état de non- rétrodiffusion à l'état de rétrodiffusion (et vice versa) en fonction d'une donnée d'information que ledit dispositif transmetteur D_TX souhaite communiquer au dispositif récepteur D_RX.
[0112] Rien n'exclut cependant d'envisager que ladite mise en œuvre de la rétrodiffusion consiste à faire passer le dispositif transmetteur D_TX de l'état de non- rétrodiffusion à l'état de rétrodiffusion, de sorte que ledit dispositif transmetteur D_TX demeure dans ledit état de rétrodiffusion.
[0113] A contrario, si le critère CRIT n'est pas satisfait, ladite phase courante E20 comporte une étape E20_5 d'absence de rétrodiffusion ambiante du signal ambiant. Là encore, ladite étape E20_5 est mise en œuvre par le module de contrôle MOD_CONT équipant le dispositif transmetteur D_TX.
[0114] Dans la mesure où le dispositif transmetteur D_TX est dans l'état de non-rétrodiffusion lorsque la phase courante E20 du procédé de contrôle débute, on comprend que ladite étape E20_5 consiste à maintenir le dispositif transmetteur D_TX dans cet état de non-rétrodiffusion.
[0115] Le procédé de contrôle a été décrit jusqu'à présent en considérant que le dispositif transmetteur D_TX est dans l'état de non-rétrodiffusion lorsque début la mise en œuvre des étapes de la phase courante E20. Rien n'exclut cependant d'envisager que les étapes de la phase courante E20 soient mises en œuvre alors que le dispositif transmetteur D_TX est dans l'état de rétrodiffusion. Dès lors, si le critère CRIT est satisfait suite à l'exécution de l'étape E20_4, on peut avoir, suivant des considérations similaires à celles décrites ci-avant, alternance sélective entre lesdits états de non- rétrodiffusion et de rétrodiffusion, ou bien encore maintien du dispositif transmetteur D_TX dans ledit état de rétrodiffusion. A contrario, si le critère CRIT n'est pas satisfait, le dispositif transmetteur D_TX passe de l'état de rétrodiffusion à l'état de non- rétrodiffusion au moyen de son module de contrôle MOD_CONT.
[0116] L'invention a également été décrite jusqu'à présent en considérant que la condition portant sur la distance de couverture D_COUV (appartenant ou non à l'intervalle I_COUV) est vérifiée de manière directe lors de l'évaluation du critère CRIT. Par « vérifiée de manière directe », on fait référence ici au fait qu'il est explicitement vérifié si la distance de couverture D_COUV déterminée lors de l'étape E20_2 est comprise entre les bornes D_MIN et D_MAX de l'intervalle I_COUV.
[0117] Toutefois, l'invention reste également applicable lorsqu'une telle vérification est effectuée de manière indirecte. Par « vérifiée de manière indirecte », on fait référence ici au fait qu'une autre condition portant sur une quantité distincte de ladite distance de couverture D_COUV est vérifiée, le résultat de la vérification de ladite autre condition fournissant un résultat similaire à celui qui serait obtenu si la condition portant sur la distance de couverture D_COUV était vérifiée. [0118] Pour illustrer le principe d'une vérification indirecte de la condition portant sur la distance de couverture D_COUV, on considère, en référence à la figure 4, un mode alternatif de mise en œuvre du procédé de contrôle de l'invention dans lequel le critère CRIT consiste désormais à vérifier une condition portant sur la puissance électromagnétique reçue par le dispositif transmetteur D_TX en provenance de la source SO. Plus particulièrement, et tel qu'illustré par la figure 4, ladite phase courante E20 comporte, dans ce mode alternatif de mise en œuvre et en remplacement de l'étape E20_2 de la figure 3 :
- une étape E20_MIN de détermination d'une puissance électromagnétique, dite « puissance minimale » P_MIN, qui, si elle est reçue par le dispositif transmetteur D_TX en provenance de la source SO, permet que ladite valeur cible VAL_C soit atteinte à une distance égale à ladite borne inférieure D_MIN,
- une étape E20_MAX de détermination d'une puissance électromagnétique, dite « puissance maximale » P_MAX, qui, si elle est reçue par le dispositif transmetteur D_TX en provenance de la source SO, permet que ladite valeur cible VAL_C soit atteinte à une distance égale à ladite borne supérieure D_MAX.
[0119] En outre, la vérification effectuée lors de l'évaluation du critère CRIT (étape E20_3) consiste, dans ce mode alternatif de mise en œuvre, à vérifier si la mesure courante M_CUR est comprise entre lesdites puissances minimale P_MIN et maximale P_MAX. Autrement dit, dans ce mode alternatif de mise en œuvre, le dispositif transmetteur D_TX est associé à une contrainte de couverture correspondant à un intervalle dont les bornes sont P_MIN et P_MAX, et dans lequel la puissance reçue en provenance de la source SO doit être comprise pour que la rétrodiffusion du signal ambiant soit mise en œuvre.
[0120] Les valeurs P_MIN et P_MAX se déduisent de l'expression analytique donnée ci-avant pour la distance de couverture D_COUV, en considérant qu'elles sont respectivement associées auxdites bornes inférieure D_MIN et supérieure D_MAX. Ainsi, on a que : et que : [0121] En définitive, dans ledit mode alternatif de mise en œuvre, le fait de vérifier que la mesure courante M_CUR est comprise entre P_MIN et P_MAX est tout à fait équivalent à vérifier que la distance de couverture D_COUV est comprise entre D_MIN et D_MAX.
[0122] Il importe de noter que la mise en œuvre du procédé selon l'invention ne se limite pas aux modes des figures 3 et 4. En particulier, pour ces modes, il a été considéré que la distance de couverture D_COUV pouvait être déterminée au moyen de l'expression analytique décrite ci- avant. Toutefois, d'autres modes restent envisageables, dans lesquels ladite expression analytique n'est pas utilisée.
[0123] La figure 5 représente, sous forme d'ordinogramme, un autre mode particulier de mise en œuvre du procédé de contrôle selon l'invention.
[0124] Dans le mode de la figure 5, le procédé de contrôle comporte une phase préliminaire expérimentale E10, par exemple réalisée en usine, au cours de laquelle le dispositif transmetteur D_TX est fixe et comprenant une pluralité d'étapes.
[0125] Aussi, ladite phase préliminaire E10 comporte dans un premier temps une étape E10_l d'émission d'un signal ambiant, dit « signal ambiant expérimental » S_AMB_EXP, par un dispositif émetteur D_EMI.
[0126] Ledit dispositif émetteur D_EMI peut par exemple correspondre à la source SO considérée auparavant, ou bien encore à un dispositif distinct de ladite source SO.
[0127] La phase préliminaire E10 comporte également une étape E10_2 d'acquisition, par le dispositif transmetteur D_TX, d'une mesure, dite « mesure de référence » M_REF, de puissance électromagnétique reçue en provenance du dispositif émetteur D_EMI via le signal ambiant expérimental S_AMB_EXP. La mise en œuvre de ladite étape E10_2 est similaire à celle de l'étape E20_l décrite auparavant.
[0128] On note par ailleurs que ladite mesure de référence M_REF peut par exemple servir à la détermination, par le dispositif transmetteur D_TX, d'une valeur VAL_REF d'un rapport signal sur bruit côté dispositif transmetteur D_TX.
[0129] La phase préliminaire E10 comporte également une étape E10_3 de rétrodiffusion ambiante du signal ambiant expérimental S_AMB_EXP par le dispositif transmetteur D_TX et vers un dispositif récepteur D_REC configuré pour décoder ledit signal ambiant expérimental rétrodiffusé. Il convient de noter que le dispositif récepteur D_REC peut par exemple correspondre au dispositif récepteur D_RX mentionné auparavant.
[0130] Ladite phase préliminaire E10 comprend en outre, lors de l'exécution de ladite étape E10_3 de rétrodiffusion ambiante, une recherche d'un emplacement LOC en lequel le signal ambiant expérimental S_AMB_EXP rétrodiffusé est reçu par le dispositif récepteur D_REC avec une qualité de réception atteignant ladite valeur cible VAL_C. [0131] Cette recherche de l'emplacement LOC est par exemple mise en oeuvre grâce à un opérateur en charge de déplacer le dispositif récepteur D_REC, de sorte qu'une fois déplacé, ledit dispositif récepteur D_REC puisse réaliser une acquisition d'une mesure de puissance électromagnétique reçue en provenance du dispositif transmetteur D_TX et déterminer, sur la base de cette mesure de puissance, le rapport signal sur bruit à son niveau. Dès lors, lorsque la valeur cible VAL_C est atteinte après un déplacement, le dispositif récepteur D_REC peut par exemple émettre un message à destination du dispositif transmetteur D_TX pour l'en informer.
[0132] Selon un autre exemple, le dispositif récepteur D_REC correspond à un dispositif mécatronique (par exemple un robot) comportant des moyens d'entrainement (comme par exemple un moteur électrique, thermique, etc.) ainsi que des moyens de déplacement (comme par exemple des roues, des chenilles, etc.) lui permettant de se déplacer de manière autonome ou bien encore de manière téléguidée.
[0133] La distance séparant le dispositif récepteur D_REC du dispositif transmetteur D_TX lorsqu'un tel emplacement LOC a été trouvé est dite « distance de référence » D_REF. Le dispositif transmetteur D_TX prend alors connaissance de cette distance de référence D_REF, aucune limitation n'étant attachée à la manière dont cette prise de connaissance s'effectue (exemples : distance de référence D_REF relevée par l'opérateur puis stockée dans des moyens de mémorisation du dispositif transmetteur D_TX ; dispositif récepteur D_REC équipé de moyens de mesure de distance, la distance de référence D_REF étant dès lors mesurée par ledit dispositif récepteur D_REC qui la communique au dispositif transmetteur D_TX).
[0134] En définitive, dans le mode de mise en œuvre de la figure 5, ladite distance de couverture D_COUV est définie de la manière suivante :
[0135] Une telle expression de D_COUV traduit que D_COUV est, dans ce mode de mise en œuvre, définie en fonction de :
- la distance de référence D_REF,
- la mesure de référence M_REF, eu égard à la présence du terme VAL_REF,
- la mesure courante M_CUR, eu égard à la présence du terme VAL_M,
- la valeur cible VAL_C, eu égard à la présence du terme D_REF.
[0136] Dès lors, une fois la phase expérimentale achevée, le procédé de contrôle comporte à nouveau, dans le mode de mise en œuvre de la figure 5, une phase courante E20. Cette phase courante E20 est similaire à celles décrites ci-avant en référence aux figures 3 et 4, à la différence que l'expression utilisée pour déterminer la distance de couverture D_COUV ou exprimer la puissance reçue par le dispositif transmetteur D_TX en provenance de la source SO est l'expression donnée ci-avant dans laquelle interviennent les quantités D_REF et VAL_REF.
[0137] A titre complémentaire, on peut à nouveau noter que la dernière expression de D_COUV donnée ci-avant tient implicitement compte du fait que la densité spectrale de puissance du signal ambiant expérimental S_AMB_EXP est sensiblement identique lors des exécutions respectives desdites étapes d'acquisition E10_l de la mesure de référence M_REF et de rétrodiffusion ambiante E10_3 du signal ambiant expérimental S_AMB_EXP. Il n'en reste pas moins que dans le cas où ladite densité spectrale varie entre ces instants, il est possible de tenir compte de cette variation dans l'expression de D_COUV suivant des caractéristiques techniques similaires à celles décrits auparavant.
[0138] L'invention a également été décrite jusqu'à présent en considérant que, pour ce qui concerne la phase courante du procédé de contrôle, un dispositif récepteur D_RX appartient au système 10 de communication par rétrodiffusion ambiante. On comprend alors que le fait de considérer la présence d'un tel dispositif récepteur D_RX permet d'envisager une application particulièrement avantageuse de l'invention dans le cadre de communications D2D, le dispositif transmetteur D_TX étant désormais en mesure de contrôler sa couverture, à la différence de ce qui est pratiqué dans l'état de la technique.
[0139] L'invention n'en reste pas moins applicable au cas où ledit système 10 ne comporte pas de dispositif récepteur D_RX lors de la mise en œuvre de ladite phase courante, le dispositif transmetteur D_TX se contentant dès lors, par exemple, de rétrodiffuser le signal ambiant sans spécifiquement chercher à transmettre une donnée d'information qui lui est propre.

Claims

26 Revendications
[Revendication 1] Procédé de contrôle de la rétrodiffusion ambiante d'un signal, dit « signal ambiant », émis par un dispositif émetteur (SO), ledit procédé comportant une phase dite « phase courante » (E20) mise en œuvre par un dispositif transmetteur (D_TX) configuré pour rétrodiffuser ledit signal ambiant et comprenant des étapes de :
- acquisition (E20_l) d'une mesure, dite « mesure courante » (M_CUR), de puissance électromagnétique reçue en provenance du dispositif émetteur via le signal ambiant,
- évaluation (E20_3) d'un critère (CRIT) consistant à au moins vérifier si une distance, dite
« distance de couverture » (D_COUV), comptée à partir d'une position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et en laquelle est atteinte une valeur donnée, dite « valeur cible » (VAL_C), de qualité de réception d'un signal obtenu par rétrodiffusion ambiante du signal ambiant, est comprise dans un intervalle donné (I_COUV), ladite distance de couverture étant définie en fonction de ladite mesure courante et de ladite valeur cible,
- si ledit critère est satisfait, rétrodiffusion ambiante (E20_4) du signal ambiant,
- si ledit critère n'est pas satisfait, absence de rétrodiffusion ambiante (E20_5) du signal ambiant.
[Revendication 2] Procédé selon la revendication 1, dans lequel ladite valeur cible (VAL_C) est une valeur de l'une quelconque des quantités suivantes :
- un rapport signal sur bruit,
- un rapport signal sur bruit plus interférence,
- un taux d'erreur de décodage.
[Revendication 3] Procédé selon l'une quelconque des revendications 1 à 2, dans lequel le signal ambiant est caractérisé par :
- une première densité spectrale lorsque l'étape d'acquisition (E20_l) de la mesure courante (M_CUR) est exécutée,
- une deuxième densité spectrale, distincte de ladite première densité spectrale, lorsque l'étape d'évaluation (E20_3) du critère (CRIT) est exécutée, ladite distance de couverture (D_COUV) étant également définie en fonction du rapport entre lesdites première et deuxième densités spectrales de puissance.
[Revendication 4] Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le dispositif transmetteur (D_TX) est configuré pour rétrodiffuser ledit signal ambiant vers au moins un dispositif récepteur (D_RX), ledit dispositif récepteur étant configuré pour décoder ledit signal ambiant rétrodiffusé, lesdits dispositifs transmetteur et récepteur étant respectivement caractérisés par des gains d'antenne G_TX et G_RX, ladite distance de couverture étant également définie en fonction desdits gains d'antenne G_TX et G_RX.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 3, ledit procédé comportant, avant la mise en œuvre de ladite phase courante (E20), une phase préliminaire expérimentale (E10) au cours de laquelle le dispositif transmetteur (D_TX) est fixe et comprenant des étapes de :
- acquisition (E10_2), par le dispositif transmetteur, d'une mesure, dite « mesure de référence » (M_REF), de puissance électromagnétique reçue en provenance d'un dispositif émetteur (D_EMI)émettant un signal, dit« signal ambiant expérimental » (S_AMB_EXP),
- rétrodiffusion ambiante (E10_3) du signal ambiant expérimental par le dispositif transmetteur et vers un dispositif récepteur (D_REC) configuré pour décoder ledit signal ambiant expérimental rétrodiffusé, ladite phase préliminaire expérimentale comprenant en outre, lors de l'exécution de ladite étape de rétrodiffusion ambiante, une recherche d'un emplacement (LOC) en lequel le signal ambiant expérimental rétrodiffusé est reçu par le dispositif récepteur avec une qualité de réception atteignant ladite valeur cible (VAL_C), la distance séparant le dispositif récepteur du dispositif transmetteur lorsqu'un tel emplacement a été trouvé étant dite « distance de référence » (D_REF), et ladite distance de couverture (D_COUV) étant également définie en fonction de ladite mesure de référence et de ladite distance de référence.
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 5, dans lequel ladite phase courante (E20) comporte en outre une étape de détermination (E20_2) de la distance de couverture (D_COUV), ladite au moins une vérification effectuée lors de l'évaluation (E20_3) du critère (CRIT) consistant en une vérification directe de l'appartenance de la distance de couverture déterminée audit intervalle (I_COUV).
[Revendication 7] Procédé selon l'une quelconque des revendications 1 à 5, dans lequel l'intervalle (I_COUV) associé à la distance de couverture (D_COUV) comporte une borne inférieure (D_MIN) et une borne supérieure (D_MAX), ladite phase courante (E20) comportant en outre des étapes de :
- détermination (E20J IN) d'une puissance électromagnétique, dite « puissance minimale » (P_MIN), qui, si elle est reçue par le dispositif transmetteur (D_TX) en provenance du dispositif émetteur (SO), permet que ladite valeur cible (VAL_C) soit atteinte à une distance comptée à partir de la position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante (M_CUR) et égale à ladite borne inférieure,
- détermination (E20_MAX) d'une puissance électromagnétique, dite « puissance maximale » (P_MAX), qui, si elle est reçue par le dispositif transmetteur en provenance du dispositif émetteur, permet que ladite valeur cible soit atteinte à une distance comptée à partir de la position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et égale à ladite borne supérieure, ladite au moins une vérification effectuée lors de l'évaluation (E20_3) du critère (CRIT) consistant à vérifier si la mesure courante est comprise entre lesdites puissances minimale et maximale.
[Revendication 8] Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le dispositif transmetteur (D_TX) est mobile suivant une vitesse V entre des instants en lesquels sont exécutées lesdites étapes d'acquisition (E20_l) et d'évaluation (E20_3) de ladite phase courante (E20), l'évaluation du critère (CRIT) consistant également à vérifier si la durée séparant lesdits instants d'exécution est suffisamment faible devant le rapport À/V, où À correspond à la longueur d'onde de la fréquence porteuse du signal ambiant, de sorte que la puissance électromagnétique reçue par le dispositif transmetteur en provenance du dispositif émetteur (SO) via le signal ambiant est sensiblement constante pendant ladite durée.
[Revendication 9] Programme d'ordinateur comportant des instructions pour la mise en œuvre d'au moins les étapes de la phase courante (E20) d'un procédé de contrôle selon l'une quelconque des revendications 1 à 8 lorsque ledit programme est exécuté par un ordinateur.
[Revendication 10] Support d'enregistrement lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur selon la revendication 9.
[Revendication 11] Dispositif transmetteur (D_TX) pour le contrôle de la rétrodiffusion ambiante d'un signal, dit « signal ambiant », émis par un dispositif émetteur (SO), ledit dispositif transmetteur étant configuré pour rétrodiffuser ledit signal ambiant et comprenant :
- un module d'acquisition (MOD_ACQ) configuré pour acquérir une mesure, dite « mesure courante » (M_CUR), de puissance électromagnétique reçue en provenance du dispositif émetteur via le signal ambiant,
- un module d'évaluation (MOD_EVAL) configuré pour évaluer un critère (CRIT) consistant à au moins vérifier si une distance, dite « distance de couverture » (D_COUV), comptée à partir d'une position occupée par le dispositif transmetteur lors de l'acquisition de la mesure courante et en laquelle est atteinte une valeur donnée, dite « valeur cible » (VAL_C), de qualité de réception d'un signal obtenu par rétrodiffusion ambiante du signal ambiant, est comprise dans un intervalle donné (I_COUV), ladite distance de couverture étant définie en fonction de ladite mesure courante et de ladite valeur cible,
- un module de contrôle (MOD_CONT) configuré pour :
• mettre en œuvre la rétrodiffusion du signal ambiant si le critère est satisfait,
• ne pas mettre en œuvre la rétrodiffusion du signal ambiant si ledit critère n'est pas satisfait. 29
[Revendication 12] Système (10) de communication par rétrodiffusion ambiante, ledit système comportant un dispositif émetteur (SO) configuré pour émettre un signal ambiant et un dispositif transmetteur (D_TX) selon la revendication 11.
EP21839240.5A 2020-12-02 2021-11-30 Procede de controle de la retrodiffusion d'un signal ambiant, dispositif pour la mise en oeuvre dudit procede de controle Pending EP4256729A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012518A FR3116972A1 (fr) 2020-12-02 2020-12-02 Procédé de contrôle de la rétrodiffusion d’un signal ambiant, dispositif pour la mise en œuvre dudit procédé de contrôle
PCT/FR2021/052154 WO2022117950A1 (fr) 2020-12-02 2021-11-30 Procede de controle de la retrodiffusion d'un signal ambiant, dispositif pour la mise en oeuvre dudit procede de controle

Publications (1)

Publication Number Publication Date
EP4256729A1 true EP4256729A1 (fr) 2023-10-11

Family

ID=74758964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21839240.5A Pending EP4256729A1 (fr) 2020-12-02 2021-11-30 Procede de controle de la retrodiffusion d'un signal ambiant, dispositif pour la mise en oeuvre dudit procede de controle

Country Status (4)

Country Link
US (1) US20240097805A1 (fr)
EP (1) EP4256729A1 (fr)
FR (1) FR3116972A1 (fr)
WO (1) WO2022117950A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499106B (zh) * 2022-11-21 2023-03-24 中国科学技术大学 基于码字转换WiFi反向散射系统的标签数据译码方法
CN118157792B (zh) * 2024-05-10 2024-08-06 南京信息工程大学 一种多ris辅助通信网络资源分配方法及系统

Also Published As

Publication number Publication date
FR3116972A1 (fr) 2022-06-03
US20240097805A1 (en) 2024-03-21
WO2022117950A1 (fr) 2022-06-09

Similar Documents

Publication Publication Date Title
EP4256729A1 (fr) Procede de controle de la retrodiffusion d'un signal ambiant, dispositif pour la mise en oeuvre dudit procede de controle
EP2583484B1 (fr) Procédé de sécurisation d'une communication sans fil, dispositif récepteur et système de communication mettant en oeuvre ce procédé
WO2021023928A1 (fr) Procédé et système de génération d'au moins une zone pour la rétrodiffusion d'un signal ambiant et/ou pour la réception d'un signal ambiant rétrodiffusé
EP3301608B1 (fr) Procédé de détection de la présence éventuelle d'un objet par un lecteur sans contact, et lecteur correspondant
WO2020084244A1 (fr) Procédé de transmission de symboles pilotes
FR3086476A1 (fr) Synchronisation rapide entre un objet et un lecteur communiquant sans contact par une modulation active de charge
FR3116971A1 (fr) Procédé de contrôle du décodage d’un signal rétrodiffusé, dispositif pour la mise en œuvre dudit procédé de contrôle
EP3994804B1 (fr) Procede de determination d'au moins un emplacement pour la reception d'un signal ambiant retrodiffuse
FR3098066A1 (fr) Procédé de génération d’un signal comprenant une succession temporelle de chirps, procédé d’estimation de symboles véhiculés par un tel signal, produits programme d’ordinateur et dispositifs correspondants.
EP4066015A1 (fr) Procede et dispositif de localisation par retrodiffusion ambiante
WO2021224564A1 (fr) Dispositif de controle du fonctionnement d'un dispositif de communication tdd sans fil, procede de controle associe
WO2021224563A1 (fr) Dispositif de controle du fonctionnement d'un dispositif de communication fdd sans fil, procede de controle associe
EP4046347B1 (fr) Procédé de sélection pour optimiser des communications par rétrodiffusion ambiante, et système associé
FR3066665B1 (fr) Dispositif de mise en forme d'onde et recepteur d'onde
FR3128083A1 (fr) Procédé d’ajustement de l’impédance d’un dispositif transmetteur pour rétrodiffuser un signal ambiant, dispositif pour la mise en œuvre dudit procédé d’ajustement
WO2020254240A1 (fr) Procédé de détermination d'au moins un emplacement pour la rétrodiffusion d'un signal ambiant
WO2021001169A1 (fr) Procede de determination d'au moins un emplacement pour la reception amelioree d'un signal ambiant retrodiffuse
EP3827624B1 (fr) Procédé et système de géolocalisation d'un terminal à portée d'un dispositif émetteur d'intérêt
WO2021105628A1 (fr) Procédé et dispositif de paramétrage d'un système de communication par rétrodiffusion ambiante
FR3112914A1 (fr) Gestion de la commutation d'un dispositif de communication sans contact d'un mode d'émulation de carte à un mode pair à pair.
FR3111032A1 (fr) Dispositif de communication sans fil configuré pour décoder un signal transmis par rétrodiffusion ambiante, procédé de communication associé
FR3006134A1 (fr) Procede d'auto-adaptation d'une qualite de signal, dispositifs et programme d'ordinateur correspondants.
FR3136913A1 (fr) Procédé de retransmission coopérative dans un système OMAMRC
WO2020058486A1 (fr) Procédé et dispositif pour déterminer un instant d'arrivée d'un signal radio
FR3111035A1 (fr) Dispositif de communication sans fil multi-antennes, procédé de contrôle d’un tel dispositif

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORANGE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)